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Abstract: To address the increasingly diverse demands for biodegradable packaging materi-
als, such as for their physical properties and antioxidant properties, this study incorporated
tea polyphenols (TPs) into soybean oil body emulsions (SOBs) and added a certain pro-
portion of sodium alginate (SA) and octenyl succinic starch sodium (SSOS) to prepare a
biodegradable soybean oil body–tea polyphenol (ST) emulsion film. The study systemat-
ically evaluated the effects of different concentrations of TP (0–6 wt.%) on the structure,
physicochemical properties, antioxidant activity, and antibacterial activity of ST films. The
results showed that the physical properties, such as tensile strength and elongation at
break, of the films increased significantly with the addition of TP, and the antioxidant
and antibacterial activity also increased with the increase in TP concentration. When TP
concentration was 2.5 wt.%, the barrier properties of the film (ST-2.5) significantly improved
(p < 0.05), while water content and water solubility decreased. The Fourier transform in-
frared spectroscopy, scanning electron microscopy, and thermogravimetric analysis results
showed that the structure of ST films became tighter at this point. The addition of TP also
affected the sensory properties of ST films, such as with an increase in the opacity of the
film. Compared with the control, the light transmittance of ST-6.0 decreased by 23.68% at a
wavelength of 600 nm, indicating a significant reduction in film transparency. Moreover, the
biodegradability test showed that ST films have good degradability. Therefore, the ST film,
as a functional edible film, has broad application prospects in the food packaging industry.

Keywords: soybean oil bodies (SOBs); edible film; tea polyphenols; polysaccharide;
antibacterial activity; biodegradability

1. Introduction
Synthetic plastic polymer films are widely used in food packaging. However, they have

significant negative impacts on the environment due to their non-recyclability, difficulty
in degradation, and generation of microplastics during decomposition [1]. To alleviate
environmental pollution problems and with the increasing attention paid to food safety,
edible films made from natural biopolymers such as proteins, polysaccharides, and lipids
have become a research focus in the field of food packaging. Compared with films made
from a single ingredient, composite edible films made from two or more materials, such as
the combination of proteins with excellent mechanical properties and polysaccharides with
excellent gas barrier properties after film formation, can better increase the mechanical and
barrier properties of the film [2]. Such composite films are more popular in research and
practical applications. However, both proteins and polysaccharides have poor water vapor
barrier properties, which limits their application in food packaging [3].
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Numerous studies have shown that adding lipids can effectively enhance the hy-
drophobicity and water vapor barrier properties of edible films, thereby reducing water
loss and improving tensile properties [4]. Some researchers have dispersed lipid mate-
rials into the film matrix to form an emulsion, which not only makes the emulsion film
easy to process but also achieves complementary advantages among various film base
materials [5,6]. Xu et al. have studied the effect of stable clove essential oil Pickering
emulsion incorporating corn protein on the structure and properties of chitosan film. They
have shown that blending clove essential oil Pickering emulsion into edible films can
significantly reduce water vapor permeability. Therefore, dispersing lipid materials into
the water-based film matrix to form an emulsion is an effective way to improve the water
resistance of edible films [7]. Currently, most research has focused on developing functional
emulsion films, combining plant essential oils and edible films with good water resistance,
antibacterial, and antioxidant effects. However, there are some drawbacks to these emul-
sion films. Firstly, plant essential oils are incompatible with the film matrix and require the
addition of emulsifiers and high-energy homogenization processes, making the production
process complex [8]. Secondly, the addition of high concentrations of plant essential oils
can alter the taste of food and affect the transparency of the film [9].

Plant oil bodies are spherical droplets with a particle size of about 0.5 to 2 µm. Plant oil
bodies can effectively solve the emulsification- and flavor-related issues of plant essential
oils. Plant seeds utilize oil bodies as a storage site for lipids, which serves as a source of
energy for seed germination and seedling growth. The internal liquid matrix of the oil
bodies is triacylglycerol, and the surface is covered by a monolayer of phospholipids and
endogenous proteins to form a biological membrane [10,11]. Soybean, as an important oil
crop, has been extensively studied for its soybean oil body (SOB). SOBs are a natural source
of emulsifiers that can disperse in water and form natural water-in-oil emulsions [12]. The
formation of natural emulsions does not require additional emulsifiers or high-energy
homogenization processes, making SOBs an ideal material for preparing emulsion films.
Some research has been conducted on using oil bodies to prepare edible films. Wang
has studied the film-forming properties of SOBs and applied them to the preservation of
freshly cut potatoes [13]. Our preliminary research has also found that SOBs perform well
in cross-linked matrices of sodium alginate and carboxymethyl cellulose, with improved
stretch and barrier properties [14]. However, despite being a good substrate for preparing
packaging films, SOBs still have some disadvantages, such as the lack of antibacterial and
antioxidant activity, which limits their direct application in active packaging. Incorporating
natural functional substances into SOB emulsion films is a feasible way to solve these
issues. Currently, some natural preservatives extracted from plants have been well-applied
in active films. Tea polyphenol (TP) is the primary active compound in tea, exhibiting
significant biological activities such as antiviral, antibacterial effects, and antioxidant effects,
achieved through the capture of reactive oxygen species and chelation of metal ions [15,16].
TP has good antioxidant activity and non-toxic properties in various food model systems,
which makes it a promising natural preservative and antioxidant with wide applications.
In recent years, TP has been successfully combined with natural polysaccharides such as
starch, gelatin, and chitosan to prepare bioactive films, such as edible films. TP addition can
improve the transparency, mechanical strength, and antioxidant properties of edible films
while inhibiting the growth of bacteria and fungi, with significant application value in food
preservation and packaging [17]. Zhou et al. added TP to chitosan and bacterial cellulose to
prepare edible films with antibacterial and antioxidant functions. They found that when the
polyphenol content was 8 wt.%, the film played an important role in prolonging the shelf
life of the grass carp [18]. There are currently few reports on SOB emulsion films, and there
is also a lack of research on the behavior of bioactive substances in SOB emulsion films.
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Sodium alginate (SA) and octenyl succinic starch sodium (SSOS) can stabilize oil
body emulsions, and edible films prepared from these two polysaccharides have good
mechanical and barrier properties [19]. Therefore, taking into account the current trends
in food packaging development, this study used a soybean oil body emulsion as a film-
forming matrix, and added sodium alginate and octenyl succinic starch sodium into the
soybean oil body emulsion. Different concentrations of tea polyphenols were added to the
emulsion system to prepare edible active films, and the effects of tea polyphenols on the
structure, physicochemical properties, antioxidant activity, and antibacterial activity of the
emulsion film were systematically studied. The aim is to develop biodegradable packaging
materials with good functional properties and to provide ideas for finding and developing
even better membrane materials.

2. Materials and Methods
2.1. Materials

Soybeans were obtained from Dexinquan supermarket (Pingdingshan, China). TP, SA,
and SSOS were provided by Henan Qihuali Biotechnology Co., Ltd. (Zhengzhou, China).
Glycerin,2,2-diphenyl-1-picrylhydrazy(DPPH),2,2-azinobis-(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS) and glycerin were purchased by Beijing Solaibao Technology Co.,
Ltd. (Beijing, China). Escherichia coli (ATCC25922) and Staphyloccocus aureus (ATCC29213)
were stored at the Laboratory of Food Processing and Components, Henan University of
Urban Construction. All other reagents were of analytical grade.

2.2. Preparation of ST Films

The soybean oil body was dispersed in distilled water to prepare an oil body emulsion
(1.5 g/100 mL). Then, 0.5 g of SSOS and 1 g of SA were dissolved in the oil body emulsion,
and glycerol (1.2 g/100 mL) was added. The mixture was stirred for 30 min at 60 ◦C
until completely dissolved. Then, 0 wt.%, 1.5 wt.%, 2.5 wt.%, 4.0 wt.%, and 6.0 wt.% TP
were added to prepare membrane solutions, named ST-0, ST-1.5, ST-2.5, ST-4.0, and ST-6.0,
respectively. After defoaming for 12 h, 60 mL of the membrane solution was poured into
each 120 mm diameter dish, dried at 60 ◦C in an oven for 8 h, and then equilibrated in the
closed oven for 12 h before peeling off and being used for subsequent experiments.

2.3. Characterization of ST Films
2.3.1. Thickness

A spiral micrometer was used to measure the thickness of ST films in 10 random
locations per sample and the measurements were taken three times in each location.

2.3.2. Mechanical Property

The tensile strength (TS) and elongation at break (EB) of ST films were evaluated using
a TMS-PRO texture analyzer (FTC, VA, USA). Film samples were cut into fixed-size pieces
(10 mm × 70 mm) and loaded onto the device at a speed of 0.5 mm/s. TS and EB were
calculated as follows:

TS =
F

T·W

EB(%) =
L − L0

L0
× 100%

Here, F denotes the maximum tensile force (N) at the sample break, T denotes film
thickness (m), and W denotes film width (m). L denotes the elongation length of film (m)
when it breaks, and L0 represents the original length (m) of film.
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2.3.3. Water Sensitivity

The moisture content (MC) can be measured by directly drying the film [20]. The films
were cut into a square shape with a size of 30 mm × 30 mm and weighed as m0. They were
then dried in an oven at 105 ◦C until a constant weight was obtained and weighed as m.
The formula for calculating the MC of the film was as follows:

Moisture content(%) =
m0 − m

m0
× 100%

Here, m0 represents the initial weight of film, and m represents the weight of film after
drying to a constant weight.

Water solubility is the weight percentage of soluble components in a film sample [21].
The treatment of the film sample is the same as that of water solubility and the dry weight
after drying at 105 ◦C was recorded as w0. After drying, the film samples were soaked in
50 mL of deionized water at 25 ◦C for 1 h. Then, they were dried at 105 ◦C to a constant
weight to obtain the final dry weight (w). The formula for calculating water solubility was
as follows:

Water solubility(%) =
w0 − w

w0
× 100%

2.3.4. Color Parameters

The color parameters of the film were measured using a colorimeter (WSC-S, Shanghai
Yidian Physical Optical Instrument Co., Ltd., Shanghai, China) according to the CIE L*a*b*
system (L* (lightness), a* (green to red), and b* (blue to yellow)) and using a standard
whiteboard as a comparison. The total color difference (∆E) and chromaticity (c) were
calculated using the following equations:

∆E =

√
∆a2 + ∆b2 + ∆L2

c =
√

a2 + b2

where ∆a = a*standard − a*sample; ∆b = b*standard − b*sample; ∆L = L*standard − L*sample.
The L*, a*, and b* values of the standard whiteboard were measured as follows:
L*standard = 98.24 ± 0.03; a*standard = 1.01 ± 0.01; b*standard = −1.56 ± 0.02.

2.3.5. Opacity and Transmittance

The determination of film opacity and transmittance was carried out according to
the method proposed by Wu et al., with some modifications [22]. The films were cut into
rectangular pieces (30 mm × 10 mm) and attached to Petri dishes, and their absorbance at a
wavelength of 600 nm was measured using a spectrophotometer (T60, UV/Vis spectrometer,
PG Instruments Ltd., Lutterworth, UK). Empty Petri dishes were used as blank samples.
The opacity and transmittance of films were calculated using the following formulas:

Opacity =
A600

d

Here, A600 represents the absorbance at 600 nm, and d represents the thickness of
films (mm).

The transmittance (T%) of the film was calculated using the following formula:

T(%) = 0.1A × 100%

Here, A is the absorbance of films at 600 nm, and T is the transmittance of films.
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2.3.6. Barrier Property

The barrier properties of films were evaluated by their diffusion characteristics, specif-
ically water vapor permeability (WVP) and oxygen permeability (OP). WVP was measured
using the method of Tan et al. [23,24]. In a beaker, 2 g of silica gel was weighed to achieve
0% relative humidity. Then, the beaker was covered with the film and weighed again as w0.
After being left at room temperature for 24 h, the weight was measured again as w. The
formula for calculating water vapor permeability is as follows:

WVP =
∆m × L

t × A × ∆p

where t is the time (s), A is the measuring area (m2), ∆p is the water vapor pressure
difference between the two sides of the film, ∆m is the weight change in the glass bottle (g),
and L is the thickness of the film (m).

The detection of oxygen permeability (OP) is based on an iron oxidation mechanism,
following the method of Zhou et al. [18]. Sodium chloride (1.5 g), activated charcoal (1 g),
and reduced iron powder (0.5 g) were added to a brown bottle with an open diameter of
2 cm. The film sample (with a permeable area of 3.1416 × 10−4 m2) was then placed on top
of the brown bottle, and the brown bottle with the film sample was placed in a dryer filled
with saturated calcium chloride solution to achieve 90% relative humidity at 25 ◦C. The
formula for calculating OP is as follows:

OP =
m − m0

t × s

where m0 is the initial weight of the brown bottle (kg), m is the final weight of the brown
bottle and the oxygen passing through the film (kg), t is the measuring time, and s is the
area of the bottle covered by the film sample (m2).

2.3.7. Fourier Transform Infrared (FT-IR) Analysis

The film samples were analyzed (20 mm × 20 mm) using a Fourier transform infrared
spectrometer (PerkinElmer Spectrum, PerkinElmer Enterprise Management (Shanghai)
Co., Ltd., Shanghai, China) [14]. The scanning range was 4000 cm−1 to 650 cm−1, with a
resolution of 4 cm−1.

2.3.8. X-Ray Diffraction Analysis (XRD)

The freeze-dried ST film was placed in an X-ray diffraction instrument (Ultima IV,
Rigaku Corporation, Tokyo, Japan). Cu-Kα radiation (λ = 1.542 Å) was used at 40 kV and
100 mA, with a scanning speed of 4◦/min, a step size of 0.02, and diffraction angles (2θ)
ranging from 5 to 50◦.

2.3.9. Thermogravimetric Analysis

The thermal stability of the composite film was determined according to the method
of Sun et al. [25]. The films were cut into small pieces, and 5 mg of the sample was weighed
for the analysis. The sample was heated from 30 ◦C to 600 ◦C at a rate of 10 ◦C/min in a
constant flow of nitrogen gas (20 mL/min).

2.3.10. Scanning Electron Microscopy (SEM)

The samples were frozen and fractured in liquid nitrogen and then coated with gold.
They were then transferred to SEM (S-4800, Hitachi, Tokyo, Japan) and scanned at voltage
of 3.0 kV.



Coatings 2025, 15, 162 6 of 17

2.3.11. Antioxidant Activity

Following the method of Kim et al., the antioxidant activity of the films was evaluated
using DPPH and ABTS radical scavenging assays [26]. The film extract was prepared by
taking 0.5 g of the film sample and adding it to 10 mL of deionized water, shaking and
mixing for 24 h, and then centrifuging at 6000 rpm for 10 min. Supernatant was used for
the determination of free radical scavenging activity.

DPPH Radical Scavenging Rate

The supernatant (50 µL) was mixed with 120 µL of DPPH solution (0.2 mmol/L
DPPH in 95 vol.% ethanol), and the reaction was incubated in the dark at 25 ◦C for
30 min. Subsequently, the DPPH radical scavenging rate was calculated by measuring the
absorbance at 517 nm with the following equation:

DPPH radical scavening rate(%) =
Abs0 − Abs

Abs
× 100%

where Abs0 represents the absorbance of the control, and Abs represents the absorbance of
the film sample.

ABTS Radical Scavenging Rate

Here, 7 mmol/L ABTS solution and 2.45 mmol/L potassium persulfate solution were
prepared with 0.2 mol/L PBS (pH7.4) and mixed equal volumes (1:1) of the ABTS and
potassium persulfate solutions; then, the mixture was reacted in the dark at 25 ◦C for
16 h. The dark solution was diluted with ethanol to obtain an ABTS-ethanol solution
with an absorbance of 0.70 ± 0.02 at 734 nm. This was the ABTS radical cation (ABTS•+)
preparation solution. A quantity of 30 µL of the sample solution was mixed with 170 µL
of the ABTS-ethanol and the ABTS-ethanol solution was used as the control group. The
results were calculated as the ABTS free radical scavenging rate (%) according to the
following equation:

ABTS radical scavening rate(%) =
Abs0 − Abs

Abs0
× 100%

where Abs0 is the absorbance of the control, and Abs is the absorbance of the film sample.

2.3.12. Antibacterial Activity

The film (0.2 g) was immersed in 15 mL of meat peptone broth containing 100 µL
of bacterial culture (105 CFU/mL) and incubated under constant temperature at 37 ◦C.
Samples (1 mL) were taken at 12 h and 24 h, and their optical density was measured
at 560 nm using a spectrophotometer (T60, UV/Vis spectrometer, PG Instruments Ltd.,
UK) [27].

2.3.13. Biodegradability

The biodegradability of ST films was evaluated using a soil burial test at 25 ◦C. A
rectangular plastic container was filled with soil (50 mm depth) collected from beneath
a tree. The film samples (30 mm × 30 mm) and plastic wrap (30 mm × 30 mm) were
buried in the soil-filled plastic container, and water was sprayed onto the soil daily to
maintain moisture [28]. The film samples were extracted from the soil and photographed
to determine their biodegradability at intervals of 0, 3, 5, 9, and 11 days.
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2.3.14. Statistical Analysis

All experiments were conducted in triplicate, and the results were presented as the
mean ± standard deviation. The mean and standard deviation were calculated using
GraphPad Prism 9.0. Statistical analysis was performed by ANOVA using IBM SPSS
statistics, version 25 (IBM Inc., Armonk, NY, USA). p < 0.05 was considered as statistical
significance.

3. Results and Discussion
3.1. Thickness Analysis

The addition of TP increased the solid content of the polymer matrix of the film,
leading to a change in the thickness of the ST films [29]. Figure 1A showed that the
thicknesses of ST films were between 0.12 mm and 0.14 mm, and there was no significant
difference among the groups (p > 0.05). This may be because the amount of TP added to the
film matrix was relatively low, and had little effect on the thickness of the ST film [17,30].
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Figure 1. (A) Thickness of ST films; (B) elongation at break and tensile strength of ST films.

3.2. Mechanical Property Analysis

Figure 1B shows the mechanical properties of the ST film, including tensile strength
(TS) and elongation at break (EB). It can be observed that the EB of ST films were between
49.06% and 67.36%, and TS values ranged from 0.69 MPa to 2.16 MPa. ST-2.5 had the
highest values of EB and TS, which were 67.36% and 2.16 MPa (p < 0.05), respectively. This
may be because the addition of TP caused stronger hydrogen bonding interactions between
the hydroxyl groups in the ST films, thereby improving the mechanical properties [31].
However, when TP content reached 4.0 wt.%, the EB and TS of ST films began to decrease.
Generally, when the oil exists in the form of emulsion droplets and a film is formed in the
biopolymer, the film structure often becomes more flexible, with decreased rigidity. This is
reflected in the increased toughness of the film; that is, an increase in EB [32]. However, a
high TP concentration in the film may exist in the form of free particles, weaken its network
structure, and disrupt the stable state of the SOB emulsion system, resulting in a decrease
in EB and TS [33].
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3.3. Water Sensitivity

As shown in Figure 2A, compared with the control group (ST-0), the water content of
ST-1.5 and ST-2.5 decreased to 24.22% and 23.00% (p < 0.05), respectively. This change may
be due to the binding of the phenolic hydroxyl group of TP with the hydroxyl groups of
the SSOS, which reduced the hydroxyl groups exposed on the film and further reduced
the water content of the film. The increase in the water content of ST-4.0 was due to the
fact that TP is inherently more hydrophilic than SSOS. Therefore, when TP concentration
reached a certain level, the water content of the film would also increase [34]. With the
increase in TP content, the water solubility of ST films increased and showed concentration
dependence. This may be due to the solubility of TP in water. After the addition of TP, the
polymer network of the film was more easily decomposed when it came into contact with
water, thus increasing the water solubility of the film [35].
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3.4. Colorimetric Analysis

Table 1 shows the effect of TP on the color of ST films. The addition of TP caused
a decrease in the L* value of the film, and ST-0 had the highest L value of 30.83 ± 0.34,
indicating that the addition of TP decreased the lightness of the film, making it darker.

Table 1. The effect of the TP concentration on the color of films.

Films L* a* b* ∆E c

ST-0 67.41 ± 0.90 a 2.68 ± 0.03 e 2.29 ± 0.01 e 31.12 ± 0.92 e 3.52 ± 0.02 e

ST-1.5 60.21 ± 0.68 b 4.80 ± 0.01 d 16.04 ± 0.02 d 42.08 ± 0.80 d 16.74 ± 0.02 d

ST-2.5 59.08 ± 0.63 bc 5.85 ± 0.01 c 18.13 ± 0.02 c 44.10 ± 0.75 c 19.05 ± 0.02 c

ST-4.0 57.27 ± 0.39 c 7.28 ± 0.03 b 20.07 ± 0.01 b 46.75 ± 0.35 b 21.35 ± 0.01 b

ST-6.0 52.57 ± 1.25 d 10.96 ± 0.08 a 29.37 ± 0.03 a 56.05 ± 1.12 a 31.35 ± 0.04 a

Note: Significant differences are expressed by different letters (a–c) (p < 0.05). Different letters in the same column
indicate significant differences (p < 0.05).

Moreover, with the increase in TP concentration, the a* value of the film increased
from 2.68 ± 0.03 to 10.96 ± 0.08, indicating that the ST films gradually became reddish. The
a* value of ST-0 was positive, reaching 2.68 ± 0.03, which may be due to the influence of the
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color of the SOB on the film, which is milky white or slightly yellowish [36]. In addition,
due to the inherent yellowish-brown color of TP, the b*, ∆E, and c values of ST film showed
an increasing trend, consistent with the results of Biao et al. [37].

3.5. Transmittance and Opacity

Transmittance, opacity, absorbance, and haze are important parameters that reflect the
optical properties of materials and have been used to determine the transparency of food
packaging materials. The most important indicators are transmittance and opacity [38,39].
After the addition of TP, the opacity of ST films significantly increased, from 0.81 ± 0.13 for
ST-0 to 1.71 ± 0.27 for ST-6.0 (p < 0.05). This may be due to the structural heterogeneity of the
film, having different refractive indices after adding TP, which enhances the phenomenon
of light scattering [22]. In addition, with the increase in TP concentration, the transmittance
of ST films decreased from (79.20 ± 1.55)% to (60.44 ± 0.71)%. Studies have shown that ST
films containing TP have specific functions such as antioxidant and antibacterial activity,
which can better protect food [40] (Figure 2B).

3.6. Barrier Property Analysis

Diffusion properties of film reflect its water blocking and antioxidant abilities, which
are crucial for active packaging [41]. In general, SA and SSOS have a high hydrophilicity,
which means that ST films will have a higher WVP value. However, based on the results in
Figure 3A, ST-2.5 has a higher WVP value, and this may be attributed to the chemical bond
formation between TP and the proteins outside the SOB, which created a more cohesive
surface structure [42]. Therefore, adding a small amount of TP can help to reduce WVP to
some extent. However, as TP is a naturally hydrophilic substance with a high concentration
of hydrophilic groups, an increase in TP concentration will lower the water blocking ability
of film [43]. With the change in TP concentration, the OP showed the same trend as WVP,
with the oxygen permeability of ST-2.5 decreasing by 52.35% compared to the control group
(p < 0.05) (Figure 3B).
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3.7. FTIR Analysis

FTIR analysis is used to study the interactions between molecules in film materials.
Figure 3C shows the FTIR spectrum of ST composite films. The peaks at 3300 cm−1 in the
films were attributed to the stretching vibration of O–H and –NH [37]. In addition, due to
the hydrogen bond interaction between TP and the matrix, an increase in TP concentration
resulted in the migration of the N-H group at 3300 cm−1 towards a lower wavenumber.
The peak from 2923 cm−1 to 2933 cm−1 is related to the stretching of C-H bonds. The two
peaks in the range of 1348 cm−1–1547 cm−1 are caused by the stretching of C-N and NH
(amide II) and the C-O (carbonyl) vibrations, respectively [44]. After the addition of TP, the
peak intensity at 1028 cm−1 decreased and shifted towards a higher wavenumber. These
changes may be attributed to the interaction between the hydroxyl or amino groups in
the matrix and the polyphenols of TP, which lead to the formation of a large number of
hydrogen bonds between the functional groups [45]. Some studies have shown that the
hydrogen bonds formed between phenolic compounds and polysaccharides are strong and
weaken the chemical bonding force between polysaccharides, resulting in a decrease in
peak intensity and the formation of a more stable edible film [46]. It is noteworthy that the
spectral band near 1547 cm−1 was attributed to the bending vibration of absorbed water
in the amorphous region of SSOS [47]. Obviously, due to the presence of TP, these bands
shifted to lower frequencies. One possible explanation for this change was that, due to the
hydrophilicity of TP, it significantly altered the state of water molecules in the starch matrix
and formed new hydrogen bonds with water molecules [48].

3.8. XRD Analysis

XRD analysis was used to study the crystalline morphology of ST films and revealed
the intermolecular interactions between the components in the ST films (Figure 3D). The
broad peak at 2θ = 20.4◦ for all ST films indicated the amorphous structure of the matrix.
After adding 2.5 wt.% TP, the characteristic peak at 2θ was strengthened. The van der
Waals forces and hydrogen bonds between TP and the matrix caused the rearrangement of
the polymer structure, inhibiting the crystallization process and affecting the stability of ST
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films [47]. Previous studies have reported the effect of glycerol concentration on matrix
crystallization, where an increase in glycerol concentration led to a decrease in the degree of
crystallization [49]. The composite film showed only one diffraction peak at 20.4◦, and after
adding TP, the peak width increased, indicating a decrease in matrix crystallinity [35,50].

3.9. TGA

Thermogravimetric analysis is a tool used to measure the thermal properties and
weight–temperature curve of materials [14]. The thermal decomposition of ST films can be
divided into three stages. The first stage occurred at 60~150 ◦C, where the weight loss was
attributed to the hydrogen bonds between the molecules inside the film being broken, and
the evaporation of adsorbed and bound water in the film [51]. The second stage occurred at
170~300 ◦C and was related to the degradation of glycerol and some low-molecular-weight
compounds in the film [52]. The third stage was above 300 ◦C, where polysaccharides
started to depolymerize and carbonize. As shown in Figure 4, the addition of TP had a
certain effect on the weight loss rate of ST films, especially in the third stage. Compared
with ST-0 film, the films containing TP had a lower weight loss rate, indicating that the
addition of TP may enhance the interaction between the molecules inside the ST films’
matrix [18].
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3.10. SEM Analysis

The surface and cross-sectional structures of ST films were also observed by SEM, and
the results are shown in Figure 5. The surface of ST-0 film was relatively smooth, with no
obvious cracks or pores, and after adding TP, the surface of the composite film did not
show significant changes. However, some uniform crosslinking structures appeared on the
cross-section of ST films (Figure 5). This may be attributed to the partial aggregation of TP
within the matrix and an increase in the hydrogen bonds between the molecules inside
the matrix [53]. When the TP concentration continued to increase, particles appeared on
the surface of the composite film, which may be related to the dispersion of TP in the film
matrix [54].
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3.11. Antioxidant Activity

The antioxidant activity of the films was evaluated using free radical scavenging
assay [55]. The antioxidant activity displayed by the membrane without added TP may
mainly come from the flavonoids and squalene found in the SOB [14]. The addition of
TP significantly increased the scavenging ability, and this change was closely related to
the concentration of TP. The TP structure contained phenolic hydroxyl groups which can
effectively provide hydrogen to free radicals, thereby interrupting the chain reaction of
free radicals [56]. As the TP content increased, the antioxidant capacity of ST films also
improved. Compared with ST-0, ST-6.0 exhibited the highest free radical scavenging
activities for both DPPH and ABTS, with a nearly 7-fold and 4-fold increase, separately
(p < 0.05) (Figure 6A,B).
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Figure 6. (A) The DPPH radical scavenging activity of the ST films; (B) the ABTS radical scavenging
activity of the ST films; (C) the antibacterial effects of ST films on Escherichia coli (E. coli) within
24 h and 48 h with different concentrations of tea polyphenol (TP); (D) the antibacterial effects of
ST films on Staphylococcus aureus (S. aureus) within 24 h and 48 h with different concentrations of
tea polyphenol (TP); (E) a comparison of the degradation effects between the polyethylene film
(plastic bag) and the ST-2.5 film. Different lowercase letters in the same column indicate significant
differences between groups (p < 0.05).
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3.12. Antibacterial Activity

The antibacterial activity of ST films is shown in Figure 6C,D. The addition of TP
significantly enhanced the antibacterial activity of the composite film against the two bac-
teria (p < 0.05). The catechins in TP exhibited a direct antibacterial effect by disrupting
the cell membrane permeability, inhibiting the synthesis of fatty acids and enzyme activ-
ity [57]. The antibacterial efficiency against Staphylococcus aureus (G+) is higher than that
against Escherichia coli (G−). The lipopolysaccharide on the cell wall of E. coli exhibits
stronger resistance against TP, while S. aureus is more sensitive to TP, showing strong
inhibitory effects even after 24 h. Araghizadeh et al. also reported similar results, and they
believed that polyphenols exhibit greater inhibitory effects on Gram-positive bacteria than
on Gram-negative bacteria [58].

3.13. Biodegradability Evaluation

Degradability is an important indicator for evaluating whether bio-based films are
environmentally friendly [59]. Figure 6E shows the degradation of the ST film buried in soil
for 11 days. On the third day, ST film appeared wrinkled and shrunk, and on the eleventh
day, due to microbial degradation and dissolution by soil moisture, most of the ST film had
degraded, while the polyethylene film group remained unchanged. The results indicated
that, compared to polyethylene plastic film, ST film had good degradability, which aligned
with the findings of Liu et al. [53].

4. Conclusions
In this study, SOB, SA, and SSOS were used as raw materials to prepare emulsion films

with TP concentrations of 0 wt.%, 1.5 wt.%, 2.5 wt.%, 4.0 wt.%, and 6.0 wt.%, respectively.
The ST film exhibited favorable physical properties, and antibacterial and antioxidant activ-
ities. Overall, ST-2.5 combination was the best, as the ST film showed optimal mechanical
and barrier properties at this concentration. FTIR results indicated that polyphenols formed
new hydrogen bonds with the film matrix. However, when the TP concentration increased
to 4.0 wt.%, SEM results showed that TP may exist in the form of free particles, which could
affect the physicochemical properties of the film, such as with a decrease in tensile strength
and water resistance. In summary, ST film was observed a new antibacterial, antioxidant,
and edible film, which can serve as a functional food packaging material. The results of
this study will promote the research and development of functional oil-in-water (O/W)
emulsion films and enable the development of new opportunities for O/W emulsion films
in the food packaging industry. Moreover, we look forward to exploring the potential appli-
cation of other types of oil body materials or substances that can improve the functionality
of the film as a film-forming matrix for biodegradable films.
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