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Abstract: Though polyurethanes (PUs) are widely used in people’s daily lives, traditional
PUs are generally fabricated from toxic (poly)isocyanates. Furthermore, (poly)isocyanates
are commonly industrially prepared from a seriously toxic and injurious chemical com-
pound named phosgene, which is a dangerous gas that can cause lung irritation and
eventually death. As is known to all, the consumption of carbon dioxide (CO2)-based raw
materials in chemical reactions and productions will be conducive to reducing the green-
house effect. In this paper, non-isocyanate polyurethane (NIPU) diol was fabricated through
a polyaddition reaction from ethylenediamine and CO2-based ethylene carbonate, and
then NIPU-based silicone-containing thiol hyperbranched polymers (NIPU-SiHPs) were
synthesized from the NIPU diol. Finally, UV-curable optical-silicone-modified CO2-based
coatings (UV-NIPUs) were fabricated from NIPU-SiHPs and pentaerythritol triacrylate
by a UV-initiated thiol-ene click reaction without a UV initiator. The UV-NIPUs demon-
strated high transparency over 90% (400–800 nm), good mechanical performance with
tensile strength reaching 3.49 MPa, superior thermal stability with an initial decomposition
temperature (Td5) in the range of 239.7–265.6 ◦C, moderate hydrophilicity with a water
contact angle in the range of 42.6–62.1◦, a high pencil hardness in the range of 5–9H, and
good adhesive performance of grade 0. The results indicate that it is a promising green
chemical strategy to fabricate CO2-based high-performance materials.

Keywords: UV-curable; silicone-modified coatings; non-isocyanate polyurethanes;
carbon dioxide

1. Introduction
Polyurethanes (PUs) are materials with urethane (carbamate) linkages possessing

broad applications in fields such as coatings, adhesives, elastomers, flexible electronics,
and wearable electronic devices [1–3]. According to previous reports, the global market of
PUs was over USD 82 billion, and it is expected to reach USD 123 billion by 2030 [4]. How-
ever, traditional PUs are fabricated by a polyaddition process with (poly)isocyanates and
(poly)alcohols [5,6]. As we know, isocyanates are severely toxic petrochemical substances
with high risks, such as skin or eye irritation, asthma, and cancer [2,6,7]. Furthermore, iso-
cyanates are commonly prepared from a seriously toxic and injurious chemical compound
named phosgene, which is a highly toxic gas that can cause lung irritation and eventually
death if inhaled at a concentration above 4 ppm [8]. Last but not least, dibutyltin dilaurate,
a substance with toxicity at a low concentration, is most employed as a catalyst for the
isocyanate/alcohol reaction to prepare traditional PUs [9].
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Recently, non-isocyanate polyurethanes (NIPUs) were found to be a promising substi-
tute to avoid the harmful chemical substances mentioned above [5] because they can be
produced by four green chemical pathways, including the polyaddition of polyfunctional
cyclic carbonates with polyamines, the copolymerization of carbon dioxide (CO2) with
aziridines, the polycondensation of bis-alkyl carbamates with diols, and the ring-opening
polymerization of cyclic carbamates [10]. The synthesis of NIPU by the polyaddition
of polyfunctional cyclic carbonates with polyamines is a very promising green chemical
method because cyclic carbonates are raw materials synthesized from CO2. As is known
to all, CO2 is a renewable, green, and abundant natural carbon building block and raw
material in chemical synthesis, and the consumption of CO2-based raw materials in the
chemical industry will contribute to reducing the greenhouse effect [9–16]. Additionally,
the preparation of NIPU by polyfunctional cyclic carbonates with polyamines will generate
many hydroxyl groups on β-carbon atoms, which is beneficial for chemical modification
and the formation of hydrogen bonds [13]. An aqueous NIPU reported by Liu shows good
thermal resistance with a Td5 of 244.5 ◦C, and the hydroxyl group and tertiary amine of
NIPU can enhance the polarity and wettability of carbon fiber [17]. Wang developed a linear
NIPU containing polyitaconamide sequences with tensile strength of up to 27 MPa [18].
Clearly, the unique performance of NIPU prepared with this method can bring about new
chemical pathways to develop high-performance polymers by chemical modification [19].
As reported, the application of PUs is greatly restricted by their poor thermal stability
and low hardness [20–22]. Silicone materials composed of Si–O backbones demonstrate
outstanding properties, such as excellent thermal stability, UV resistance, and minimal mois-
ture absorption [23]. So, designing high-performance materials by virtue of polysiloxane
and NIPU sequences is a promising strategy to overcome the shortcomings of PUs.

The UV curing method is a green technology widely studied due to its distinct advan-
tages of low solvent emission (low VOC), high efficiency, and optimized energy consump-
tion [21,22,24]. Commonly, a UV initiator is a quite important ingredient for UV-curable
materials as it plays a key role in the curing speed and comprehensive performance of
UV-curable materials [25]. However, the application of a UV initiator usually comes with
serious drawbacks such as toxicity, yellowing, odor, migration, etc., which seriously limits
the practical application of UV-curable materials in fields such as the biomedical field
and food packaging [26,27]. In this paper, UV-curable optical-silicone-modified coatings
(UV-NIPUs) were fabricated from CO2-based NIPU diol by UV-initiated thiol-ene click
reaction without a UV initiator. The UV-NIPUs exhibited high transparency, good mechani-
cal performance, superior thermal stability, moderate hydrophilicity, good UV resistance,
high pencil hardness, and good adhesive performance. This study presents a green strategy
to design high-performance optical-silicone-modified materials made from CO2-based
raw materials.

2. Materials and Methods
2.1. Materials and Reagents

Ethylene carbonate (EC, A. R.), mercaptopropyltrimethoxysilane (MPTES, A. R.), and
ethylenediamine (EDA, A. R.) were purchased from Beijing HWRK Chem Co., Ltd. (Beijing,
China). Pentaerythritol triacrylate (PETA, A. R.) was supplied by McLean Biochemical Tech-
nology Co., Ltd. (Shanghai, China). 2-Hydroxy-2-methyl-1- phenylacetone (HMPP, 99.0%,
A. R.) was obtained from Shanghai Qitai Chemical Technology Co., Ltd. (Shanghai, China).

2.2. Synthesized CO2-Based NIPU Diol

Synthesis of NIPU by polyaddition of CO2-based raw material polyfunctional cyclic
carbonates with polyamines is one of promising green chemical methods [6]. According to
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the route shown in Scheme 1, like in reference [28], 92.4630 g (1.05 mol) EC was added into
a 250 mL three-necked flask and heated to 60 ◦C, then 30.0500 g (0.5 mol) EDA was dropped
into it with a funnel for about 2 h. Thereafter, the reaction was conducted at 100 ◦C for 8 h
followed by removing the residual raw materials and by-products by vacuum distillation at
110 ◦C for about 3 h. Finally, 107.8344 g white solid product of CO2-based NIPU diol with
yield of 91.3% was obtained after a further treatment in a vacuum oven for 24 h at 60 ◦C.
The NIPU diol prepared was characterized by FT-IR and 1H-NMR, as shown in Figures S1
and S2.
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2.3. Synthesized NIPU-Based Silicone-Containing Thiol Hyperbranched Polymers (NIPU-SiHPs)

According to the formula collected in Table S1 and the route shown in Scheme 2,
NIPU-SiHPs were synthesized by condensation reaction between the hydroxyl group of
NIPU diol and the Si–OCH3 group according to [29]. Taking the fabrication of NIPU-SiHP-3
for example, 19.6340 g (0.1 mol) MPTES and 23.7088 g NIPU diol (0.16 mol) were added
into a 100 mL three-necked flask and reacted at 100 ◦C for 2 h. Later, the temperature
was elevated from 100 ◦C to 160 ◦C gradually for 3 h and the reaction was conducted for
another 1 h. Finally, about 22.6428 g light yellow liquid of NIPU-SiHP-3 was obtained after
the mixture was cooled to about 80 ◦C. The raw materials and by-products were removed
by vacuum distillation for about 2 h. The NIPU-SiHP-3 prepared was characterized by
FT-IR, 1H-NMR, 13C-NMR and 29Si-NMR, as shown in Figures S3–S6.
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2.4. Fabrication of UV-Curable Optical Silicone-Modified Coatings (UV-NIPUs) from
CO2-Based NIPU

According to the procedure shown in Scheme 3, the UV-NIPUs were fabricated. As
is typical, the molar ratio of thiol groups to acrylate groups (nthiol:nacrylate) was 2:1, and
about 0.5 g mixture of NIPU-SiHP-3 and PETA were coated on half of the glass slides with
thickness of about 0.3 mm. After the slides were kept in a vacuum oven to remove bubbles
and make the uncured coatings as smooth as possible for about 0.5 h at 25 ◦C, they were
cured by UV-initiated thiol-ene reaction using a UV apparatus (ZB1000, Changzhou Zibo
Electron Technology Co., Ltd. (Changzhou, China), 365 nm, 10.6 mW·cm−2, the distance of
the slides to the light is 20 cm).
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2.5. Characterization
1H-NMR spectra were record on a Bruker AVANCE AV400 (400 MHz) spectrometer

(Bruker Corporation, Karlsruher, Germany). 13C-NMR and 29Si-NMR spectra were record
on a Bruker AVANCE AV600 (600 MHz) spectrometer (Bruker Corporation, Karlsruher,
Germany). All the NMR analyses were conducted in CDCl3 without tetramethylsilane
(TMS) as internal reference. FT-IR spectra were record on a Nicolet 700 spectrometer
(Nicolet Co., Ltd., Madison, WI, USA) with an ATR. Transmittance over 400–800 nm of
UV-NIPUs was measured by a UH5300 double-beam UV/Vis spectrophotometer (Hitachi
Instrument Co., Ltd., Tokyo, Japan). Gelation rate (GR) were calculated by the equation
GR = M0−M

M0
× 100%, where M0 and M were the original and residual mass of UV-NIPUs

before and after washing with toluene by Soxhlet extraction at 150 ◦C for 4 h. The pencil
hardness of UV-NIPUs was evaluated according to GBT6739-2006 using a BGD-562 pencil
hardness meter (Zhenwei Testing Machinery Co., Ltd., Jiangdu, China). Adhesion perfor-
mance was examined with a BGD-502 paint film according to ISO 2409-2007 by cross-cut
test. Surface water contact angle was evaluated by a KRUSS DSA30 water contact angle
meter (KRÜSS, Hamburg, Germany) according to “Measurement of water-contact angle of
plastic films”, GB/T 30693-2014. Differential scanning calorimetry (DSC) of UV-NIPUs was
analyzed with a DSC Q100 apparatus (TA Instruments, New Castle, DE, USA) under N2

atmosphere according to the following procedure. UV-NIPUs were heated to 80 ◦C, kept for
2 min to eliminate the thermal history, then cooled to −60 ◦C, and finally heated again to
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80 ◦C with a speed of 10 ◦C·min−1. Thermogravimetric analysis (TGA) was conducted on
a TG 209C apparatus (NETZSCH–Gerätebau GmbH, Selb, Germany) under N2 atmosphere
from room temperature to 800 ◦C at a rate of 10 ◦C min−1. Tensile testing of UV-NIPUs
(60 mm × 8 mm × 0.7 mm) was conducted according to GB/T 528-2009/ISO 37:2005
on a XLW-500 electronic tensile testing machine (Sanquan Zhongshi Experimental Instru-
ments Co., Ltd., Jinan, China) with a load of 100 N at a loading rate of 60 mm/min. The
cross-linking density was assessed by swelling experiment according to reference [30]. The
samples were immersed in toluene for 72 h and cross-linking density (SD) was described
as SD = [m0/ρe + (m − m0)/ρs]/(m0/ρe), where m0 and m are the weight of the unswollen
and swollen material (in g), respectively, and ρe and ρs are the density of UV-NIPUs and
toluene (in g cm–3), respectively.

3. Results and Discussion
3.1. Comparison Between the UV-NIPUs Prepared with and Without UV Initiator HMPP

Generally, UV initiator and UV curing time both significantly impact the curing degree,
so as to play an important role in the comprehensive performance of UV-curable materials.
Firstly, the UV-NIPU prepared from NIPU-SiHP-3 and PETA was cured with UV initiator
HMPP. It can be seen from Figure 1 and Table 1 that when UV curing time is only 10 s, the
GR and pencil hardness are as high as 92.7% and 9H, respectively, which demonstrated
that the UV-NIPUs can be cured quite quickly. It is in favor of improving the production
efficiency and reducing energy consumption. As mentioned above, a UV initiator is an
essential ingredient for traditional UV-curable materials, significantly influencing the curing
speed and comprehensive performance [25]. However, the application of a UV initiator
usually causes drawbacks such as toxicity, yellowing, odor, migration, etc., which seriously
restricts the practical application in the biomedical field and food packaging [26,27]. Since
a UV initiator usually causes significant drawbacks and this UV-curable system can be
cured so quickly, it is very worthwhile to try the UV-curing reaction without a UV initiator.
Encouragingly, it can be seen from Figure 1 and Table 1 that the UV-NIPUs can also be
cured quickly without HMPP. If the UV-curing time is only 5 s, the cured materials have
GR and pencil hardness as high as 79.1% and 5H, respectively. As shown by Figure 1, the
cross-linking density of the UV-NIPUs prepared with HMPP ranges from 0.9821 g·mL–1 to
1.4.56 g·mL–1, while that of UV-NIPUs prepared without HMPP ranges from 0.6791 g·mL–1

to 1.2837 g·mL–1. Though both the GR and cross-linking density of the UV-NIPUs prepared
without a UV initiator are lower than those of the UV-NIPUs initiated by HMPP at the
same curing time, the pencil hardness of the UV-NIPUs without HMPP can also reach 5H
when the curing time is as short as 5 s (Table 1). If the curing time is longer than 10 s, the
pencil hardness of UV-NIPUs prepared without a UV initiator also can reach 9H. It can be
seen that the favorable UV-curing time is 40 s.

From the results mentioned above, it is evident that this method possesses three
prominent advantages. (1) The process of fabrication of UV-NIPUs avoids the application
of highly toxic raw materials such as phosgene and (poly)isocyanates; (2) CO2-based raw
materials can be utilized to develop silicone-modified NIPUs with high performance, which
will contribute to reducing the greenhouse effect; (3) the UV-NIPUs were prepared without
a UV initiator, which will be helpful to expand the practical application of UV-curable
materials in fields such as the biomedical field and food packaging.
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Figure 1. Comparison between the gelatin ratios of UV-NIPUs prepared with and without HMPP.

Table 1. Comparison of pencil hardness between UV-NIPUs prepared with and without HMPP.

UV Curing Time/s
Pencil Hardness

Initiated by HMPP Without HMPP

5 8H 5H
8 9H 8H
10 9H 9H
20 9H 9H
30 9H 9H
40 9H 9H
50 9H 9H
60 9H 9H

Conditions: NIPU-SiHP is NIPU-SiHP-3 and nthiol:nacrylate = 2:1.

FT-IR spectra of UV-NIPUs cured without HMPP for different amounts of time are
shown in Figure 2. The characteristic absorption peaks are as follows: –OH (v, 3400 cm−1),
–NH– (v, 3300 cm−1), 2942 cm−1 (vas, –CH2–), 2836 cm−1 (v, –CH2–), 1540 cm−1 (δ, N–H),
1043 cm−1 (v, C–OH) [28]. Clearly, there is an obvious absorption peak at 1635 cm−1

attributed to the characteristic absorption of C=C in acrylate groups of PETA when the
UV-curing time is about 5–8 s, while with the prolongation of UV-curing time, the intensity
of the absorption peak gradually became weaker and weaker until it vanished completely
when the UV-curing time reached 40 s.
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The adhesive performance of the UV-NIPUs on glass slides was studied as shown in
Figure 3. In both the UV-NIPUs cured with and without HMPP, the adhesive performance
can reach grade 0 when the UV-curing time is in the range of 20–60 s. Clearly, if the UV-
curing time is shorter than 20 s, the UV-NIPUs prepared without HMPP exhibit relatively
worse adhesive property than those prepared with HMPP. So, a conclusion can be drawn
that a higher cross-linking density of the UV-NIPUs obtained will result in a better adhesive
property. Above all, UV-NIPUs with GR about 94.1%, pencil hardness as high as 9H,
and good adhesive performance of grade 0 can be developed by the UV-curing method
for 20–60 s without a UV initiator, which may meet the requirements of 3D printing and
overcome the drawbacks of the UV-curable materials prepared with photo-initiators.
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3.2. Performance of UV-NIPUs Prepared Without HMPP
3.2.1. Coating Performance of Different NIPU-SiHPs on the Properties of UV-NIPUs

The molar ratio of MPTES to NIPU will affect the chemical structure of NIPU-SiHPs,
so a series of UV-NIPUs were fabricated from NIPU-SiHPs synthesized by adjusting the
molar ratio of MPTES to NIPU, as shown in Table S1, and the coating performance of them
is shown in Table 2. As reported, the pencil hardness of UV-curable traditional PUs mainly
ranges from 2B to HB, and not more than 2H, while that of the transparent silicone-modified
PUs ranges from 3H to 9H [21]. Obviously, one can see from Table 2 that the UV-NIPUs
exhibit very high pencil hardness of 9H, which will contribute to the anti-scratch properties
in the course of storage and transportation [21]. It also can be seen in Table 2 that the
UV-NIPUs demonstrated a fairly low water absorption rate ranging from 2.1% to 2.9%,
which increased with the reduction in the cross-linking density from 1.3156 g·mL−1 to
1.1985 g·mL−1. The nonpolar Si−O chain and special self-helical molecular structure give
the surfaces of silicone materials strong hydrophobicity [31]. As reported, hydrophilicity
will contribute to the sense of texture and touch of materials, which can be used as a
moisturizing material for wound dressings, toiletries, etc. [32]. Water contact angle is an
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impact factor to evaluate the hydrophilicity of the materials. As shown in Table 2, the water
contact angle of UV-NIPUs reduced from 62.1◦ to 42.6◦ with the decrement in the molar
ratio of MPTES to NIPU from 1:1.4 to 1:1.8. It implies that a lower molar ratio of MPTES to
NIPU will result in a higher content of NIPU, which is responsible for the improvement
of hydrophilicity thanks to a higher content of secondary amine and hydroxyl groups in
NIPU-SiHPs.

Table 2. Coating performance of UV-NIPUs prepared with different NIPU-SiHPs.

UV-NIPUs GR/% Pencil
Hardness

Water
Absorption

Rate/%

Water
Contact
Angle/◦

Cross-Linking
Density/g·mL−1

UV-NIPU-1 94.5 9H 2.1 62.1 1.3156
UV-NIPU-2 94.8 9H 2.5 55.1 1.3328
UV-NIPU-3 93.0 9H 2.6 53.4 1.2461
UV-NIPU-4 92.2 9H 2.7 45.6 1.2097
UV-NIPU-5 91.7 9H 2.9 42.6 1.1985

Conditions: nthiol:nacrylate = 2:1. The UV-curing time is 40 s.

3.2.2. Transmittance

Highly transparent materials are sought for package materials of optical devices, and
the transparency of UV-NIPUs was evaluated, as shown in Figure 4. The transmittance
is in the order of UV-NIPU-5 < UV-NIPU-2 < UV-NIPU-1 < UV-NIPU-3 < UV-NIPU-4,
which means the compatibility of NIPU-SiHPs with PETA is in the order of NIPU-SiHP-5
< NIPU-SiHP-2 < NIPU-SiHP-1 < NIPU-SiHP-3 < NIPU-SiHP-4. It can be seen that UV-
NIPUs obtained from different NIPU-SiHPs show a fairly high transmittance in the range
of 88.3%–99.0% at 400–800 nm, and in particular, the transmittance of UV-NIPUs is in
the range of 93.1%–99.0% at 800 nm, which means they can meet the demand of optical
devices [21,22].
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3.2.3. Mechanical Performance

As shown Figure 5a, the tensile strength of UV-NIPUs increased from 1.6 MPa to
3.2 MPa with NIPU-SiHPs synthesized by varying the molar ratio of MPTES to NIPU from
1:1.8 to 1:1.4, which is attributed to the cross-linking density increasing from 1.1985 g·mL−1
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to 1.3156 g·mL−1 (Table 2). A higher content of NIPU will lead to a lower cross-linking
density, resulting in a lower tensile strength of UV-NIPUs.
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The nthiol:nacrylate ratio also plays an important role in the mechanical performance
because it will greatly affect the cross-linking density of UV-NIPUs. As shown in Figure 5b,
when nthiol:nacrylate decreases from 1:0.8 from 1:2.5, the UV-NIPUs have an enhancement of
tensile strength from 0.47 MPa to 3.49 MPa accompanied by an increment in gelatin ratio
from 81.0% to 93.5% (Table S2). It revealed that a higher nthiol:nacrylate ratio will result in a
poorer mechanical performance due to the lower gelatin ratio.

As reported, unreinforced transparent pure silicone elastomers have tensile strength
not higher than 0.4 MPa, and that of UV-curable transparent silicone-modified materials
prepared from hyperbranched silicon-containing polymers and polyurethane-acrylates can



Coatings 2025, 15, 165 11 of 15

reach 3.40 MPa [29]. The tensile strength of transparent and mechanically high-performance
soft materials reported by Y. Takeoka et al. is no more than 1.5 MPa [33]. All in all, the
UV-NIPUs can achieve fairly high tensile strength of 3.49 MPa, attributed to the hydrogen
bonds formed by hydroxyl groups on β-carbon atoms generated during the course of
preparation of NIPU by polyfunctional cyclic carbonates with polyamines [13,34].

3.2.4. Solvent/Water Resistant Performance

To evaluate the UV-NIPUs in a variety of environmental conditions, the solvent/water
resistant performance was further assessed by immersing the intact UV-NIPU-3 samples
into deionized water, N,N-dimethylformamide (DMF), n-hexane, toluene and tetrahydrofu-
ran (THF), respectively. As shown in Figure 6, after being immersed for about 24 h, except
the samples in DMF, toluene and THF, which became brittle and easily broke, the samples
in deionized water and n-hexane were still in good condition. Therefore, the UV-NIPUs
exhibited good resistance to water and n-hexane but poor resistance to solvents such as
DMF, toluene and THF.
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3.2.5. Thermal Stability

TGA analysis was adopted to evaluate the thermal stability of UV-NIPUs. As exhibited
by Figure 7 and Table 3, when the NIPU-SiHPs were synthesized by changing the molar
ratio of MPTES to NIPU from 1:1.4 to 1:1.8, the thermal decomposition temperature Td5,
Td10 and Td50 of UV-NIPUs reduced from 265.6, 286.6 and 428.6 ◦C to 239.7, 257.7 and
411.7 ◦C, respectively. As we know, the silicone segment exhibited good thermal stability,
attributed to a high Si–O bond energy [35]. So, the decrement in thermal stability may be
attributed to the decease in the cross-linking density from 1.3156 g·mL−1 to 1.1985 g·mL−1

and the reduction in the amount of silicone segments in the UV-NIPUs. Clearly, Td5 of
UV-NIPUs is in the range of 239.7–265.6 ◦C, which is higher than the Td5 of the UV-curable
silicone-modified traditional PUs reported by reference [29] (203.4–281.0 ◦C). So, the UV-
NIPUs demonstrated outstanding thermal stability.
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Table 3. The data of TGA analysis of UV-NIPUs.

Samples Td5/◦C Td10/◦C Td50/◦C

NIPU-SiHP-1 265.6 286.6 428.6
NIPU-SiHP-2 262.6 285.6 426.6
NIPU-SiHP-3 258.6 282.6 421.6
NIPU-SiHP-4 257.7 277.7 423.7
NIPU-SiHP-5 239.7 257.7 411.7

3.2.6. UV Resistance

To evaluate the UV resistance performance, firstly, slides coated with UV-NIPUs-3
were exposed to UV under 6.5 mW·cm–2 (JC2-UV400,120 w, 365 nm, the distance of the
slides to the light is 38 cm) with rotation rate of 6 r/min. As shown in Figure 8a, even
after being exposed to UV for 10 days, the UV-NIPUs-3 samples remain almost the same
as the fresh samples. Later, to investigate the accelerated UV aging performance, slides
coated with UV-NIPUs prepared with different nthiol:nacrylate were exposed to UV under
10.6 mW·cm–2 (ZB1000, Changzhou Zibo Electron Technology Co., Ltd. (Changzhou,
China), 365 nm, the distance of the slides to the light is 20 cm). It can be seen from Figure 8b
that the sample began to turn slightly yellow after 10 min exposure and turned obviously
yellow after 24 min exposure. Compared with the UV-curable silicone-modified materials
reported previously [21], the UV-NIPUs possess fairly good UV resistance ability.
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4. Conclusions
To overcome the serious shortcomings of traditional PUs fabricated from toxic raw

materials, UV-curable optical silicone-modified coatings were developed from CO2-based
NIPU diol by UV-initiated thiol-ene click reaction without a UV initiator. The UV-curable
CO2-based silicone-modified coatings demonstrated transparency over 90% (400–800 nm),
tensile strength reaching 3.49 MPa, Td5 in the range of 239.7–265.6 ◦C, water contact angle of
42.6–62.1◦, pencil hardness of 5–9H, and good adhesive performance of grade 0. It provides
a promising green chemical ideal for developing high-performance silicone-modified
materials from CO2-based raw materials.
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