Specific Features of Structure, Electrical Conductivity and Interlayer Adhesion of the Natural Polymer Matrix from the Layers of Branched Carbon Nanotube Networks Filled with Albumin, Collagen and Chitosan
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Atomic Structure of the Carbon Framework of Matrix and Its Electrical Conductivity
3.2. Atomic Structure and Energy of A Multilayer Natural Polymer Matrix on the Basis of A Branched CNT Network
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Salgado, A.J.; Oliveira, J.M.; Martins, A.; Teixeira, F.G.; Silva, N.A.; Neves, N.M.; Sousa, N.; Reis, R.L. Tissue engineering and regenerative medicine: Past, present, and future. Int. Rev. Neurobiol. 2013, 108, 1–33. [Google Scholar] [PubMed]
- De Witte, T.M.; Fratila-Apachitei, L.E.; Zadpoor, A.A.; Peppas, N.A. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen. Biomater. 2018, 5, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.J.; Kearney, C.J.; Shen, N.; Khan, U.; Kelly, A.G.; Probst, C.; Brauchle, E.; Biccai, S.; Garciarena, C.D.; Vega-Mayoral, V.; et al. Electroconductive biohybrid collagen/pristine graphene composite biomaterials with enhanced biological activity. Adv. Mater. 2018, 30, e1706442. [Google Scholar] [CrossRef] [PubMed]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef] [PubMed]
- Dvir, T.; Timko, B.P.; Brigham, M.D.; Naik, S.R.; Karajanagi, S.S.; Levy, O.; Jin, H.; Parker, K.K.; Langer, R.; Kohane, D.S. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 2011, 6, 720–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsich, E.; Bellomo, F.; Turco, G.; Travan, A.; Donati, I.; Paoletti, S. Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: Preparation, characterization and biological properties. J. Mater. Sci. Mater. Med. 2013, 24, 1799–1807. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Dresselhaus, G.; Charlier, J.C.; Hernandez, E. Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. A Math. Phys. Eng. Sci. 2004, 362, 2065–2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinoglu, E.M.; Ozbilgin, K.; Kilicaslan Sonmez, P.; Ozkut, M.M.; Giersig, M.; Inan, S.; Gumustepe, E.; Kurtman, C. Biocompatibility of vertically aligned multi-walled carbon nanotube scaffolds for human breast cancer cell line MDA-MB-231. Prog. Biomater. 2017, 6, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popov, A.M.; Lozovik, Y.E.; Fiorito, S.; Yahia, L. Biocompatibility and applications of carbon nanotubes in medical nanorobots. Int. J. Nanomed. 2007, 2, 361–372. [Google Scholar]
- Ramasamy, T.; Kim, J.H.; Choi, J.Y.; Tran, T.H.; Choi, H.G.; Yong, C.S.; Kim, J.O. pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy. J. Mater. Chem. B 2014, 2, 6324–6333. [Google Scholar] [CrossRef]
- Gerasimenko, A.Yu.; Ichkitidze, L.P.; Podgaetsky, V.M.; Selishchev, S.V. Biomedical applications of promising nanomaterials with carbon nanotubes. Biomed. Eng. 2015, 48, 310–314. [Google Scholar] [CrossRef]
- Gerasimenko, A.Y.; Glukhova, O.E.; Savostyanov, G.V.; Podgaetsky, V.M. Laser structuring of carbon nanotubes in the albumin matrix for the creation of composite biostructures. J. Biomed. Opt. 2017, 22, 065003. [Google Scholar] [CrossRef] [PubMed]
- Ahadian, S.; Davenport, H.L.; Estili, M.; Yee, B.; Smith, N.; Xu, Z.; Sun, Y.; Radisic, M. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater. 2017, 52, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Tang, J.; Mou, Y.; Zhou, J.; Qu, L.; Duval, K.; Huang, Z.; Lin, N.; Dai, R.; Liang, C.; et al. Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA pathway. Acta Biomater. 2017, 48, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhou, J.; Huang, Z.; Qu, L.; Lin, N.; Liang, C.; Dai, R.; Tang, L.; Tian, F. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. Int. J. Nanomed. 2017, 12, 3109–3120. [Google Scholar] [CrossRef] [PubMed]
- Kroustalli, A.; Zisimopoulou, A.E.; Koch, S.; Rongen, L.; Deligianni, D.; Diamantouros, S.; Athanassiou, G.; Kokozidou, M.; Mavrilas, D.; Jockenhoevel, S. Carbon nanotubes reinforced chitosan films: Mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering. J. Mater. Sci. Mater. Med. 2013, 24, 2889–2896. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.S.; Meguid, S.A.; Zhu, Z.H.; Weng, G.J. Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 2012, 111, 093726. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Ozdena, S.; Tsafack, T.; Owuor, P.S.; Li, Y.; Jalilov, A.S.; Vajtai, R.; Tiwary, C.S.; Lou, J.; Tour, J.M.; Mohite, A.D.; et al. Chemically interconnected light-weight 3D-carbon nanotube solid network. Carbon 2017, 119, 142–149. [Google Scholar] [CrossRef]
- Celebi, A.T.; Kirca, M.; Baykasoglu, C.; Mugan, A.; To, A. Tensile behavior of heat welded CNT network structures. Comput. Mater. Sci. 2014, 88, 14–21. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, J. Nano-welding of multi-walled carbon nanotubes on silicon and silica surface by laser irradiation. Nanomaterials 2016, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Gau, C.; Kuo, C.Y.; Ko, H.S. Electron tunneling in carbon nanotube composites. Nanotechnology 2009, 20, 395705. [Google Scholar] [CrossRef] [PubMed]
- Buldum, A.; Lu, J.P. Contact resistance between carbon nanotubes. Phys. Rev. B 2001, 63, 161403. [Google Scholar] [CrossRef]
- Wei, D.; Liu, Y. the intramolecular junctions of carbon nanotubes. Adv. Mater. 2008, 20, 2815–2841. [Google Scholar] [CrossRef]
- Nizam, R.; Mahdi, S.; Rizvi, A.; Azam, A. Calculating the electronic transport properties of different carbon nanotube based intramolecular junctions. World Appl. Sci. J. 2010, 11, 418–425. [Google Scholar]
- Chiu, P.W. Carbon nanotube T junctions: Formation and properties. J. Nanosci. Nanotechnol. 2008, 8, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Z.; Pandey, B.; Liu, Y.Q. Growth and structure of carbon nanotube Y-junctions. J. Phys. Chem. B 2006, 110, 23694–23700. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Shi, S.; Xu, D.; Yang, R. Size effect of X-shaped carbon nanotube junctions. Carbon 2006, 44, 1263–1266. [Google Scholar] [CrossRef]
- Saha, K.K.; Lu, W.; Bernholc, J.; Meunier, V. Electron transport in multiterminal molecular devices: A density functional theory study. Phys. Rev. B 2010, 81, 125420. [Google Scholar] [CrossRef]
- Sahaa, A.; Jianga, C.; Marti, A.A. Carbon nanotube networks on different platforms. Carbon 2014, 79, 1–18. [Google Scholar] [CrossRef]
- Zuo, S.; Li, W.; Liu, X.; He, Y.; Xiao, Z.; Zhu, C. Field emission properties of the dendritic carbon nanotubes film embedded with ZnO quantum dots. J. Nanomater. 2011, 2011, 382068. [Google Scholar] [CrossRef]
- Kobashi, K.; Ata, S.; Yamada, T.; Futaba, D.N.; Yumura, M.; Hata, K. A dispersion strategy: Dendritic carbon nanotube network dispersion for advanced composites. Chem. Sci. 2013, 4, 727–733. [Google Scholar] [CrossRef]
- Kramer, R.Z.; Bella, J.; Mayville, P.; Brodsky, B.; Berman, H.M. Sequence dependent conformational variations of collagen triple-helical structure. Nat. Struct. Biol. 1999, 6, 454–457. [Google Scholar] [PubMed]
- Bezerra, K.S.; Oliveira, J.I.N.; Lima Neto, J.X.; Albuquerque, E.L.; Caetano, E.W.S.; Freire, V.N.; Fulco, U.L. Quantum binding energy features of the T3-785 collagen-like triple-helical peptide. RSC Adv. 2017, 7, 2817–2828. [Google Scholar] [CrossRef] [Green Version]
- Martini Coarse Grain Forcefield for Biomolecules. Available online: http://www.cgmartini.nl/ (accessed on 19 August 2018).
- Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K. Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng. 1999, 12, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Benner, S.W.; Hall, C.K. Development of a coarse-grained model of chitosan for predicting solution behavior. J. Phys. Chem. B 2016, 120, 7253–7264. [Google Scholar] [CrossRef] [PubMed]
- Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; de Vries, A.H. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.W.; Shenderova, O.A.; Harrison, J.A.; Stuart, S.J.; Ni, B.; Sinnott, S.B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 2002, 14, 783. [Google Scholar] [CrossRef]
- Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268. [Google Scholar] [CrossRef]
- Datta, S. Exclusion principle and the Landauer-Büttiker formalism. Phys. Rev. B 1992, 45, 1347. [Google Scholar] [CrossRef]
- Do, V.N. Non-equilibrium Green function method: Theory and application in simulation of nanometer electronic devices. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 033001. [Google Scholar] [CrossRef]
- Kirca, M.; Yang, X.; To, A.C. A stochastic algorithm for modeling heat welded random carbon nanotube network. Comput. Methods Appl. Mech. Eng. 2013, 259, 1–9. [Google Scholar] [CrossRef]
- Bettinger, H.F. The reactivity of defects at the sidewalls of single-walled carbon nanotubes: The stone-wales defect. J. Phys. Chem. B 2005, 109, 6922–6924. [Google Scholar] [CrossRef] [PubMed]
- Ngspice Circuit Simulator. Available online: http://ngspice.sourceforge.net (accessed on 19 August 2018).
- Baoukina, S.; Monticelli, L.; Tieleman, D.P. Interaction of pristine and functionalized carbon nanotubes with lipid membranes. J. Phys. Chem. B 2013, 117, 12113–12123. [Google Scholar] [CrossRef] [PubMed]
- GROMACS. Available online: http://www.gromacs.org (accessed on 19 August 2018).
Type of Junction | Number of Bonds | Heat of Formation, kcal/mol·atom |
---|---|---|
1V1 | 5 | −13.65 |
1V2 | 12 | −14.96 |
1V3 | 6 | −15.67 |
2V1 | 8 | −23.56 |
2V2 | 14 | −18.61 |
2V3 | 12 | −17.96 |
3V1 | 10 | −19.72 |
3V2 | 11 | −20.75 |
4V1 | 14 | −47.24 |
2V2-2SW | 17 | −21.67 |
seamless | – | −15.65 |
Type of Junction | R1, kΩ | R2, kΩ |
---|---|---|
1V1 | 14 | 78.8 |
1V2 | 13.2 | 78.2 |
1V3 | 10.8 | 100 |
2V1 | 11.2 | 65.2 |
2V2 | 6.8 | 25.5 |
2V3 | 7.5 | 20.1 |
3V1 | 8.7 | 42.3 |
3V2 | 9.1 | 22.8 |
4V1 | 13.5 | 31.2 |
2V2-2SW | 10.2 | 48.6 |
seamless | 13.1 | 24.5 |
Density, kg/m3 | σ1, kS/m | σ2, kS/m | σ3, kS/m |
---|---|---|---|
6 | 6 | 5 | 4.5 |
12 | 10 | 8 | 6 |
24 | 20 | 15 | 10 |
36 | 30 | 22 | 16 |
48 | 39 | 28 | 21 |
60 | 48 | 36 | 25 |
Layers of Construction | CNT-Collagen | CNT-Chitosan | CNT-Albumin |
---|---|---|---|
CNT-сollagen | – | −14.24 kJ/mol·nm2 | −22.45 kJ/mol·nm2 |
CNT-chitosan | −14.24 kJ/mol·nm2 | – | −20.22 kJ/mol·nm2 |
CNT-albumin | −22.45 kJ/mol·nm2 | −20.22 kJ/mol·nm2 | – |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savostyanov, G.V.; Slepchenkov, M.M.; Shmygin, D.S.; Glukhova, O.E. Specific Features of Structure, Electrical Conductivity and Interlayer Adhesion of the Natural Polymer Matrix from the Layers of Branched Carbon Nanotube Networks Filled with Albumin, Collagen and Chitosan. Coatings 2018, 8, 378. https://doi.org/10.3390/coatings8110378
Savostyanov GV, Slepchenkov MM, Shmygin DS, Glukhova OE. Specific Features of Structure, Electrical Conductivity and Interlayer Adhesion of the Natural Polymer Matrix from the Layers of Branched Carbon Nanotube Networks Filled with Albumin, Collagen and Chitosan. Coatings. 2018; 8(11):378. https://doi.org/10.3390/coatings8110378
Chicago/Turabian StyleSavostyanov, George V., Michael M. Slepchenkov, Dmitriy S. Shmygin, and Olga E. Glukhova. 2018. "Specific Features of Structure, Electrical Conductivity and Interlayer Adhesion of the Natural Polymer Matrix from the Layers of Branched Carbon Nanotube Networks Filled with Albumin, Collagen and Chitosan" Coatings 8, no. 11: 378. https://doi.org/10.3390/coatings8110378
APA StyleSavostyanov, G. V., Slepchenkov, M. M., Shmygin, D. S., & Glukhova, O. E. (2018). Specific Features of Structure, Electrical Conductivity and Interlayer Adhesion of the Natural Polymer Matrix from the Layers of Branched Carbon Nanotube Networks Filled with Albumin, Collagen and Chitosan. Coatings, 8(11), 378. https://doi.org/10.3390/coatings8110378