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Abstract

:

In this study, the buckling of functionally graded (FG) nanoporous metal foam nanoplates is investigated by combining the refined plate theory with the non-local elasticity theory. The refined plate theory takes into account transverse shear strains which vary quadratically through the thickness without considering the shear correction factor. Based on Eringen’s non-local differential constitutive relations, the equations of motion are derived from Hamilton’s principle. The analytical solutions for the buckling of FG nanoporous metal foam nanoplates are obtained via Navier’s method. Moreover, the effects of porosity distributions, porosity coefficient, small scale parameter, axial compression ratio, mode number, aspect ratio and length-to-thickness ratio on the buckling loads are discussed. In order to verify the validity of present analysis, the analytical results have been compared with other previous studies.
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1. Introduction


Functionally graded materials (FGMs) are advanced composite materials whose compositions and volume fraction of materials vary gradually in one or more direction. Nanoporous metal foams, as a kind of high surface area-to-volume ratio group of materials, have become promising candidates for structural materials in various advanced technologies, such as high-efficiency heat-exchanger substrates, sensors and actuators [1,2]. Combining nanoporous metal foams with the FGM concept, the FG nanoporous metal foams are proposed. Due to their excellent fracture toughness and high electrical conductivities, FG nanoporous metal foam nanoplates are ideal for use as thin film elements. In the case of periodic wear and friction due to contact, nanoporous metal foam nanoplates can be applied to surface coatings to significantly increase the useful lifetimes of the required protective structures [3,4,5,6].



Nanostructures have attracted great attention in the scientific community due to their superior thermal, mechanical and electrical properties since Lijima [7] discovered carbon nanotubes. Different from their macroscopic counterparts, the size dependences of nanostructures are recognized to be more distinct due to the high ratio of surface area-to-volume. Therefore, a few size-dependent continuum mechanic models have been reported, such as the couple stress theory [8], the strain gradient theory [9] and the non-local elasticity theory [10,11]. Among these theories, the non-local elasticity theory was proposed by Eringen [10]. It can predict the behavior of nanostructures very easily and accurately with the consideration of the scale effect. This theory takes account of the scale effect by considering the stress at a reference point x to be a function of the strain field at every point x* of an elastic body. Many references employing the non-local elasticity theory for buckling and vibration analysis of nanobeams and nanoplates have been reported [12,13,14,15,16,17].



By assuming that the shear strains and stresses are constant across thickness, the first-order shear deformation theory (FSDT) takes into account the shear deformation effect and the shear correction factor. In 2006, a new theory accounting for shear deformations and involving two unknown functions was proposed by Shimpi and Patel [18,19]. This theory does not require a shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness, satisfying shear stress free surface conditions. Moreover, the results obtained for plates with various thickness ratios using this theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories having a greater number of unknown functions.



In the case of the growing maturation of nanomaterials, how to make novel nanomaterials play a role in practical applications is one of the challenges currently being faced. In micro- or nano-electromechanical system applications, many nanoplate structures can be found, such as nanosheet resonators and paddle-like resonators [20,21]. Therefore, the mechanical characteristics of nanoplates are of great interest to researchers. For example, Lu et al. [22] researched the bending and free vibration behaviors of a rectangular nanoplate based on the non-local Mindlin and Kirchhoff plate theories. The buckling problems of simply supported nanoplates were analyzed by Wang and Wang [23] considering both non-local elasticity and surface effects. Karimi et al. [24] investigated vibration, shear and biaxial buckling of rectangular nanoplates, by using the non-local two variable refined plate theory. Daneshmehr et al. [25] studied the free vibration problems of functionally graded nanoplates via non-local elasticity and high order theories. Based on the non-local elasticity theory, the buckling and vibration of multi-nanoplate systems were analyzed by Karlicic et al. [26]. Fatima et al. [27] presented free vibration analysis of nanoplates made of functionally graded materials by using a zeroth-order shear deformation theory. Liu et al. [28,29,30] developed an effective numerical model derived from Isogeometric analysis (IGA) for assessment of static bending, free vibration, and buckling behaviors of homogeneous and functionally graded microplates. Narendar [31] used the two-variable refined plate theory and non-local elasticity theory to analyze the buckling problems of isotropic nanoplates. Based on a non-local, four-variable refined plate theory, Belkorissat et al. [15] analyzed free vibration behavior of functionally graded nanoplates. Mechab et al. [32] examined the free vibration properties of porous functionally graded nanoplates resting on elastic foundations by using the two-variable refined plate theory. Based on the two-variable refined plate theory, Nami and Janghorban [33] investigated the free vibration problems of rectangular nanoplates via the strain gradient elasticity theory. Karimi and Shahidi [34] explored the effect of temperature change on the buckling, bending and vibration behaviors of orthotropic graphene sheets by considering small-scale and surface energy effects.



There have been few studies on the mechanical characteristics of FG nanoporous metal foam micro/nanobeams till now. Barati and Zenkour [35] examined the post-buckling behavior of nanoporous metal foam nanobeams based on a non-local, non-linear refined shear deformation beam model. By using the sinusoidal beam theory and modified strain gradient theory, Wang et al. [36] investigated bending and vibration of nanoporous metal foam microbeams.



In the current study, the buckling behavior of FG nanoporous metal foam nanoplates is investigated for the first time. Three types of porosity distribution, namely, uniform distribution (UD), non-uniform distribution 1 (NUD1) (symmetric), and non-uniform distribution 2 (NUD2) (asymmetric) are considered. The refined plate theory is employed and the non-local constitutive relations accounting for the small-scale effect are taken into account. To obtain analytical solutions of the present problem, Navier’s method is employed. Finally, the effects of several factors on the buckling of FG nanoporous metal foam nanoplates are presented in detail.




2. Theory and Formulation


2.1. FG Nanoporous Metal Foam Nanoplate


In the present study, an FG nanoporous metal foam coating is considered and modeled by a nanoplate with the length la, the width lb and the thickness h, as illustrated in Figure 1. We consider three different types of porosity distribution, namely, (1) uniform distribution (UD); (2) non-uniform distribution 1 (NUD1) (symmetric); and (3) non-uniform distribution 2 (NUD2) (asymmetric), as shown in Figure 1. It is clear that NUD1 and NUD2 exhibit graded characteristics like functionally graded materials [37,38,39,40,41].



In the case of UD, the elasticity modulus E and shear modulus G are constant along the thickness of the nanoplate. In the case of NUD1, the values of the elasticity modulus and shear modulus on the top and bottom surfaces are the maxima, while the values are the minima at the mid-plane of the nanoplate due to the largest porosity size. In the case of NUD 2, the elasticity modulus and shear modulus vary gradually from the top surface to the bottom surface; the maximum values occur at the bottom surface while the minimum values occur at the top surface. For these three types of porosity distribution, the elasticity modulus E and shear modulus G are defined as [42]:



UD:


  E  ( z )  =  E 0   (  1 − λ η  )   



(1)






  G  ( z )  =  G 0   (  1 − λ η  )   



(2)







NUD1:


  E  ( z )  =  E 0   [  1 − λ cos  (    π z  h   )   ]   



(3)






  G  ( z )  =  G 0   [  1 − λ cos  (    π z  h   )   ]   



(4)







NUD2:


  E  ( z )  =  E 0   [  1 − λ cos  (    π z   2 h   +  π 4   )   ]   



(5)






  G  ( z )  =  G 0   [  1 − λ cos  (    π z   2 h   +  π 4   )   ]   



(6)




where E0 and G0 are the maximum values of elasticity modulus and shear modulus, respectively; λ is the porosity coefficient determined as [42]:


  λ = 1 −    E 1     E 0    = 1 −    G 1     G 0     



(7)




where E1 and G1 are the minimum values of elasticity modulus and shear modulus, respectively.



The coefficient η in UD is dependent on λ, and can be expressed as [42]:


  η =  1 λ  −  1 λ     (   2 π    1 − λ   −  2 π  + 1  )   2   



(8)








2.2. The Non-Local Elasticity Theory


According to Eringen’s non-local elasticity theory [11], the stress state at a reference point x in an elastic body depends not only on strains at x but also on the strains at all other points x* of the body. The stress tensor of a non-local elastic body can be written as [11]:


  σ =    ∫ V  α    (   |   x *  − x  |  , τ  )  t  (   x *   )  d  x *   



(9)




where α(|x* − x|, τ) is the non-local modulus and τ is the material constant (τ = e0a/l), e0 is a material constant, a is the internal characteristic length (such as the C–C bond length and granular size) and l is the external characteristic length (e.g., graphene sheet length and crack length); t(x*) is the local stress tensor at any point x* in the body. The stress t at a point x in an elastic body is related to the strain ε as follows:


  t  ( x )  = C  ( x )  : ε  ( x )   



(10)




where “:” and C are a “double-dot product” and the fourth-order elasticity tensor, respectively. To avoid solving the integral constitutive equation, the constitutive relations of the non-local elasticity model can be expressed as:


   (  1 −  g 2   ∇ 2   )  σ = t  



(11)




where    ∇ 2    is the Laplacian operator, and g = e0a is the non-local small scale parameter.




2.3. Governing Equations of Motion


The basic assumptions of the refined plate theory are as follows:




	
The displacements u (in the x direction), v (in the y direction) and w (in the z direction) are small compared to the thickness h of the nanoplate. Hence, the strains involved are infinitesimal. By considering the strain-displacement relations, the shear strains γxy, γzx, γyz and normal strains εxx, εyy, εzz can be written as:


     ε  x x   =   ∂ u   ∂ x   ,    ε  y y   =   ∂ v   ∂ y   ,    ε  z z   =   ∂ w   ∂ z   ,      γ  x y   =   ∂ v   ∂ x   +   ∂ u   ∂ y   ,    γ  z x   =   ∂ u   ∂ z   +   ∂ w   ∂ x   ,    γ  y z   =   ∂ v   ∂ z   +   ∂ w   ∂ y      



(12)







	
The transverse displacement w includes two components: the bending component wB and the shear component wS. Both of them are functions of x, y, and t (time) [31,43,44]:


  w  (  x , y , t  )  =  w B   (  x , y , t  )  +  w S   (  x , y , t  )   



(13)







	
Compared with in-plane stresses σxx and σyy, the transverse normal stress σzz can be negligible.



	
The displacement components u and v include extension, bending and shear components:


      u =  u 0  +  u B  +  u S        v =  v 0  +  v B  +  v S       



(14)












The bending components uB and vB and shear components uS and vS are defined as [31,43]:


       u B  = − z   ∂  w B    ∂ x          v B  = − z   ∂  w B    ∂ y        



(15)






       u S  = z  [   1 4  −  5 3     (   z h   )   2   ]    ∂  w S    ∂ x          v S  = z  [   1 4  −  5 3     (   z h   )   2   ]    ∂  w S    ∂ y        



(16)







Using Equations (12)–(16), the displacement field can be written as:


      u  (  x , y , z , t  )  =  u 0   (  x , y , t  )  − z   ∂  w B    ∂ x   + z  [   1 4  −  5 3     (   z h   )   2   ]    ∂  w S    ∂ x         v  (  x , y , z , t  )  =  v 0   (  x , y , t  )  − z   ∂  w B    ∂ y   + z  [   1 4  −  5 3     (   z h   )   2   ]    ∂  w S    ∂ y         w  (  x , y , z , t  )  =  w B   (  x , y , t  )  +  w S   (  x , y , t  )       



(17)







Considering the transverse shear strains vary parabolically through the thickness of the nanoplate the shear correction factors are not therefore required. The kinematic relations can be obtained as follows:


     {       ε  x x          ε  y y          γ  x y        }  =  {       ε  x x  0         ε  y y  0         γ  x y  0       }  + z  {       ε  x x  B         ε  y y  B         γ  x y  B       }  + f  {       ε  x x  S         ε  y y  S         γ  x y  S       }       {       γ  y z          γ  z x        }  = φ  {       γ  y z  S         γ  z x  S       }     



(18)




where


     {       ε  x x  0         ε  y y  0         γ  x y  0       }  =  {      ∂  u 0  / ∂ x       ∂  v 0  / ∂ y       ∂  u 0  / ∂ y + ∂  v 0  / ∂ x      }  ,      {       ε  x x  B         ε  y y  B         γ  x y  B       }  =  {      −  ∂ 2   w B  / ∂  x 2        −  ∂ 2   w B  / ∂  y 2        − 2  ∂ 2   w B  / ∂ x ∂ y      }  ,  {       ε  x x  S         ε  y y  S         γ  x y  S       }  =  {      −  ∂ 2   w S  / ∂  x 2        −  ∂ 2   w S  / ∂  y 2        − 2  ∂ 2   w S  / ∂ x ∂ y      }  ,      {       γ  y z  S         γ  z x  S       }  =  {      ∂  w S  / ∂ y       ∂  w S  / ∂ x      }  ,  {      f = −  1 4  z +  5 3  z    (   z h   )   2        φ =  5 4  − 5    (   z h   )   2           



(19)







The strain-displacement relations can be obtained using Equations (18) and (19) as:


   {       ε  x x   =   ∂  u 0    ∂ x   − z    ∂ 2   w B    ∂  x 2    +  [   1 4  z −  5 3  z    (   z h   )   2   ]     ∂ 2   w S    ∂  x 2           ε  y y   =   ∂  v 0    ∂ y   − z    ∂ 2   w B    ∂  y 2    +  [   1 4  z −  5 3  z    (   z h   )   2   ]     ∂ 2   w S    ∂  y 2           ε  z z   = 0        γ  x y   =   ∂  u 0    ∂ y   +   ∂  v 0    ∂ x   − 2 z    ∂ 2   w B    ∂ x ∂ y   + 2  [   1 4  z −  5 3  z    (   z h   )   2   ]     ∂ 2   w S    ∂ x ∂ y          γ  y z   =  [   5 4  − 5    (   z h   )   2   ]    ∂  w S    ∂ y          γ  z x   =  [   5 4  − 5    (   z h   )   2   ]    ∂  w S    ∂ x          



(20)







For the FG nanoporous metal foam nanoplate, the non-local constitutive relationship can be expressed as:


   {       σ  x x          σ  y y          τ  x y          τ  y z          τ  z x        }  −  g 2   (     ∂ 2    ∂  x 2    +    ∂ 2    ∂  y 2     )   {       σ  x x          σ  y y          τ  x y          τ  y z          τ  z x        }  =  [       K  11        K  12      0   0   0       K  12        K  22      0   0   0     0   0     K  66      0   0     0   0   0     K  55      0     0   0   0   0     K  44        ]   {       ε  x x          ε  y y          γ  x y          γ  y z          γ  z x        }   



(21)




where the elastic constants Kij are:


       K  11   =  K  22   =   E  ( z )    1 −  ν 2           K  12   =   ν E  ( z )    1 −  ν 2           K  44   =  K  55   =  K  66   = G  ( z )  =   E  ( z )    2  (  1 + ν  )         



(22)




where E(z), G(z), ν are the elasticity modulus, shear modulus and Poisson’s ratio, respectively.



The strain energy U of the FG nanoporous metal foam nanoplate can be expressed as:


  U =  1 2     ∫ V    (   σ  x x    ε  x x   +  σ  y y    ε  y y   +  τ  x y    γ  x y   +  τ  y z    γ  y z   +  τ  x z    γ  x z    )     d V  



(23)







Substituting Equation (20) into Equation (23) and integrating through the thickness of the nanoplate, the strain energy of the FG nanoporous metal foam nanoplate can be written as:


    U =  1 2     ∫ A    (   N  x x     ∂  u 0    ∂ x   +  N  y y     ∂  v 0    ∂ y   +  N  x y    [    ∂  u 0    ∂ y   +   ∂  v 0    ∂ x    ]  −  M  x x  B     ∂ 2   w B    ∂  x 2    −  M  y y  B     ∂ 2   w B    ∂  y 2               − 2  M  x y  B     ∂ 2   w B    ∂ x ∂ y    )  d x d y +  1 2     ∫ A    (   Q  y z     ∂  w S    ∂ y   +  Q  z x     ∂  w S    ∂ x   −  M  x x  S     ∂ 2   w S    ∂  x 2    −  M  y y  S     ∂ 2   w S    ∂  y 2               − 2  M  x y  S     ∂ 2   w S    ∂ x ∂ y    )  d x d y    



(24)




where N, M and Q are the resultant forces, moments and shear forces, respectively. They are defined by:


   {       N  x x   =    ∫  −  h 2     h 2      σ  x x   d z           N  y y   =    ∫  −  h 2     h 2      σ  y y   d z           N  x y   =    ∫  −  h 2     h 2      τ  x y   d z           



(25)






   {       M  x x  B  =    ∫  −  h 2     h 2      σ  x x   z d z           M  y y  B  =    ∫  −  h 2     h 2      σ  y y   z d z           M  x y  B  =    ∫  −  h 2     h 2      τ  x y   z d z           



(26)






   {       M  x x  S  =    ∫  −  h 2     h 2      σ  x x    [  −  1 4  z +  5 3  z    (   z h   )   2   ]  d z           M  y y  S  =    ∫  −  h 2     h 2      σ  y y    [  −  1 4  z +  5 3  z    (   z h   )   2   ]  d z           M  x y  S  =    ∫  −  h 2     h 2      τ  x y    [  −  1 4  z +  5 3  z    (   z h   )   2   ]  d z           



(27)






   {       Q  z x   =    ∫  −  h 2     h 2       φ τ   z x   d z           Q  y z   =    ∫  −  h 2     h 2       φ τ   y z   d z           



(28)







By substituting Equations (19)–(21) into Equations (25)–(28), the stress resultants can be written as:


       {       N  x x          N  y y          N  x y        }  −  g 2   (     ∂ 2    ∂  x 2    +    ∂ 2    ∂  y 2     )   {       N  x x          N  y y          N  x y        }  =      [       A  11        A  12      0       A  12        A  22      0     0   0     A  66        ]   {       ε  x x  0         ε  y y  0         γ  x y  0       }  +  [       B  11        B  12      0       B  12        B  22      0     0   0     B  66        ]   {       ε  x x  B         ε  y y  B         γ  x y  B       }  +  [       B  11  S       B  12  S     0       B  12  S       B  22  S     0     0   0     B  66  S       ]   {       ε  x x  S         ε  y y  S         γ  x y  S       }     



(29)






       {       M  x x  B         M  y y  B         M  x y  B       }  −  g 2   (     ∂ 2    ∂  x 2    +    ∂ 2    ∂  y 2     )   {       M  x x  B         M  y y  B         M  x y  B       }  =      [       B  11        B  12      0       B  12        B  22      0     0   0     B  66        ]   {       ε  x x  0         ε  y y  0         γ  x y  0       }  +  [       D  11        D  12      0       D  12        D  22      0     0   0     D  66        ]   {       ε  x x  B         ε  y y  B         γ  x y  B       }  +  [       D  11  S       D  12  S     0       D  12  S       D  22  S     0     0   0     D  66  S       ]   {       ε  x x  S         ε  y y  S         γ  x y  S       }     



(30)






     {       M  x x  S         M  y y  S         M  x y  S       }  −  g 2   (     ∂ 2    ∂  x 2    +    ∂ 2    ∂  y 2     )   {       M  x x  S         M  y y  S         M  x y  S       }  =      [       B  11  S       B  12  S     0       B  12  S       B  22  S     0     0   0     B  66  S       ]   {       ε  x x  0         ε  y y  0         γ  x y  0       }  +  [       D  11  S       D  12  S     0       D  12  S       D  22  S     0     0   0     D  66  S       ]   {       ε  x x  B         ε  y y  B         γ  x y  B       }  +  [       H  11  S       H  12  S     0       H  12  S       H  22  S     0     0   0     H  66  S       ]   {       ε  x x  S         ε  y y  S         γ  x y  S       }     



(31)






   {       Q  y z          Q  z x        }  −  g 2   (     ∂ 2    ∂  x 2    +    ∂ 2    ∂  y 2     )   {       Q  y z          Q  z x        }  =  [       K  55  S     0     0     K  44  S       ]   {       γ  y z  S         γ  z x  S       }   



(32)




where


     {       A  11        B  11        B  11  S       D  11        D  11  S       H  11  S         A  12        B  12        B  12  S       D  12        D  12  S       H  12  S         A  22        B  22        B  22  S       D  22        D  22  S       H  22  S         A  66        B  66        B  66  S       D  66        D  66  S       H  66  S       }  =    ∫  −  h 2     h 2      {       K  11          K  12          K  22          K  66        }      (  1 , z , f  ( z )  ,  z 2  , z f  ( z )  , f    ( z )   2   )  d z      {       K  44  S         K  55  S       }  =    ∫  −  h 2     h 2      {       K  44          K  55        }     φ   ( z )  2  d z    



(33)







It should be noted that the stress resultants in Equations (29)–(32) can be reduced to classical relations when the small-scale parameter g is set to zero.



The work done by the applied forces can be written as:


    V =  1 2     ∫ A    [   N  x x  0     (    ∂  (   w B  +  w S   )    ∂ x    )   2  +  N  y y  0     (    ∂  (   w B  +  w S   )    ∂ y    )   2             + 2  N  x y  0    ∂  (   w B  +  w S   )    ∂ x     ∂  (   w B  +  w S   )    ∂ y    ]  d x d y    



(34)




where   N  x x  0  ,   N  y y  0   and   N  x y  0   are the in-plane distributed forces.



Then, Hamilton’s principle is used to derive the equations of motion, which can be expressed in the form of


     ∫ 0 t    (  δ U + δ V  )     d t = 0  



(35)




where δ indicates a variation with respect to x and y.



Substituting Equations (24) and (34) into Equation (35), the governing equations of the FG nanoporous metal foam nanoplate can be obtained as:


  δ  u 0  :   ∂  N  x x     ∂ x   +   ∂  N  x y     ∂ y   = 0  



(36)






  δ  v 0  :   ∂  N  x y     ∂ x   +   ∂  N  y y     ∂ y   = 0  



(37)






    δ  w B  :    ∂ 2   M  x x  B    ∂  x 2    + 2    ∂ 2   M  x y  B    ∂ x ∂ y   +    ∂ 2   M  y y  B    ∂  y 2    +  N  x x  0     ∂ 2   (   w B  +  w S   )    ∂  x 2        + 2  N  x y  0     ∂ 2   (   w B  +  w S   )    ∂ x ∂ y   +  N  y y  0     ∂ 2   (   w B  +  w S   )    ∂  y 2    = 0    



(38)






    δ  w S  :    ∂ 2   M  x x  S    ∂  x 2    + 2    ∂ 2   M  x y  S    ∂ x ∂ y   +    ∂ 2   M  y y  S    ∂  y 2    +   ∂  Q  x z     ∂ x   +   ∂  Q  y z     ∂ y       +  N  x x  0     ∂ 2   (   w B  +  w S   )    ∂  x 2    + 2  N  x y  0     ∂ 2   (   w B  +  w S   )    ∂ x ∂ y   +  N  y y  0     ∂ 2   (   w B  +  w S   )    ∂  y 2    = 0    



(39)







For the present buckling study, the in-plane distributed forces can be written as:


   N  x x  0  =  N 0  ,  N  x y  0  = 0 ,  N  y y  0  = ζ  N 0   



(40)




where ζ is the compression ratio.



Using Equations (29)–(32), (38) and (39), the governing equations for buckling of the FG nanoporous metal foam nanoplate can be obtained in terms of wB and wS:


     B  11      ∂ 3  u   ∂  x 3    +  (   B  12   + 2  B  66    )     ∂ 3  u   ∂ x ∂  y 2    +  (   B  12   + 2  B  66    )     ∂ 3  v   ∂  x 2  ∂ y   +  B  22      ∂ 3  v   ∂  y 3    −  D  11      ∂ 4   w B    ∂  x 4        − 2  (   D  12   + 2  D  66    )     ∂ 4   w B    ∂  x 2  ∂  y 2    −  D  22      ∂ 4   w B    ∂  y 4    −  D  11  S     ∂ 4   w S    ∂  x 4    − 2  (   D  12  S  + 2  D  66  S   )     ∂ 4   w S    ∂  x 2  ∂  y 2        −  D  22  S     ∂ 4   w S    ∂  y 4    +  N 0   (     ∂ 2   w B    ∂  x 2    + ζ    ∂ 2   w B    ∂  y 2        +    ∂ 2   w S    ∂  x 2    + ζ    ∂ 2   w S    ∂  y 2     )  −  N 0   g 2   (     ∂ 4   w B    ∂  x 4    +          (  1 + ζ  )     ∂ 4   w B    ∂  x 2  ∂  y 2    + ζ    ∂ 4   w B    ∂  y 4    +    ∂ 4   w S    ∂  x 4    +  (  1 + ζ  )     ∂ 4   w S    ∂  x 2  ∂  y 2    + ζ    ∂ 4   w S    ∂  y 4     )  = 0    



(41)






     B  11  S     ∂ 3  u   ∂  x 3    +  (   B  12  S  + 2  B  66  S   )     ∂ 3  u   ∂ x ∂  y 2    +  (   B  12  S  + 2  B  66  S   )     ∂ 3  v   ∂  x 2  ∂ y   +  B  22  S     ∂ 3  v   ∂  y 3    −  D  11  S     ∂ 4   w B    ∂  x 4        − 2  (   D  12  S  + 2  D  66  S   )     ∂ 4   w B    ∂  x 2  ∂  y 2    −  D  22  S     ∂ 4   w B    ∂  y 4    −  H  11  S     ∂ 4   w S    ∂  x 4    − 2  (   H  12  S  + 2  H  66  S   )     ∂ 4   w S    ∂  x 2  ∂  y 2        −  H  22  S     ∂ 4   w S    ∂  y 4    +  K  44  S     ∂ 2   w S    ∂  x 2    +  K  55  S     ∂ 2   w S    ∂  y 2    +  N 0   (     ∂ 2   w B    ∂  x 2    + ζ    ∂ 2   w B    ∂  y 2    +    ∂ 2   w S    ∂  x 2            + ζ    ∂ 2   w S    ∂  y 2     )  −  N 0   g 2   (     ∂ 4   w B    ∂  x 4    +  (  1 + ζ  )     ∂ 4   w B    ∂  x 2  ∂  y 2    + ζ    ∂ 4   w B    ∂  y 4    +    ∂ 4   w S    ∂  x 4            +  (  1 + ζ  )     ∂ 4   w S    ∂  x 2  ∂  y 2    + ζ    ∂ 4   w S    ∂  y 4     )  = 0    



(42)







In the present study, the full simply supported boundary condition is considered and it is given as follows:


      w  (  x , 0  )  = w  (  x ,  l b   )  = w  (  0 , y  )  = w  (   l a  , y  )  = 0        M  x x    (  0 , y  )  =  M  x x    (   l a  , y  )  =  M  y y    (  x , 0  )  =  M  y y    (  x ,  l b   )  = 0      



(43)







The following solutions for wB and wS are chosen to satisfy the boundary condition in Equation (43):


   w B  =   ∑  m = 1  ∞     ∑  n = 1  ∞    U  3  (  m n  )   B      sin  (  α x  )  sin  (  β y  )   



(44)






   w S  =   ∑  m = 1  ∞     ∑  n = 1  ∞    U  3  (  m n  )   S      sin  (  α x  )  sin  (  β y  )   



(45)




where m and n are the mode numbers, α = mπ/la and β = nπ/lb.



Substituting Equations (44) and (45) into Equations (41) and (42), the following matrix form can be obtained:


   [       Z  11        Z  12          Z  21        Z  22        ]   {       U  3  (  m n  )   B         U  3  (  m n  )   S       }  =  {     0     0     }   



(46)




where


     Z  11   = −  (   D  11    α 4  + 2  (   D  12   + 2  D  66    )   α 2   β 2  +  D  22    β 4   )      −  N 0   (   α 2  +   ζ β  2   )  −  N 0   g 2   (   α 4  +  (  1 + ζ  )   α 2   β 2  +   ζ β  4   )     



(47)






     Z  12   =  Z  21   = −  (   D  11  S   α 4  + 2  (   D  12  S  + 2  D  66  S   )   α 2   β 2  +  D  22  S   β 4   )      −  N 0   (   α 2  +   ζ β  2   )  −  N 0   g 2   (   α 4  +  (  1 + ζ  )   α 2   β 2  +   ζ β  4   )     



(48)






     Z  22   = −  (   H  11  S   α 4  + 2  (   H  12  S  + 2  H  66  S   )   α 2   β 2  +  H  22  S   β 4   )  −  (   K  44  S   α 2  +  K  55  S   β 2   )      −  N 0   (   α 2  +   ζ β  2   )  −  N 0   g 2   (   α 4  +  (  1 + ζ  )   α 2   β 2  +   ζ β  4   )     



(49)







By setting the determinant of the coefficient matrix of Equation (46) equal to zero, the buckling load N0 is obtained. The critical buckling load is the minimum value of N0 (m, n), where m = 1, n = 1. For convenience, the non-dimensional buckling load is defined as:


     N ¯   0  = −  N 0  ×     l a  2     D  110      



(50)




where


   D  110   =    E 0   h 3    12  (  1 −  ν 2   )     



(51)









3. Results and Discussion


In order to demonstrate the accuracy of the present method, firstly, a comparison study was conducted for a homogeneous nanoplate. The present results were compared with the available data reported in the literature [31], as shown in Figure 2 and Figure 3. A very good agreement was reached between these figures, showing the validity of the present analysis.



In the following, the FG nanoporous metal foam nanoplate shown in Figure 1 was considered. It had the following material properties: E0 = 200 Gpa, G0 = 76.92 Gpa and ν = 1/3.



The variation of non-dimensional buckling load with a mode number n of FG nanoporous metal foam nanoplate is shown in Figure 4 for different small-scale parameters. It could be observed that the non-dimensional buckling load increased with an increasing mode number n. In addition, the non-dimensional buckling load decreased with the increase of the small-scale parameter. The classical theory (g = 0) resulted in the highest buckling load. It was also seen that when the mode number n was small, there was no significant difference among non-dimensional buckling loads for different small-scale parameters. However, as mode number n increased, the nonlocal effect became more and more notable.



Figure 5 shows the effect of porosity distribution on the non-dimensional critical buckling load, where h = 5 nm, m = n = 1, ζ = 1 and λ = 0.5. In the current analysis, two cases of square and rectangular nanoplates were considered. It could be seen that non-dimensional critical buckling load was the smallest in the case of UD, regardless of whether it was a square or a rectangular nanoplate. Therefore, the UD nanoplate was the most unstable. It could be found that the NUD1 nanoplate had the largest non-dimensional critical buckling load, showing this type of nanoplate was the most stable.



Figure 6 presented the influence of porosity coefficient λ on the non-dimensional critical buckling load of the FG nanoporous nanoplate. It was found that there was a remarkable decreasing trend for the non-dimensional critical buckling load when the porosity coefficient increased. The reason for this behavior was that the stiffness of nanoplates decreased with the porosity coefficient.



In Figure 7, the non-dimensional critical buckling load versus the length-to-thickness ratio of the square FG nanoporous nanoplate is shown. It was seen that the non-dimensional critical buckling load increased with the rise of length-to-thickness ratio for all types of porosity distribution. It was also found that the influence of small-scale parameter on the non-dimensional critical buckling load weakened with the rise of the length-to-thickness ratio.



In Figure 8, the non-dimensional critical buckling load versus the axial compression ratio ζ is shown. Here, ζ > 0 corresponds to the biaxial compressive loads and ζ = 0 means a uniaxial load. Figure 8 shows that the non-dimensional critical buckling load became smaller and smaller as the axial compression ratio increased.



Figure 9 shows the variation of the non-dimensional buckling load with a mode number m of the FG nanoporous nanoplate. It could be seen that the larger mode number m led to the higher non-dimensional buckling load. Additionally, the difference between the non-dimensional buckling loads with n = 1 and n = 2 got smaller and smaller as the mode number m increased.



Table 1 and Table 2 show the non-dimensional buckling loads of square and rectangular FG nanoporous nanoplates under different conditions, respectively. It could be seen that the FG nanoporous nanoplate had a lower non-dimensional buckling load than its solid counterpart. Additionally, the larger mode number resulted in the larger non-dimensional buckling load.



In Table 3, the effect of surface area on the non-dimensional critical buckling load of the FG nanoporous nanoplate is discussed. When the thickness of the nanoplate was fixed, it could be found that the non-dimensional critical buckling load increased with the rise of surface area. It should be noticed that the real buckling load decreased with the surface area because the stiffness of the nanoplate decreased. The contrary tendency was due to the dimensionless formulation introduced in Equation (50).



The effect of nanoplate thickness on the non-dimensional critical buckling load of square and rectangular nanoplates is shown in Table 4 and Table 5, respectively. With the increase of the nanoplate thickness, the variation of the non-dimensional critical buckling load showed a decreasing trend for both square and rectangular nanoplates. In Table 6, the influence of aspect ratio on the non-dimensional critical buckling load is studied in the condition that the FG nanoporous nanoplate is subjected to the biaxial symmetrical loads (ζ = 1). It could be seen that the non-dimensional critical buckling load decreased as the aspect ratio increased.




4. Conclusions


In this study, the buckling behavior of FG nanoporous metal foam nanoplates was investigated based on the non-local elasticity theory and the refined plate theory. Hamilton’s principle was used to derive the governing equations of the system. Analytical solutions to the buckling problem were obtained via Navier’s method. The following conclusions were obtained:




	
An FG nanoporous metal foam nanoplate had a smaller critical buckling load than its solid counterpart. Among the three types of porosity distribution, the NUD1 nanoplate had the largest buckling load and the ND nanoplate had the smallest buckling load.



	
The critical buckling load of FG nanoporous metal foam nanoplates decreased with the rise of the porosity coefficient and the small-scale parameter.



	
The critical buckling load decreased as the aspect ratio increased. Additionally, the FG nanoporous metal foam nanoplate was more stable when the surface area got smaller.



	
The buckling load increased as the mode numbers rose; in addition, the scale effect was quite significant on the buckling load at large mode number n.
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Figure 1. Functionally graded (FG) nanoporous metal foam nanoplate and three types of porosity distribution, namely (1) uniform distribution (UD), (2) non-uniform distribution 1 (NUD1) (symmetric), and (3) non-uniform distribution 2 (NUD2) with (a) coating on substrate, (b) nanoplate model, (c) cross section. 
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Figure 2. Variation of buckling load ratio with a non-local small-scale parameter for a rectangular homogeneous nanoplate (m = n = 1, a = 10 nm, b = 5 nm). 
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Figure 3. Variation of buckling load ratio with a non-local small-scale parameter for a square homogeneous nanoplate (a = b = 5 nm). 
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Figure 4. Variation of the non-dimensional buckling load with a mode number n of square FG nanoporous nanoplate (m = 1, h = 5 nm, ζ = 1, la = lb = 50 nm, λ = 0.5): (a) UD, (b) NUD1, (c) NUD2. 
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Figure 5. Variation of non-dimensional critical buckling load with a small-scale parameter g: (a) square nanoplate (la = lb = 50 nm), (b) rectangular nanoplate (la = 50 nm, lb = 75 nm). 
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Figure 6. Variation of non-dimensional critical buckling load with a porosity coefficient λ (m = n = 1, h = 5 nm, la = lb = 50 nm, ζ = 1): (a) UD, (b) NUD1, (c) NUD2. 
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Figure 7. Variation of non-dimensional critical buckling load with a length-to-thickness ratio of square FG nanoporous nanoplate (m = n = 1, h = 5 nm, la = lb, ζ = 1, λ = 0.5): (a) UD, (b) NUD1, (c) NUD2. 
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Figure 8. Variation of the non-dimensional critical buckling load with the axial compression ratio ζ of the square FG nanoporous nanoplate (m = n = 1, h = 5 nm, la = lb = 50 nm, g = 0.5): (a) UD, (b) NUD1, (c) NUD2. 
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Figure 9. Variation of the non-dimensional buckling load with mode number m (ζ = 1, h = 5 nm, g = 0.5, la = lb = 50 nm, λ = 0.5): (a) UD, (b) NUD1, (c) NUD2. 






Figure 9. Variation of the non-dimensional buckling load with mode number m (ζ = 1, h = 5 nm, g = 0.5, la = lb = 50 nm, λ = 0.5): (a) UD, (b) NUD1, (c) NUD2.



[image: Coatings 08 00389 g009]







[image: Table] 





Table 1. The non-dimensional buckling loads with different mode numbers, small scale parameters and porosity distributions of square FG nanoporous nanoplate (la = lb = 50 nm, h = 5 nm, ζ = 1, λ = 0.5).
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Mode

	
Solid Metal

	
UD

	
NUD1

	
NUD2




	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5






	
m = 1, n = 1

	
18.636

	
18.600

	
12.334

	
12.310

	
14.965

	
14.936

	
13.176

	
13.150




	
m = 2, n = 2

	
63.870

	
63.370

	
42.272

	
41.941

	
48.965

	
48.582

	
44.777

	
44.426




	
m = 3, n = 3

	
116.14

	
114.12

	
76.869

	
75.527

	
84.672

	
83.194

	
80.648

	
79.241




	
m = 4, n = 4

	
163.06

	
158.07

	
107.92

	
104.61

	
113.99

	
110.50

	
112.29

	
108.85




	
m = 5, n = 5

	
201.03

	
191.57

	
133.05

	
126.79

	
136.20

	
129.79

	
137.56

	
131.09
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Table 2. The non-dimensional buckling loads with different mode numbers, small scale parameters and porosity distributions of rectangular FG nanoporous nanoplate (la = 50 nm, lb = 75 nm, h = 5 nm, ζ = 1, λ = 0.5).






Table 2. The non-dimensional buckling loads with different mode numbers, small scale parameters and porosity distributions of rectangular FG nanoporous nanoplate (la = 50 nm, lb = 75 nm, h = 5 nm, ζ = 1, λ = 0.5).





	
Mode

	
Solid Metal

	
UD

	
NUD1

	
NUD2




	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5






	
m = 1, n = 1

	
13.672

	
13.652

	
9.0485

	
9.0357

	
11.036

	
11.020

	
9.6751

	
9.6613




	
m = 2, n = 2

	
48.709

	
48.432

	
32.238

	
32.055

	
37.915

	
37.700

	
34.244

	
34.050




	
m = 3, n = 3

	
92.762

	
91.587

	
61.394

	
60.616

	
69.135

	
68.259

	
64.687

	
63.867




	
m = 4, n = 4

	
135.87

	
132.84

	
89.926

	
87.921

	
97.284

	
95.114

	
94.015

	
91.919




	
m = 5, n = 5

	
173.37

	
167.40

	
114.74

	
110.79

	
120.14

	
116.00

	
119.18

	
115.08
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Table 3. The non-dimensional critical buckling loads with different surface areas, small scale parameters and porosity distributions of square nanoplate (m = n = 1, h = 5 nm, ζ = 1, λ = 0.5).






Table 3. The non-dimensional critical buckling loads with different surface areas, small scale parameters and porosity distributions of square nanoplate (m = n = 1, h = 5 nm, ζ = 1, λ = 0.5).





	
Surface Area

	
Solid Metal

	
UD

	
NUD1

	
NUD2




	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5






	
la = lb =30 nm

	
16.956

	
16.863

	
11.222

	
11.161

	
13.220

	
13.148

	
11.924

	
11.859




	
la = lb =40 nm

	
18.069

	
18.014

	
11.959

	
11.922

	
14.364

	
14.320

	
12.752

	
12.713




	
la = lb =50 nm

	
18.636

	
18.600

	
12.334

	
12.310

	
14.965

	
14.936

	
13.176

	
13.150




	
la = lb =60 nm

	
18.960

	
18.934

	
12.549

	
12.531

	
15.313

	
15.292

	
13.419

	
13.400




	
la = lb =70 nm

	
19.161

	
19.141

	
12.681

	
12.669

	
15.531

	
15.515

	
13.569

	
13.556
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Table 4. The non-dimensional critical buckling loads with different thicknesses, small scale parameters and porosity distributions of square nanoplate (la = lb = 50 nm, m = n = 1, ζ = 1, λ = 0.5).






Table 4. The non-dimensional critical buckling loads with different thicknesses, small scale parameters and porosity distributions of square nanoplate (la = lb = 50 nm, m = n = 1, ζ = 1, λ = 0.5).





	
h

	
Solid Metal

	
UD

	
NUD1

	
NUD2




	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5






	
h = 5 nm

	
18.636

	
18.600

	
12.334

	
12.310

	
14.965

	
14.936

	
13.176

	
13.150




	
h = 6 nm

	
18.190

	
18.154

	
12.039

	
12.015

	
14.491

	
14.463

	
12.842

	
12.817




	
h = 7 nm

	
17.689

	
17.654

	
11.707

	
11.684

	
13.969

	
13.941

	
12.469

	
12.444




	
h = 8 nm

	
17.145

	
17.111

	
11.347

	
11.325

	
13.411

	
13.385

	
12.064

	
12.040




	
h = 9 nm

	
16.568

	
16.535

	
10.965

	
10.944

	
12.832

	
12.806

	
11.637

	
11.614
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Table 5. The non-dimensional critical buckling loads with different thicknesses, small scale parameters and porosity distributions of rectangular nanoplate (la = 50 nm, lb = 75 nm, m = n = 1, ζ = 1, λ = 0.5).






Table 5. The non-dimensional critical buckling loads with different thicknesses, small scale parameters and porosity distributions of rectangular nanoplate (la = 50 nm, lb = 75 nm, m = n = 1, ζ = 1, λ = 0.5).





	
h

	
Solid Metal

	
UD

	
NUD1

	
NUD2




	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5






	
h = 5 nm

	
13.672

	
13.652

	
9.0485

	
9.0357

	
11.036

	
11.020

	
9.6751

	
9.6613




	
h = 6 nm

	
13.430

	
13.411

	
8.8883

	
8.8757

	
10.776

	
10.761

	
9.4936

	
9.4801




	
h = 7 nm

	
13.155

	
13.136

	
8.7062

	
8.6939

	
10.484

	
10.469

	
9.2879

	
9.2747




	
h = 8 nm

	
12.851

	
12.833

	
8.5053

	
8.4932

	
10.167

	
10.152

	
9.0614

	
9.0485




	
h = 9 nm

	
12.524

	
12.506

	
8.2887

	
8.2769

	
9.8297

	
9.8157

	
8.8179

	
8.8053
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Table 6. The non-dimensional critical buckling loads with different aspect ratios, small scale parameters and porosity distributions of nanoplate (m = n = 1, la = 50 nm, h = 5 nm, ζ = 1, λ = 0.5).






Table 6. The non-dimensional critical buckling loads with different aspect ratios, small scale parameters and porosity distributions of nanoplate (m = n = 1, la = 50 nm, h = 5 nm, ζ = 1, λ = 0.5).





	
lb/la

	
Solid Metal

	
UD

	
NUD1

	
NUD2




	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5

	
g = 0

	
g = 0.5






	
0.5

	
42.994

	
42.783

	
28.456

	
28.316

	
33.662

	
33.497

	
30.259

	
30.110




	
1

	
18.6364

	
18.600

	
12.334

	
12.310

	
14.965

	
14.936

	
13.176

	
13.150




	
1.5

	
13.672

	
13.652

	
9.0485

	
9.0357

	
11.036

	
11.020

	
9.6751

	
9.6613




	
2

	
11.897

	
11.882

	
7.8739

	
7.8642

	
9.6215

	
9.6097

	
8.4219

	
8.4116




	
2.5

	
11.069

	
11.056

	
7.3258

	
7.3174

	
8.9597

	
8.9494

	
7.8369

	
7.8280
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