Preparation of Ti–Zr-Based Conversion Coating on 5052 Aluminum Alloy, and Its Corrosion Resistance and Antifouling Performance
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterizations of the Coating
3.2. Corrosion Resistance of Coating Samples
3.3. Antifouling Performance Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Z.X.; Ma, Y.L.; Wu, H.P.; Liao, Y.; Lin, Z.H.; Zhang, H.Y.; Zhang, Y.; Mori, K. Preparation and Properties of Silane Coating on 5182 Aluminum Alloy. Surf. Technol. 2018, 5, 256–264. (In Chinese) [Google Scholar] [CrossRef]
- Arthanari, S.; Shin, S.K. A simple one step cerium conversion coating formation on to magnesium alloy and electrochemical corrosion performance. Surf. Coat. Technol. 2018, 349, 757–772. [Google Scholar] [CrossRef]
- Zhong, X.; Wu, X.S.; Jia, Y.Y.; Liu, Y.L. Self-repairing Vanadium-Zirconium Composite Conversion Coating for Aluminum Alloys. Appl. Surf. Sci. 2013, 280, 489–493. [Google Scholar] [CrossRef]
- Liang, C.S.; Lv, Z.F.; Zhu, Y.L.; Xu, S.A.; Wang, H. Protection of Aluminum Foil AA8021 by Molybdate-based Conversion Coatings. Appl. Surf. Sci. 2014, 280, 497–502. [Google Scholar] [CrossRef]
- Valdez, B.; Kiyota, S.; Stoytcheva, M.; Zlatev, R.; Bastidas, J.M. Cerium-based conversion coatings to improve the corrosion resistance of aluminum alloy 6061–T6. Corros. Sci. 2014, 87, 141–149. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G.; O’Keefe, M.J.; Zhou, H.F.; Grant, J.T. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys. Surf. Coat. Technol. 2002, 155, 208–213. [Google Scholar] [CrossRef]
- Xia, X.F.; Gu, Y.Y.; Xu, S.A. Titanium conversion coatings on the aluminum foil AA 8021 used for lithium–ion battery package. Appl. Surf. Sci. 2017, 419, 447–453. [Google Scholar] [CrossRef]
- Cerezo, J.; Vandendael, I.; Posner, R.; de Wit, J.H.W.; Mol, J.M.C.; Terryn, H. The effect of surface pre-conditioning treatments on the local composition of Zr-based conversion coatings formed on aluminium alloys. Appl. Surf. Sci. 2016, 366, 339–347. [Google Scholar] [CrossRef]
- Rani, R.U.; Sharma, A.K.; Mayanna, S.M.; Bhojraj, H.; Bhandari, D.R. Black permanganate conversion coatings on aluminium alloys for thermal control of spacecraft. Surf. Eng. 2005, 21, 198–203. [Google Scholar] [CrossRef]
- Zhao, M.; Li, J.; He, G.; Xie, H.; Fu, Y. An investigation of the effect of a magnetic field on the phosphate conversion coating formed on magnesium alloy. Appl. Surf. Sci. 2013, 282, 499–505. [Google Scholar] [CrossRef]
- Ma, Y.B.; Li, N.; Li, D.Y.; Zhang, M.L.; Huang, X.M. Characteristics and corrosion studies of vanadate conversion coating formed on Mg-14wt%Li-1wt%Al-0.1wt%Ce alloy. Appl. Surf. Sci. 2012, 261, 59–67. [Google Scholar] [CrossRef]
- Liu, Q.; Cao, X.M.; Du, A.; Ma, RN.; Zhang, X.R.; Shi, T.T.; Fan, Y.Z.; Zhao, X. Investigation on adhesion strength and corrosion resistance of Ti-Zr aminotrimethylene phosphonic acid composite conversion coating on 7A52 aluminum alloy. Appl. Surf. Sci. 2018, 458, 350–359. [Google Scholar] [CrossRef]
- Nordlien, J.H.; Walmsley, J.C.; Østerberg, H.; Nisancioglu, K. Formation of a zirconium-titanium based conversion layer on AA 6060aluminum. Surf. Coat. Technol. 2002, 153, 72–78. [Google Scholar] [CrossRef]
- Lunder, O.; Simensen, C.; Yu, Y.; Nisancioglu, K. Formation and characterization of Ti–Zr based conversion layers on AA6060 aluminum. Surf. Coat. Technol. 2004, 184, 278–290. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, J.G.; Yan, C.W. Novel Ti/Zr Based Non-Chromium Chemical Conversion Coating for the Corrosion Protection of Electrogalvanized Steel. Int. J. Electrochem. Sci. 2011, 6, 4853–4867. [Google Scholar]
- Yi, A.H.; Li, W.F.; Du, J.; Mu, S.L. Preparation and Properties of Chrome-free Colored Ti/Zr Based Conversion Coating on Aluminum Alloy. Appl. Surf. Sci. 2012, 258, 5960–5964. [Google Scholar] [CrossRef]
- Coloma, P.S.; Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J.; Lapeña, N. Chromium free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications. Appl. Surf. Sci. 2015, 354, 24–35. [Google Scholar] [CrossRef]
- Zhu, W.; Li, W.F.; Mu, S.L.; Fu, N.Q.; Liao, Z.M. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties. Appl. Surf. Sci. 2017, 405, 157–168. [Google Scholar] [CrossRef]
- Dong, Y.H.; Li, J.; Zhang, Y.Z.; Hou, Y.L. Self-cleaning Function of TiO2 Nanoparticles Aeronautical Coatings. Chin. J. Rare Met. 2014, 38, 741–748. (In Chinese) [Google Scholar] [CrossRef]
- Wu, Y.H.; Li, X.M.; Yang, W.J.; Gao, L. Preparation and Characterization for Permanganate Chemical Conversion Film on LY12 Aluminum Alloy. Surf. Technol. 2011, 40, 81–85. (In Chinese) [Google Scholar] [CrossRef]
- Dabala, M.; Brunelli, K.; Napolitani, E.; Magrini, M. Cerium-based Chemical Conversion Coating on AZ63 Magnesium Alloy. Surf. Coat. Technol. 2003, 172, 227–232. [Google Scholar] [CrossRef]
- Yu, S.X.; Zhang, R.J.; Tang, Y.F.; Ma, Y.L.; Du, W.C. Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys. J. Nanomater. 2013, 2013. [Google Scholar] [CrossRef]
- Yim, J.H.; Santigo, V.R.; Williams, A.A.; Gougousi, T.; Pappas, D.D.; Hirvonen, J.K. Atmospheric pressure plasma enhanced chemical vapor deposition of hydrophobic coatings using fluorine-based liquid precursors. Surf. Coat. Technol. 2013, 234, 21–32. [Google Scholar] [CrossRef]
- Jenog, H.J.; Kim, D.K.; Lee, S.B.; Kwon, S.H.; Kadono, K. Preparation of Water-Repellent Glass by Sol–Gel Process Using Perfluoroalkylsilane and Tetraethoxysilane. J. Colloid Interface Sci. 2001, 235, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.C.; Chang, L.J.; Yang, S.; Jia, Y.; Wong, C.P. Hydrophobic properties of biomorphic carbon surfaces prepared by sintering lotus leaves. Ceram. Int. 2013, 39, 8165–8172. [Google Scholar] [CrossRef]
- Kristalyn, C.B.; Watt, S.; Spanninga, S.A.; Barnard, R.A.; Nguyen, K.; Chen, Z. Investigation of sub-monolayer, monolayer, and multilayer self-assembled semifluorinated alkylsilane films. J. Colloid Interface Sci. 2011, 353, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Li, W.F.; Du, J.; Han, D.; Zheng, X.P. Investigation of the Ce-Mn conversion coating on 6063 aluminum alloy. Chin. Sci. Bull. 2010, 17, 1734–1737. (In Chinese) [Google Scholar] [CrossRef]
- Yan, L.L.; Wang, K.; Wu, J.S.; Ye, L. Characterization of fluoroalkylsilane monolayer on polystyrene sphere arrays after plasma treatment. Surf. Sci. 2007, 601, 1394–1402. [Google Scholar] [CrossRef]
- Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Chen, X.G. Superhydrophobic Aluminum Alloy Surfaces by a Novel One-Step Process. ACS Appl. Mater. Interfaces 2010, 2, 2500–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Chen, X.G. Chemical Nature of Superhydrophobic Aluminum Alloy Surfaces Produced via a One-Step Process Using Fluoroalkyl-Silane in a Base Medium. ACS Appl. Mater. Interfaces 2011, 3, 4775–4781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, R.; Wang, J.; Zhang, X.F.; Yan, H.J.; Yang, W.L.; Liu, Q.; Zhang, M.L.; Liu, L.H.; Takahashi, K. Fabrication of superhydrophobic magnesium alloy through theoxidation of hydrogen peroxide. Colloid Surf. A 2013, 436, 906–911. [Google Scholar] [CrossRef]
- Wankhede, R.G.; Morey, S.; Khanna, A.S.; Birbilis, N. Development of water-repellent organic–inorganic hybrid sol–gel coatings on aluminum using short chain perfluoro polymer emulsion. Appl. Surf. Sci. 2013, 283, 1051–1059. [Google Scholar] [CrossRef]
- Dun, Y.C.; Zhao, X.H.; Tang, Y.M.; Dino, S.; Zuo, Y. Microstructure and corrosion resistance of a fluorosilane modified silane-graphene film on 2024 aluminum alloy. Appl. Surf. Sci. 2018, 437, 152–160. [Google Scholar] [CrossRef]
Samples | Ecorr (mV) | Icorr (μA cm−2) |
---|---|---|
Al substrate | −1196 | 1.10 |
Conversion treatment | −605 | 0.48 |
Conversion + sealing treatment | −587 | 0.04 |
Conversion + FAS-17 modification | −590 | 0.005 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, X.; Zhao, X.; Tang, Y.; Zuo, Y. Preparation of Ti–Zr-Based Conversion Coating on 5052 Aluminum Alloy, and Its Corrosion Resistance and Antifouling Performance. Coatings 2018, 8, 397. https://doi.org/10.3390/coatings8110397
Zhang H, Zhang X, Zhao X, Tang Y, Zuo Y. Preparation of Ti–Zr-Based Conversion Coating on 5052 Aluminum Alloy, and Its Corrosion Resistance and Antifouling Performance. Coatings. 2018; 8(11):397. https://doi.org/10.3390/coatings8110397
Chicago/Turabian StyleZhang, Hehong, Xiaofeng Zhang, Xuhui Zhao, Yuming Tang, and Yu Zuo. 2018. "Preparation of Ti–Zr-Based Conversion Coating on 5052 Aluminum Alloy, and Its Corrosion Resistance and Antifouling Performance" Coatings 8, no. 11: 397. https://doi.org/10.3390/coatings8110397
APA StyleZhang, H., Zhang, X., Zhao, X., Tang, Y., & Zuo, Y. (2018). Preparation of Ti–Zr-Based Conversion Coating on 5052 Aluminum Alloy, and Its Corrosion Resistance and Antifouling Performance. Coatings, 8(11), 397. https://doi.org/10.3390/coatings8110397