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Abstract: This article aims to model two-dimensional, incompressible asymmetric peristaltic
propulsion coated with Synovial fluid (“non-Newtonian model”) with mass transport. Due to the
coating of the same base-fluid at the surface of the channel, the boundaries become non-porous and
exert no slip on the fluid particles. Two illustrative models for the viscosity, namely, shear-thinning
(Model 1) and shear-thickening (Model 2), are considered, which reveal the presence and integrity of
coating. The perturbation method has been applied to linearize the complicated differential equations.
Model 1 predicted higher viscosity values and more significant non-Newtonian behavior than Model 2.
It is also observed that the shear-thinning model behaved in quite the opposite manner for the shear
thickening model. The converse behavior of Models 1 and 2 occurs due to a curvature of the flow
domain. Moreover, Model 1 is not able to capture the correct exponential viscosity dependence
on concentration for the whole range of shear rates. On the other hand, the second model shows
a strong relationship with accurate power. Solutions are attained for velocity field, concentration
profile, and pressure gradient. The novelty of all the essential parameters is analyzed through
graphical results. Furthermore, streamlines are also drawn to determine the trapping mechanism.
The present analysis is beneficial in the study of intrauterine fluid dynamics; furthermore, it is
applicable in vivo diagnostic; drug delivery; food diagnostics; protein chips; and cell chips and
packaging, i.e., smart sensors.

Keywords: Synovial fluid; coating; shear-thinning and -thickening models; mass transport;
asymmetric channel; analytical solution

1. Introduction

Synovial fluid is secreted to the cavity by its inner membrane called Synovial [1]. It is
a biological fluid filling the Synovial joint-cavity’s several-micrometers-thick layer between the
interstitial cartilages [2]. The main component of Synovial fluid is ultrafiltration of the blood
plasma devoid of high-molecular proteins, blood cells, and aggressors. Synovial fluid supports
joints via high effective cartilage lubrication, while its essential component is an added lubricant called
hyaluronan/hyaluronic acid [3]. Several studies showed that the viscoelastic features of Synovial
fluid occur due to hyaluronic acid [4]. Hyaluronic acid is natively present in the Synovial fluid in
relatively high concentrations [5]. It is experimentally [6] confirmed that the viscoelastic features
of Synovial fluids strongly rely on a concentration of hyaluronic acid; therefore, the magnitude of
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polymerization is substantial, because the volume of hyaluronic random coils exhibits a momentous
role in the viscoelastic attributes of Synovial fluid [7,8].

Furthermore, Synovial fluid contains mixtures that reveal a viscoelastic fashion. When a Synovial
fluid is propagating with versatile conditions where there is no instantaneous input, then it performs
as a Stokesian fluid. When it is only subject to immediate input, then its viscoelastic charactersitics
manifests itself. Hron et al. [9] examined the flow analysis of three separate models that could be
referred to as Synovial fluid models. These models fit into the type of generalized viscous fluids,
whereas only one goes fits into the class of a shear-thinning model in which the power-law exponent
relies upon the concentration.

Moreover, incompressible non-Newtonian liquids have attracted great interest in recent years.
Perhaps this is due to academic curiosity and their several industrial applications including synthetic
lubricants, colloidal fluids, and liquid crystals. It is found that various physiological fluids
reveal non-Newtonian behavior. Non-Newtonian characteristics produce satisfactory results when
analyzing the mechanism of peristalsis propagating in lymphatic vessels, blood vessels, ductus
afferents, intestines, the motion of urine in the human body, food bolus moving through esophagus,
the movement of spermatozoa in a vas deferens, the blending of food material, Chyme motion, cilia
propagation, blood circulation, and the propagation of bile in a bile duct. A peristaltic movement is
a fluid transport that happens because of the contraction and extension of smooth walls. Recently,
many authors have determined the peristaltic mechanism in various boundary and initial conditions.
Notably, Mekheimer et al. [10] calculated the peristaltic phenomenon of magnetized couple-stress
fluid along with the effects of the induced magnetic field. He further achieved the exact analytics
solutions for the velocity profile. Srinivas and Kothandapani [11] examined the mass and heat transfer
impact on the peristaltic transportation of viscous liquid. They formulated the governing flow using
the lubrication approach and obtained the exact solution. Further, they assumed that fluid is travelling
in a porous medium having compliant walls. Riaz et al. [12] modeled the unsteady peristaltic flow
of Carreau fluid propagating through a small intestine and presented analytic solutions using the
perturbation method. Akram et al. [13] explored the behavior of lateral walls on the non-uniform,
peristaltic-propelled three-dimensional flow of the couple stress fluid model. Ellahi et al. [14] also
discussed the three-dimensional motion of Carreau fluid with an external uniform magnetic field.
They used the Homotopy perturbation scheme to obtain the solutions of the obtained non-linear
partial differential equations. They determined that the magnetic field is a significant factor in the
preservation of the flow field. Bhatti et al. [15] examined the behavior of the oblique magnetic field with
heat transfer on the uniform peristaltic motion containing small particles. They presented the exact
solutions for the fluid and particulate phases, whereas numerical integration was used to determine the
pumping characteristics. Sinha et al. [16] presented the peristaltic motion of viscous liquid containing
a variable viscosity under the inclusion of heat exchange and the static magnetic field with asymmetric
geometry. They obtained the perturbation solutions under the slip conditions and temperature
jump. Shit et al. [17] examined the asymmetrical motion of a micropolar fluid with the induced
magnetic field. They obtained exact results for micro-rotation components, magnetic force function,
the velocity profile, and the current density profile. A mathematical analysis of a micropolar fluid in
an artery having composite stenosis was measured by Ellahi et al. [18]. Bhatti et al. [19] evaluated the
peristaltic propulsion of magnetized solid particles in Biorheological fluids. They considered the model
of Casson fluid and obtained the exact results for liquid and particulate phase against velocity and
temperature profile. Peristaltic motion through a porous channel was presented by Maiti and Misra [20].
They discussed the bile flow with in ducts in the pathological state. Bhatti et al. [21] considered the
combined electric and magnetic field impact on the propulsion of the peristaltic third-grade fluid
model containing small particles. They further considered the heat transfer effects and obtained the
analytical results using Homotopy perturbation methods.

Furthermore, Kabov et al. [22] experimentally discussed the two-phase flow propagating through
a microchannel. Mekheimer and Elmaboud [23] addressed the impression of heat exchange and
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magnetic field on the viscous-fluid model stimulated in peristaltic fashion. They explained the influence
of endoscope and bioheat transfer. Elmaboud and Mekheimer [24] addressed the nonlinear peristaltic
motion of second-grade fluid propagating through a porous geometry. They further applied the
perturbation method to solve the velocity equations, whereas pumping features and friction forces were
evaluated by numerical integration. Khan et al. [25] studied the behavior of changeable viscosity of
the Jeffrey fluid model propagating through the asymmetric porous channel. Transient peristaltic flow
through a permeable finite channel was determined by Tripathi [26]. Chaube et al. [27] discussed the
peristaltic flow of the power-law model using the creeping flow regime. Shit et al. [28] also discussed
the role of velocity slip on the wavy motion of the couple stress fluid model. They mainly focused on a
peristaltic movement in the digestive system. Later, Shit et al. [29] governed the peristaltic biofluid flow
through a microchannel. Moreover, they also considered the EMHD (“Electro-Magnetohydrodynamic”)
and velocity slip due to a hydrophobic/hydrophilic collision between negatively charged walls.
Recently, Zeeshan et al. [30] addressed the behavior of the Sisko fluid model propagating across
a non-uniform peristaltic channel. They obtained the second order solution using the Homotopy
perturbation method. Some more useful studies related to the topic can be seen in [31,32].

According to literature surveyed, it is observed that no results have been presented yet to examine
the behavior of Synovial fluid on peristaltic propulsion through an asymmetric channel. According to
our knowledge, not a single mathematical model is given in the literature describing the behavior of
Synovial fluid for peristaltic flow. The governing fluid holds the properties of incompressibility and
irrotational and constant density. Furthermore, mass transport is also taken into account to discuss
the present flow. Mass transportation is also an important phenomenon in the propagation of mass
from one region to another region. Therefore, the primary theme of the current study is to present a
theoretical and mathematical analysis of the said topic to fill this gap in the literature. The graphical
results are presented for two different models of Synovial fluid.

2. Mathematical Modeling

The peristaltic (or “sinusoidal”) motion of Synovial fluid described by generalized incompressible
fluid possesses the Navier-Stokes equations with a viscosity depending on a shear rate and
concentration. We must couple this system with one extra convection-diffusion equation for a
concentration of hyaluronic acid. The fundamental equations of governing flow with synovial fluid
model are described in reference [8] as follows:

divV = 0 (1)

∂V
∂t

+ V · ∇V +
∇p
ρ

=
2
ρ

div(Θ) (2)

∂C
∂t

= div(F(C))−V · ∇C (3)

in above equation:
F(C) = DC∇C, Θ = µ(C, D) D (4)

in which ∆V(U,V) is velocity, µ is viscosity, D is symmetric part of velocity gradient, P is pressure,
ρ is density, F is concentration flux, C is concentration of hyaluronan/hyaluronic, and DC is
constant diffusivity.

Let us focus on two-dimensional peristaltic flows in an asymmetric channel containing width
d1 + d2 due to wave traveling in direction of flow with constant velocity c. The flow is discussed in
Cartesian coordinates. The mass concentrations upon the upper wall are C0, whereas on the bottom
wall they are C1. Peristaltic motion on the upper and lower internal surfaces is recognized as

H1(X, t) = Y = d1 + b1 cos 2π(X− ct)
1
λ

(5)
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H2(X, t) = Y = −d2 − b2 cos[(X− ct)2π+ λφ]
1
λ

(6)

To translate the coordinates, we use the same procedure that was used in [13].
The consequent relations of the boundaries of channel are described as

h1(x) = y− 1 = acos2πx (7)

h2(x) = y = −b cos(φ+ 2πx)− d (8)

Synovial Fluid Model

The peristaltic motion of viscous synovial fluid (see [33,34]) with thin film coating at the walls
is considered in a two-dimensional channel. The flow patterns corresponding to Models 1 and 2 are
markedly different. We shall ignore the detailed discussion here. However, fewer essential points
associated with the model are presented. The models under consideration present exciting features.
Model 1 is a simple generalized form of a power-law mathematical model for a shear-dependent
viscosity that is helpful to define various non-Newtonian fluids in biological and polymer fluid
mechanics, food rheology, and geology, to consider the basis of viscosity that affects the concentration
of a reactant. Model 2 describes that exponent is a function of concentration.

Model 1: The generalized power-law model and the viscosity are exponentially dependent on
concentration, then the Model 1 is written as:

µ(C, D) = µ0eαC
(

1 + γ2
∣∣∣D2

∣∣∣)n
(9)

Model 2: In this model, a shear-thinning index depends upon the concentration (i.e., zero concentration):

µ(C, D) = µ0

(
1 + γ2

∣∣∣D2
∣∣∣)n(C)

(10)

in which,

|D| =

√
2
(

∂u
∂x

)2
+ 2
(

∂u
∂y

)2
+

(
∂v
∂x

+
∂u
∂y

)2
(11)

and

n(C) = −eαC − 1
2eαC (12)

in which n is index of shear-thinning comprising values between −0.5 and 0. It is worth mentioning
that results of Newtonian fluid are obtained as a particular case of current fluid when n = 0.

The governing equations are too arduous to be acquiescent to stability analysis. Therefore, it is
necessary to simplify the modeled equations. Make sure that the simplification process is congruous
for such problems. Henceforth, we shall assume the long wavelength constraint, i.e., δ� 1 and less
Reynolds number Re ≈ O(1). Now, it is suitable to make the observing equations dimensionless by
defining the following ratios:

y =
y
d1

, α = α∗(C1 − C0), σ = C−C0
C1−C0

,µ = µ
µ0

, h = H
d1

, p =
d2

1 p
µcλ , δ = d1

λ , a = b1
d1

,

b = b2
d1

, d = d2
d1

, We = γc
d1

,
∣∣D∣∣ = d1

c |D|, Sc = µ
ρDC

, v = v
cδ , Re = ρd1c

µ , u = u
c , x = x

λ

(13)

In above expression, Sc denotes Schmidt number, Re stands for Reynolds number, α represents
concentration production, and γ is a material parameter.

The resulting non-dimensional governing equations along with Models 1 and 2 after exempting
bar symbols in a wave frame will observe the following form:

∂v
∂y

= −∂u
∂x

(14)
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∂p
∂x

=


1
2

∂
∂y

[
(1 + ασ)

{
1 + nWe2

(
∂u
∂y

)2
}

∂u
∂y

]
(Model 1)

∂2u
∂y2 − αWe2

2
∂

∂y

[
σ
(

∂u
∂y

)3
]

(Model 2)
(15)

Concentration equation for Models 1 and 2 is simplified to the following form:

1
Sc

∂2σ

∂y2 = 0 (16)

The no slip boundary conditions become:

u(h1) = −1 u(h2) = −1, σ(h1) = 0, σ(h2) = 1 (17)

3. Solution Procedure

The analytical solutions of Equations (15)–(17) have been determined by regular perturbation
method. To solve the problem under consideration, we presented the flow quantities wherein the velocity,
concentration, and pressure interns of small Weissenberg number (We) have the following form:

u(x, y) = u0, i + (We)2u1, i + (We)4u2, i + . . . , i = 1, 2. (18)

σ = σ0 + (We)2σ1 + (We)4σ2 + . . . (19)

K = (K)0,i + (We)2(K)1,i + (We)4(K)2,i + . . . , i = 1, 2, . . . (20)

in which K = dp
dx . After the implementation of above expressions in Equations (15)–(17) and

equating the exponents of We, one obtains the following systems of equations along with associated
boundary conditions.

3.1. Model 1

• System of Order Zero

K0, 1 =
1
2

(
α

∂σ0

∂y
∂u0, 1

∂y
+ (1 + ασ0)

∂2u0, 1

∂y2

)
(21)

1
Sc

∂2σ0

∂y2 = 0 (22)

Along with the boundary conditions:

u0, 1(h1) = −1, u0, 1(h2) = −1, σ0(h1) = 0, σ0(h2) = 1 (23)

• System of Order One

K1, 1 = 1
2

(
α ∂σ0

∂y
∂u1, 1

∂y + (1 + ασ0)
∂2u1, 1

∂y2

)
+ nα

2
∂σ0
∂y

(
∂u0, 1

∂y

)3

+ 3n
2 (1 + ασ0)

(
∂u0, 1

∂y

)2 ∂2u0, 1
∂y2

(24)

1
Sc

∂2σ1

∂y2 = 0 (25)

and the boundary conditions:

u1, 1(h1) = 0, u1, 1(h2) = 0, σ1(h1) = 0, σ1(h2) = 0. (26)

Obtaining the solutions of the above sets of equations by making use of mathematical software
Mathematica 7.0, we have the following results:
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• Zeroth Order Solution

u0, 1 =
1

α(ln(h2 − h1) − α ln(h2 − h1) (1 + α)


(2(h1 − h2) K0, 1(h2 − y)− α) ln(h2 − h1)

−(2(−h2 + h1) K0, 1(h1 − y)− α)(α+ 1) ln(h2 − h1)

+2(h1 − h2)
2K0, 1 ln(h2 + yα− h1(1 + α))

 (27)

σ0 =
1− y + a cos(2πx)

1 + d + a cos(2πx) + b cos(2πx +ϕ)
(28)

• First Order Solution

u1, 1 = 2(h2−h1)
α4 (h1 − h2 − h1α+ yα)

[
4h2

1nK3
0, 1 − 8h1h2nK3

0, 1 + 4h2
2nK3

0, 1

−K1, 1α
2]+ 4(h2−h1)

6n
α(−h1+h2+h1α−yα)2(ln[h1−h2]− ln[(h1−h2)(1+α)])3 K3

0, 1

+ 24(h2−h1)
5n

α2(−h1+h2+h1α−yα)(ln[h1−h2]−ln[(h1−h2)(1+α)])2 K3
0, 1

− 2(h2−h1) C1

α4
(
(1+α)2(ln[h1−h2]−ln[(h1−h2)(α+1)])3(ln[h2−h1]−ln[(h2−h1)(1+α)])

)×
K3

0, 1 +
1

α4
(
(1+α)2(ln[h1−h2]−ln[(h1−h2)(1+α)])3(ln[h2−h1]−ln[(h2−h1)(1+α)])

)[
2(−h1 + h2)

(
(−h1 + h2)

((
K3

0, 1C2 + K1, 1C3

)
ln[h2 − h1]

+
(

K3
0, 1C4 + K1, 1C5

)
(1 + α)2 ln[(h2 − h1)(1 + α)]

))]

(29)

σ1 = 0 (30)

here,

K0, 1 =
(1 + d + h2 −Q− h1)α

2(ln[h2 − h1]− ln[(h2 − h1)(1 + α)])

(−h2 + h1)
3(2α+ (α+ 2) ln[h2 − h1]− (2 + α) ln[(h2 − h1)(1 + α)])

(31)

K1, 1 = −((1 + d−Q)α2(ln[h1 − h2]− ln[(h1 − h2)(1 + α)]))/
((h1 − h2)

2(−2h1α+ 2h2α+ (h1 + h2)α ln[h1 − h2]−
2(h1 − h2 + h1α) ln[−h1 + h2]− h1α ln[(h1 − h2)(1 + α)]−
h2α ln[(h1 − h2)(1 + α)] + 2h1 ln[(−h1 + h2)(1 + α)]−
2h2 ln[(−h1 + h2)(1 + α)] + 2h1α ln[(−h1 + h2)(1 + α)]))

(32)

In above-presented equations, C1–C5 are some lengthy calculations that have particular values by
considering above-given boundary conditions and are defined in Appendix A.

3.2. Model 2

The same contrast as described for Model 1 along with solutions are summarized as:

• System of Order Zero

K0, 2 =
∂2u0, 2

∂y2 (33)

• System of Order One

K1, 2 =
∂2u1, 2

∂y2 − α
2

∂

∂y

(
σ0

(
∂u0, 2

∂y

)3
)

(34)

• Zeroth Order Solution

u0, 2 =
1
2

(
−2 + h1h2K0, 2 − h1K0, 2y− h2K0, 2y + K0, 2y2

)
(35)

• First Order Solution
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The solution of above equation is examined directly and is prescribed as:

u1, 2 = 1
160(h1−h2)

(h1 − y)(h2 − y)(−80h2K1, 2 + 9h3
1K3

0, 2α− h3
2K3

0, 2α−
6h2

2K3
0, 2yα+ 14h2K3

0, 2y2α− 16K3
0, 2y3α− h2

1K3
0, 2(h2 + 26y)α+

h1

(
80K1, 2 + K3

0, 2(9h2
2 − 16h2y + 34y2)α

)) (36)

here,

K0, 2 = −12(−1− d + h1 − h2 + Q)

(h1 − h2)
3 (37)

K1, 2 = − 1
5(h1−h2)

7 12(−5h4
1(1 + d−Q)− 5h4

2(1 + d−Q) + h3
1(20h2(1 + d−Q)

−27α) + 27h3
2α+ 81h2

2(1 + d−Q)α+ 81h2(1 + d−Q)2
α+ 27(1 + d−Q)3

α+ h2
1(−30h2

2(1 + d−Q) + 81h2α+ 81(1 + d−Q)α) + h1(20h3
2(1 + d−Q)

−81h2
2α− 162h2(1 + d−Q)α− 81(1 + d−Q)2

α))

(38)

Pressure rise ∆p over one wavelength in dimensionless format is obtained by

∆p =
∫ 1

0
Kdx (39)

The integral in Equation (41) is evaluated numerically using software package Mathematica 7.0.

4. Graphical Analysis

This study describes a critical analysis with which to approach two different fluid models that can
disclose the properties of Synovial fluid when there is no slip at the boundaries and thin-film coating
with non-Newtonian thick fluid (Synovial) is applied the walls. A non-linear coupled system of partial
differential equations subject to boundary conditions is solved for shear-thinning and thickening
models (Models 1 and 2). The complicated equations are solved by a regular perturbation method.
To analyze graphically, Figures 1–11 have been sketched to measure the behavior of emerging factors
on velocity distribution, pressure gradient profile, pressure rise, and trapping phenomena. Figures 1
and 2 show the effect of concentration parameter α and Weissenberg number We on the velocity
component u for both models, respectively. It is extracted that velocity behaves in an opposite manner
to shear-thinning and thickening models against multiple values of α. The Weissenberg number is
helpful to analyze viscoelastic flows. It is the ratio of elastic forces and viscous forces. In Figure 2,
we can understand that the velocity distribution of Model 1 behaves as an increasing quantity for
higher values of Weissenberg number. This behavior reveals that elastic forces are dominant over
viscous forces. However, the reaction of Model 2 is opposite as matched to Model 1. In Model 2,
it can be noticed that viscous forces are dominant over elastic forces. This implies that the nature
of shear thinning (Model 1) and the thickening (Model 2) are entirely different. Figure 3 displays
the dependence of velocity on the average volume flow rate, as expected increase in the value of Q
increases the flow velocity in both models.
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To compare the differences between two models, we include Figures 4–6 for pressure gradient
dp/dx. In Figures 4 and 5, it is noted that with an excess of α and Q pressure gradient rises. As one can
see, the prediction of the viscosity magnitude gets much larger values for the Model 2, unlike Model 1,
whereas Weissenberg number We acts in an opposite way, that is, the change in pressure becomes
larger throughout the flow and smaller for Model 2 than for Model 1 (see Figure 6).
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Figures 7–9 are plotted to determine the behavior of pumping rate in different regions.
The pumping features can be examined by the pressure rise (∆p) versus the average volume flow
rate/mean flux Q. The complete area is divided into four quarters [13]. Figure 7a describes the pressure
rise ∆p under the variety in values of α. It is observed that pressure rise is linearly dependent on flow
rate, and free pumping is attained at Q = 0. It is evaluated here that while increasing α, the pressure
rise ∆p decreases in Region II, whereas it increases in Region III. Figure 7b is plotted for Model 2, and
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one can easily infer from it that dependence is not linear other than in α = 0.1. This figure indicates that
with an increase in α, magnitude of ∆p decreases in Region III and has opposite behavior in other two
regions. The effects of phase angle ϕ on ∆p are depicted in Figure 8. For Model 1, we can visualize that
there is an increase of pressure rise in Region II when ϕ increases, while the reverse situation is found
in Region II and remains consistent in Region I. It is entirely possible that the opposite behavior of
Model 1 and Model 2 is due to the curvature in the flow domain. Figure 9a examines the influence of
Weissenberg number We on ∆p for Model 1. It is noticed that ∆p increases by increasing We in Regions
I and II, while the reduction in pressure rise is seen in Region III. On the other hand, the behavior of
pressure gradient for We is also noted in Figure 9b. Model 2 shows a continuous increase in the Region
I, hasty fall in Region II, and a drastic increase in Region III.Coatings 2018, 8, x FOR PEER REVIEW  11 of 16 
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Trapping scheme is another important mechanism for analyzing flow pattern. However, in
peristaltic (or sinusoidal) motion, a closed contour of streamlines can be examined at time-averaged
flow rate and different values of amplitude. This phenomenon is known as trapping. According to
the physiological point of view, the fluids can be trapped due to continuing movements of smooth
boundaries, which are beneficial to adequately propel the working biological liquid from one point to
another point. Due to proper prorogation, the working organs can stay alive for a long time without
any difficulty. Therefore, the trapping phenomena can be observed by sketching stream functions
against the concentration parameter α and the volume flow rate Q. Figures 10 and 11 are drawn to
show the trapping phenomena. Figure 10a–c is illustrated for Model 1. It is observed that for changing
values of α, a large bolus is formed at the center that decreases in size and increases in α. For Model 2,
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Figure 10d–f shows as α increases the bolus formed above y = 0 decreases in size, whereas below
y = 0 it increases, and more boluses are obtained with large values of α. Figure 11 shows the effect
of variation of Q on trapping. It can be analyzed that with an increase in Q, bolus decreases and
increases in size above and below y = 0, respectively. The present investigation is also suggested for
three-dimensional flow configuration with appropriate assumptions and modifications.
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5. Conclusions 

In the current analysis, we examined theoretically the peristaltic motion of Synovial fluid in the 
two-dimensional asymmetric channel in the presence of coating on the walls exposing thin-film 
layers. The Synovial fluid has viscoelastic material; it can be described under specific physical 
conditions such as non-Newtonian fluid. We have considered two models for viscosity to capture 
shear-thinning properties and viscosity dependence on the concentration of hyaluronic acid. 
Analytic solutions for velocity, concentration, and pressure gradient are first produced using the 
regular perturbation method, and then the behavior of pertinent parameters is examined and 
discussed graphically. The expression of pressure rise is obtained numerically. The contours have 
also been drawn to explain the action of the trapping bolus phenomenon. The model with the 
shear-thinning index is directly dependent on the concentration of hyaluronic acid, which seems to 
be appropriate. According to our knowledge, no studies have been presented before that can 
describe the concentration effects on shear-thinning and thickening models for the peristaltic flow of 
Synovial fluid. Solutions are carried out for velocity, concentration field, and pressure gradient. The 
behavior of all the governing parameters is shown and scrutinized. The present analysis is also 
applicable for experimental investigation and assurance to give reliance for the significance of the 
governing nonlinear-boundary value problem.  
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Figure 11. Stream lines for different values of Q = 2, 3, and 4: (a–c) for Model 1, (d–f) for Model 2.
The other parameters are n = −0.2, a = 0.05, b = 0, d = 0.1, ϕ = 0.1, We = 0.05, α = 3.

5. Conclusions

In the current analysis, we examined theoretically the peristaltic motion of Synovial fluid in the
two-dimensional asymmetric channel in the presence of coating on the walls exposing thin-film layers.
The Synovial fluid has viscoelastic material; it can be described under specific physical conditions
such as non-Newtonian fluid. We have considered two models for viscosity to capture shear-thinning
properties and viscosity dependence on the concentration of hyaluronic acid. Analytic solutions for
velocity, concentration, and pressure gradient are first produced using the regular perturbation method,
and then the behavior of pertinent parameters is examined and discussed graphically. The expression
of pressure rise is obtained numerically. The contours have also been drawn to explain the action of
the trapping bolus phenomenon. The model with the shear-thinning index is directly dependent on
the concentration of hyaluronic acid, which seems to be appropriate. According to our knowledge,
no studies have been presented before that can describe the concentration effects on shear-thinning
and thickening models for the peristaltic flow of Synovial fluid. Solutions are carried out for velocity,
concentration field, and pressure gradient. The behavior of all the governing parameters is shown and
scrutinized. The present analysis is also applicable for experimental investigation and assurance to
give reliance for the significance of the governing nonlinear-boundary value problem.
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Appendix A

C1 = −2h1
2 nα3 ln [h1 − h2] + 4h1h2 nα3 ln [h1 − h2]− 2h2nα3 ln [h1 − h2]− 12(h1 − h2)

2nα2

(1 + α) ln [h1 − h2] ln [−h1 + h2] + 4h1
2n(1 + α)3 ln [h1 − h2] ln [−h1 + h2]

3 − 8h1h2n(1 + α)3

ln [h1− h2] ln[− h1 + h2]3 + 4h22n(1 + α)3 ln [h1 − h2] ln [−h1 + h2]
3 + 2(h1 − h2)

2nα3(1 + α)2

ln [(h1 − h2)(1 + α)] + 12(h1 − h2)
2nα2(1 + α)2 ln [−h1 + h2] ln [(h1 − h2)(1 + α)]

−4h1
2n(1 + α)2 ln [−h1 + h2]

3 ln [(h1 − h2)(1 + α)]
+8h1h2n(1 + α)2ln[−h1 + h2]

3 ln [(h1 − h2)(1 + α)]
−4h22n(1 + α)2 ln [−h1 + h2]

3 ln [(h1− h2)(1 + α)] + 12h12nα2 ln [h1− h2] ln[(−h1 + h2)(1 + α)]
−24h1h2nα2 ln [h1− h2] ln[(−h1 + h2)(1 + α)] + 12h22nα2 ln [h1− h2] ln[(−h1 + h2)(1 + α)]
+12h12nα3 ln [h1− h2] ln[(−h1 + h2)(1 + α)]− 24h1h2nα3 ln [h1− h2] ln[(−h1 + h2)(1 + α)]

+12h22nα3 ln [h1 − h2]ln[(−h1 + h2)(1 + α)]− 12h1
2n(1 + α)3 ln [h1 − h2] ln [−h1 + h2]

2

+24h1h2n(1 + α)3 ln [h1 − h2] ln [−h1 + h2]
2 ln [(−h1 + h2)(1 + α)]− 12h22n(1 + α)3 ln [h1 − h2]

ln [−h1 + h2]
2 ln [(−h1 + h2)(1 + α)]− 12(h1 − h2)

2nα2(1 + α)2 ln [(h1 − h2)(1 + α)]
ln [(−h1 + h2)(1 + α)] + 12h1

2n(1 + α)2 ln [−h1 + h2]
2 ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)]

−24h1h2n(1 + α2) ln [−h1 + h2]2 ln [(h1− h2)(1 + α)] ln[(−h1 + h2)(1 + α)] + ln [−h1 + h2]
2

ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)] + 12h12n(1 + α)3 ln [h1− h2] ln[− h1 + h2] ln[− h1 + h2]
ln [(−h1 + h2)(1 + α)]2 − 24h1h2n(1 + α)3 ln [h1 − h2] ln [−h1 + h2] ln [(−h1 + h2)(1 + α)]

2

+12h2
2n(1 + α)3 ln [h1 − h2] ln [−h1 + h2] ln [(−h1 + h2)(1 + α)]

2 − 12h1
2n(1 + α)2 ln [−h1 + h2]

ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)]
2 + 24h1h2n(1 + α)2 ln [−h1 + h2] ln [(h1 − h2)(1 + α)]

ln [(−h1 + h2)(1 + α)]
2 − 12h22n(1 + α)2 ln [−h1 + h2] ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)]

2

−4h1
2n ln [h1 − h2] ln[(−h1 + h2)(1 + α)]3 + 8h1h2n ln[h1− h2] ln[(−h1 + h2)(1 + α)]3

−4h22n ln[h1− h2] ln[(−h1 + h2)(1 + α)]3 − 12h12nα ln[h1− h2] ln[(−h1
+h2)(1 + α)]3+

24h1h2nα ln [h1− h2] ln[(−h1 + h2)(1 + α)]3 − 12h22nα ln [h1− h2] ln[(−h1 + h2)(1 + α)]3

−12h12nα2 ln [h1− h2] ln[(−h1 + h2)(1 + α)]3 + 24h1h2nα2 ln[h1− h2] ln[(−h1
+h2)(1 + α)]3

−12h22nα2 ln [h1− h2] ln[(−h1 + h2)(1 + α)]3 − 4h12nα3 ln [h1− h2] ln[(−h1 + h2)(1 + α)]3

+y8h1h2nα3 ln [h1− h2] ln[(−h1 + h2)(1 + α)]3 − 4h22nα3 ln[h1− h2] ln[(−h1
+h2)(1 + α)]3

+4h12n(1 + α)2 ln [(h1− h2)(1 + α)] ln[(−h1 + h2)(1 + α)]3 − 8h1h2n(1 + α)2 ln[(h1− h2)(1
+α)] ln [(−h1 + h2)(1 + α)]

3

+4h22n(1 + α)2 ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)]
3

(A1)

C2 = −α2(1 + α)3 ln [h1− h2] ln[− h1 + h2]3 + α2(1 + α)2 ln [−h1 + h2]3 ln [(h1− h2)(1 + α)]
+3α2(1 + α)3 ln [h1− h2] ln[− h1 + h2]2 ln [(−h1 + h2)(1 + α)]− 3α2(1 + α)2 ln [−h1 + h2]2

ln [(h1− h2)(1 + α)] ln[(−h1 + h2)(1 + α)]− 3α2(1 + α)3 ln [h1− h2] ln[− h1 + h2]
ln [(−h1 + h2)(1 + α)]2 + 3α2(1 + α)2 ln[−h1 + h2] ln[(h1− h2)(1 + α)] ln[(−h1 + h2)
(1 + α)]2 + α2 ln[h1− h2] ln[(−h1 + h2)(1 + α)]3 + 3α3 ln[h1− h2] ln[(−h1 + h2)(1

+α)]3 + 3α4 ln [h1− h2] ln[(−h1 + h2)(1 + α)]3 + α5 ln[h1− h2] ln[(−h1 + h2)(1 + α)]3

−α2(1 + α)2 ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)]
3

(A2)

C3 = 2(h1− h2)2nα3(2 + α) + 12(h1− h2)2nα2(1 + α) ln [−h1 + h2] + 4h12n(1 + α)2 ln[−h1

+h2]3 − 8h1h2n(1 + α)2 ln [−h1 + h2]3 + 4h22n(1 + α)2ln[−h1 + h2]3 − 12(h1
−h2)2nα2(1 + α)

ln [(−h1 + h2)(1 + α)]− 12h12n(1 + α)2 ln [−h1 + h2]2 ln [(−h1 + h2)(1 + α)] + 24h1h2n
(1 + α)2 ln [−h1 + h2]2 ln [(−h1 + h2)(1 + α)]− 12h22n(1 + α)2 ln [−h1 + h2]2 ln[(−h1 + h2)

(1 + α)] + 12h12n(1 + α)2 ln [(−h1 + h2)] ln[(−h1 + h2)(1 + α)]2 − 24h1h2n(1 + α)2

ln [−h1 + h2] ln[(−h1 + h2)(1 + α)]2 + 12h22n(1 + α)2 ln [−h1 + h2] ln [(−h1 + h2)(1 + α)]
2

−4h1
2n(1 + α)2 ln [(−h1 + h2)(1 + α)]

3 + 8h1h2n(1 + α)2 ln [(−h1 + h2)(1 + α)]3

−4h22n(1 + α)2 ln [(−h1 + h2)(1 + α)]
3 ln [h1 − h2 + h1α− yα]

(A3)
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C4 = α(−α2(1 + α)2 ln [−h1 + h2]3 + 3α2(1 + α)2 ln [−h1 + h2]2 ln [(−h1 + h2)(1 + α)]−
3α2(1 + α)2 ln [−h1 + h2] ln [(−h1 + h2)(1 + α)]

2 + α2(1 + α)2 ln [(−h1 + h2)(1 + α)]
3

ln [h1− h2 + h1α− yα])
(A4)

C5 = (1 + α) ln [(−h1 + h2)(1 + α)] + 3(1 + α)2(−4h1
2 n + 8h1h2n− 4h2

2(1 + α) ln[(−h1

+h2)(1 + α)](1 + α) ln[(−h1 + h2)(1 + α)]
+3(1 + α)2(−4h1

2 n + 8h1h2n− 4h2
2 + α2).

ln [−h1 + h2]
2 ln [(−h1 + h2)(1 + α)] + (1 + α)2(−4h1

2 n + 8h1h2nα2) + α)

+3(ln [−h1 ln [(−h1 + h2)(1 + α)]
3 + h2](4(h1 − h2)

2nα2 + (1 + α)

(A5)
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