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Abstract: The effect of electrospinning operational parameters on the morphology, surface roughness,
and wettability of different compositions of electrospun polystyrene (PS)–aluminum oxide (Al2O3)
nanocomposite coatings was investigated using different techniques. For example, a scanning
electron microscope (SEM) coupled with an energy dispersive X-ray (EDX) unit, a Fourier transform
infrared (FTIR) spectrometer, an atomic force microscope (AFM), and water contact angle (WCA),
and contact angle hysteresis (CAH) measurements using the sessile droplet method, were used. The
latter used 4 µL of distilled water at room temperature. PS/Al2O3 nanocomposite coatings exhibited
different morphologies, such as beaded fibers and microfibers, depending on the concentration
ratio between the PS and Al2O3 nanoparticles and the operational parameters of the electrospinning
process. The optimum conditions to produce a nanocomposite coating with the highest roughness
and superhydrophobic properties (155◦ ± 1.9◦ for WCA and 3◦ ± 4.2◦ for CAH) are 2.5 and 0.25 wt %
of PS and Al2O3, respectively, 25 kV for the applied potential and 1.5 mL·h−1 for the solution
flow rate at 35 ◦C. The corrosion resistance of the as-prepared coatings was investigated using the
electrochemical impedance spectroscopy (EIS) technique. The results have revealed that the highly
porous superhydrophobic nanocomposite coatings (SHCs) possess a superior corrosion resistance
that is higher than the uncoated Al alloy by three orders of magnitude.

Keywords: electrospinning; polystyrene; aluminum oxide; nanocomposite; coating; superhydrophobic;
morphology; surface roughness

1. Introduction

Superhydrophobic surfaces with low sliding angle (SA ≤ 10◦) and high water contact angle
(WCA ≥ 150◦) exhibit a low resistance to water mobility on the surface as a result of the embedded air
in the composite under the water on these surfaces [1,2]. Such surfaces have attracted a significant
interest because of their potential applications in many industrial fields and biological processes, e.g.,
highly corrosion resistant [3] and anti-adhesive coatings [4], self-cleaning materials [5], antifingerprint
optical devices [6], printing technologies [7], water–oil separation [8], and digital microfluidics [9].

Many examples of natural superhydrophobic materials are exist, e.g., the lotus leaf, which
is equipped with hierarchical surface projections, insect wings, and animal fur [10–14]. The
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superhydrophobic behavior is usually attributed to a combination of a hydrophobic surface and
micro or nanostructures.

Synthetic superhydrophobic surfaces have been synthesized in the last decades in which the
surface chemistry and roughness were tailored to decrease the surface energy and maintain trapped
air at the material-water interface. The synthesis was achieved using different methods, e.g.,
microfabrication and chemical processes [15–18]. In 1943, a superhydrophobic material was fabricated
using electrospinning [19], which is a technique that uses a high electric field to produce fibers from
solutions of polymeric materials. The properties of these solutions, such as the surface tension, the
viscosity, and the molecular weight of the polymer, in addition to the electrospinning parameters, e.g.,
the distance between a needle and a substrate, the solution flow rate, and the applied voltage, are the
main factors that influence the electrospinning process that affects the properties of the produced fibers.
Consequently, the optimum conditions of the electrospinning process for numerous polymers were
studied [20–24]. It is worth mentioning that the advantage of the electrospinning technique compared
to other ones, e.g., drawing [25] template synthesis [26], phase separation [27], and self-assembly [28],
is the ability to develop it for mass production, simplicity, and inexpensiveness. In addition, it can be
used for a wide range of polymers to create nanofibers [29–32].

Polystyrene (PS) is a glassy and amorphous polymer that is commonly rigid and relatively cheap.
It is a poor barrier to oxygen and water vapor and has a relatively low melting point [33]. PS is currently
used in several applications, e.g., packaging, electrical/electronic applications, toys, sheets, household
goods, insulation, etc. It should be mentioned that selecting the solvent in the electrospinning of
PS is a critical issue. A systematic analysis was conducted for eighteen various solvents to find the
most suitable one for PS electrospinning. It was concluded that N,N-dimethylacetamide (DMAc) and
tetrahydrofuran (THF) are the best candidates [34].

Acatay et al. studied the relationship between the surface morphology and the degree of
superhydrophobicity of a material [35]. The fabrication of a superhydrophobic PS by the addition of
inorganic nanomaterials such as SiO2 [36], TiO2 [37], and MnO2 [38] has been studied. The addition
of these nanoparticles led to an increase in the surface roughness and a decrease in the surface
energy of the PS–oxide nanoparticles composite coating in addition to enhancing the formation of
hierarchical shapes [39]. Electrospun PS/Al2O3 nanocomposite is also expected to have, at least, the
same superhydrophobic nature as the PS/SiO2, TiO2, or MnO2 with better physical properties, e.g.,
transparency and stability, insulation and hardness [40]. Furthermore, its high corrosion resistance can
be exploited in many applications, e.g., protective coating, fire retarder, insulators, and catalysis [41].
Therefore, the target of this work is studying the effect of the compositional ratio between the PS and the
Al2O3 nanoparticles in addition to the electrospinning operational parameters on the superhydrophobic
behavior of the nanocomposite coatings on Al substrates. Moreover, the protection of the fabricated
superhydrophobic coatings (SHCs) against corrosion is studied in saline water.

2. Materials and Methods

Commercial aluminum foil was used as a substrate for the experiments. PS with a molecular
weight of 250 kDa was purchased from Sigma-Aldrich (Taufkirchen, Germany). DMAc and THF,
obtained from BDH Chemicals (Doha, Qatar), were used as nonvolatile and volatile solvents,
respectively. Al2O3 nanoparticles of a size <20 nm were used to enhance the hydrophobicity of
PS based-polymer matrix (Sigma-Aldrich, Taufkirchen, Germany).

Different amounts of PS were dissolved in a mixture of 70 wt % DMAc and 30 wt % THF at 35 ◦C
for 12 h and stirred until getting a sufficiently viscous solution that is required for electrospinning.
In-parallel, different concentrations of Al2O3 nanoparticles were dispersed in DMAc/THF mixtures of
the same ratio under vigorous stirring conditions until a homogenous dispersion of the nanoparticles
was obtained. The dispersed Al2O3 nanoparticles in DMAc/THF were then added to the PS solution
to achieve the desired weight ratio of Al2O3 to PS. The different PS and Al2O3 concentrations used in
this study are shown in Table 1.
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Table 1. Compositional ratios and electrospinning operational parameters for pure PS and PS/Al2O3

nanocomposite coatings.

Exp. Code PS (wt %) Al2O3 (wt %) Potential (kV) Flow Rate (mL·h−1)

PS1 2.5 – 20 1.5
PS2 2.5 – 25 2
PS3 2.5 – 25 1.5
PS4 5 – 25 1.5
PA1 2.5 0.25 20 1.5
PA2 2.5 0.35 25 2
PA3 2.5 0.25 25 1.5
PA4 5 0.25 25 1.5

Prior to electrospinning, aluminum substrates (which will be used as a collector) were
mechanically polished using Grinder polisher (Metko FORCIPO1V, Bursa, Turkey), degreased
ultrasonically for 30 min, and cleaned by distilled water and finally dried. An electrospinning unit
consisting of a syringe pump, a high voltage supply, and a collector was used. Syringe pump was
aligned horizontally, and electric field was maintained by the high voltage power supply. The complex
solutions were stored in syringes behind the needles. The distance between the tip of the needle and
the collector was 15 cm. The electrospinning of the nanocomposite solutions was performed using a
needle with an inside diameter of 0.25 mm at flow rates of 1.5 and 2 mL·h−1 and an applied voltage of
20 and 25 kV, while the operating temperature was kept constant at 35 ◦C. After the electrospinning
process, nanofibers were dried overnight.

Characterization Techniques

High field emission scanning electron microscopy, HFESEM, (FEI NOVA NANOSEM 450,
Hillsboro, OR, USA) coupled with an energy dispersive X-ray unit, EDX, was used to investigate
the morphology of the fabricated nanocomposite coatings. For water contact angle data, a 4 µL
water droplet was placed onto the different coating surfaces using OCA 35 Contact Angle Measuring
System (Dataphysics Instruments, Filderstadt, Germany). The sliding angle (SA) was measured by
tilting the substrate until the droplet was noticed to move and the advancing (largest) contact angle
(ACA) and receding (smallest) contact angle (RCA) were recorded. The initial water contact angles
were measured at 5 different locations at the surface of each specimen. Fourier transform infrared
spectroscopy (FTIR) spectra were recorded in a range of 4000–400 cm−1 using PerkinElmer Spectrum
400 FTIR, PerkinElmer, Waltham, MA, USA. Atomic force microscopy (AFM) analysis was carried out
using an MFP-3D, Asylum Research, Santa Barbara, CA, USA. AFM was performed using a silicon tip
with a radius of 10 nm and a resonance frequency of 70 kHz besides a spring constant of 2 Nm−1 in
the non-contact tapping mode in air. Electrochemical impedance spectroscopy (EIS) measurements
were performed using a Gamry Reference 3000 potentiostat, Warminster, PA, USA, in 3.5 wt % NaCl
solutions within a frequency range of 0.01 Hz to 100 kHz with a wave amplitude of 5 mV at 25 ◦C. EIS
data analysis was performed using a Gamry Echem Analyst software (Version 7.06, Gamry, Warminster,
PA, USA). Before running any EIS experiment, the samples were immersed in the 3.5 wt % NaCl
electrolyte for 30 min.

3. Results and Discussion

3.1. Surface Morphology of the Coatings

The representative SEM micrographs of the electrospun PS with different concentrations of Al2O3

nanoparticles are shown in Figures 1 and 2, respectively. Different morphologies of PS in absence
and presence of Al2O3 nanoparticles including beaded fibers and free beads are obtained by varying
the concentration of PS and Al2O3 and/or the operational parameters of the electrospinning process.
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Table 2 shows the average nanofiber diameter of the different prepared coatings before and after the
addition of Al2O3 nanoparticles.

Table 2. The average diameter of the nanofibers and beads of PS and PS/Al2O3 nanocomposite coatings.

PS Codes Average Fiber Diameter (nm) PA Codes (PS/Al2O3) Average Fiber Diameter (nm)

PS1 340 ±27 PA1 325 ±23
PS2 328 ±29 PA2 315 ±27
PS3 320 ±21 PA3 290 ±34
PS4 433 ±15 PA4 413 ±21

1 

 

(a)  (b)

(c)  (d)

 
Figure 1. SEM micrographs of the as prepared PS coating without any addition of Al2O3 nanoparticles
for (a) PS1, (b) PS2, (c) PS3, and (d) PS4 (See Table 1 for the operational parameters).
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increasing the applied voltage and/or the PS concentration leads to a decrease in the number of beads 
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bead formation can be demonstrated by the insufficient swift stretching through the flagellation of 
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increasing the PS concentration from 2.5 to 5 wt %, the ultrafine PS fibers are formed with a small 
number of beads per unit area, demonstrating that the elastic properties of PS solution are more 
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Figure 2. The SEM images of PS/Al2O3 nanocomposite coating for (a) PA1, (b) PA2, (c) PA3, and
(d) PA4 (See Table 1 for Operational parameters).

The morphologies of the pure PS polymer shown in Figure 1 reveal the formation of a beaded-fiber
structure. At low applied voltages, the bead shape is spindle-like, Figure 1a,b. However, increasing the
applied voltage and/or the PS concentration leads to a decrease in the number of beads and changes
them to a spherical-like shape, Figure 1c,d, due to the increase of the jet stretching. The bead formation
can be demonstrated by the insufficient swift stretching through the flagellation of the jet [42]. This
observation is inconsistent with the previous work [34]. Moreover, at low PS concentration, the
elasticity is too small to supply enough resistance to tolerate the stretching, which results from the
electrostatic force, leading to the formation of a large number of beads. However, by increasing the
PS concentration from 2.5 to 5 wt %, the ultrafine PS fibers are formed with a small number of beads
per unit area, demonstrating that the elastic properties of PS solution are more significant at high
concentrations, as shown in Figure 1d.

The SEM micrographs shown in Figure 2 display the effect of adding Al2O3 nanoparticles on
the surface morphology of an electrospun PS polymer. The SEM micrographs show the formation of
different sizes of beaded fibers without a significant change in the surface morphology.



Coatings 2018, 8, 65 6 of 16

Table 2 shows a significant variation in the fiber diameter as the concentrations of PS polymer
and Al2O3 nanoparticles, as well as the electrospinning parameters, change. It can be observed
that the increase in the applied voltage from 20 to 25 kV, while other parameters are kept constant,
leads to a decrease in the average nanofiber diameters of PS1 and PS3 to 340 ± 27 and 320 ± 21 nm,
respectively. Increasing the applied voltage results in a large elongation of the solution owing to the
greater columbic forces in the jet, in addition to the high electric field, which leads to the formation of
thinner fibers [43,44]. However, as the concentration of PS is increased from 2.5 g (PS3) to 5 g (PS4), the
average nanofiber diameter is increased from 320 ± 21 to 433 ± 15 nm, respectively.

The higher the quantity of polymer chains in the solution, the easier the capability of the
electrospinning jet to elongate the solution, while the solvent molecules are dispersed between the
polymer chains [21,34,45]. In addition, with an increase of the wt % of PS, the increased viscoelastic
force can hinder the jet segment from being stretched by the constant columbic force, yielding fibers
with large diameters [34]. On the other hand, it was found that the fiber diameter of PS2 and PS3
diminished to 328 ± 29 nm and 320 ± 21 nm, respectively, by reducing the flow rate from 2 to
1.5 mL·h−1. By increasing the flow rate, the quantity of polymer flowing through the tip of the needle
increases, which in turn produces thick fibers. Moreover, at very high flow rates, the polymeric jet was
unsettled and tended to electrospray owing to the influence of the gravitational force.

Table 2 shows the formation of fibers with different diameters after the addition of Al2O3

nanoparticles to the solutions with different PS concentration. It worth mentioning that addition
of Al2O3 nanoparticles leads to a significant decrease in the diameter of the fibers in comparison with
the pure PS. However, further addition of alumina nanoparticles decreases the fiber diameter from
320 ± 21 of PS3 to 290 ± 34 nm of PA3. These results are inconsistent with a previous report [46].

Figure 3a,b shows the SEM/EDX mapping of PA1 and PA3 SHCs, which verifies the presence and
the uniform dispersion of the alumina nanoparticles on the beaded fiber structure.
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3.2. Wettability

The effect of changing the compositional ratio between PS and Al2O3 and the different
electrospinning parameters on the wettability of the PS/Al2O3 nanocomposite is investigated. Table 3
reveals the measured values of WCA and SA for both PS and PS/Al2O3 nanocomposite coatings using
the sessile droplet method at ambient temperature.
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Table 3. WCA and CAH of the prepared PS and PS/Al2O3 nanocomposite coatings.

Code WCA WCAH

PS1 141◦ ± 2◦ 24◦ ± 3◦

PS2 143◦ ± 3◦ 20◦ ± 4◦

PS3 147◦ ± 1◦ 14◦ ± 3◦

PS4 138◦ ± 2◦ 32◦ ± 6◦

PA1 151◦ ± 2.8◦ 7◦ ± 2.3◦

PA2 152◦ ± 1.2◦ 5◦ ± 3.1◦

PA3 155◦ ± 1.9◦ 3◦ ± 4.2◦

PA4 147◦ ± 2◦ 13◦ ± 3◦

Figure 4 shows snapshots for the measured WCA after and before the addition of Al2O3

nanoparticles. The WCA of the uncoated Al substrate was around 87◦ ± 2.2◦. However, WCAs
values of the PS coatings vary with the processing parameters of electrospinning, due to the variation
of the fibers diameters. The highest WCA and lowest CAH of the PS–coated materials is 147◦ ± 1◦ and
14◦ ± 3◦, respectively, for PS3, which is formed at a flow rate of 1.5 mL·h−1 and an applied voltage of
25 kV. Nevertheless, the addition of Al2O3 nanoparticles to PS polymer improved the hydrophobicity
of the nanocomposite coating. The highest WCA and lowest CAH average values are 155.2◦ ± 1.9◦

and 3◦ ± 4.2◦, respectively, for PA3.
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Al2O3 nanoparticles.

The static contact angle is measured according to the Wenzel and Cassie–Baxter models. The
hypothesis developed by Wenzel is described in Equation (1) [47,48].

cos θ∗ = rcos θY (1)

in which r is the ratio between the true surface area and the apparent one (for a rough surface r > 1
and =1 for a smooth one). θ∗ is the apparent macroscopic WCA and θY is the intrinsic contact angle
for the droplet on a corresponding flat surface obtained by the Young’s equation (as defined for an
ideal surface). On the other hand, Cassie-Baxter regime suggested that the water droplet is suspended
on the rough surfaces and is not penetrated into the channels among the rough surface, resulting in
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heterogeneous structures consisting of air and solids. Therefore, the contact angle in terms of the
Cassie-Baxter hypothesis is given in Equation (2) [49]:

cos θCB = r f f1cos θY − f2 (2)

in which θCB and θY represent the contact angle on the rough nanocomposite coating (PS/Al2O3) and
the smooth PS surfaces, respectively. f1 and f2 are the area fractions of the solid and air on the surface
in which f1 + f2 = 1. Given that θCB is 151◦ ± 2.8◦, 152◦ ± 1.2◦ and 155◦ ± 1.9◦ for PA1, PA2, and PA3
nanocomposite coatings, respectively, and θY for the PS before addition of Al2O3 equals 141◦ ± 2◦,
143◦ ± 3◦, and 147◦ ± 1◦ for PS1, PS2, and PS3, respectively, then the estimated values of f 2 are 0.43,
0.42, and 0.47, respectively. These calculations indicate that air occupies about 43%, 42%, and 47% of
the contact regions area for the as-prepared PA1, PA2, and PA3 nanocomposite coating, respectively.
This confirms that the reason behind the superhydrophobicity of the PS/Al2O3 composite coating is
mainly attributed to the multiscale (hierarchical) roughness of the surface, which is induced by the
micro-/nano-sized fibers or beads and the nanoparticles incorporated in the polymer solution.

CAH is an important parameter to be measured besides the WCA, as it gives information about
the stickiness of the surface. The high WCA of the coating does not necessarily indicate a low CAH,
due to the effect of chemical heterogeneity [50]. The CAHs of PS coatings before the addition of Al2O3

nanoparticles are 24◦ ± 3◦, 20◦ ± 4◦, 14◦ ± 3◦, and 32◦ ± 6◦ for PS1, PS2, PS3, and PS4 respectively,
as shown in Table 3. The increase of the nanofiber diameter at high PS concentration showed a low
WCA and a high CAH for PS4. After the addition of Al2O3 nanoparticles, the CAH decreased to
7.1 ± 2.3, 5 ± 3.1, and 3 ± 4.2 for PA1, PA2, and PA3, respectively. These results reveal a low adhesion
force between the prepared PS/Al2O3 nanocomposite surface and water droplets, which allows water
droplets to slide easily from the substrate’s surface.

In addition to the thickness of the fiber and the electrospinning parameters, the size of the
nanoparticles may have an effect on the wettability. According to Conti et al. [51], a combination of
silica nanoparticles of two different sizes (70 and 100 nm) increased the WCA to 147◦ and lowered the
WCAH to 10◦. However, when the size of SiO2 nanoparticles was increased to 150 nm, the WCA was
decreased drastically to 124◦. On the other hand, Karapanagiotis et al. [52] used Al2O3 nanoparticles
with different sizes (25, 35, and 150 nm) in their coatings, and they found that the coating wettability is
independent of the size of the nanoparticles. Then, in a more recent study, they [53] found an effect
for the size of the nanoparticles on the wettability of their coatings, only if the concentration of the
nanoparticle is high.

Figure 5 shows the FTIR spectra of pure PS and PS/Al2O3 nanocomposite coatings at different
electrospinning parameters and concentrations of PS and Al2O3. The spectra for PS before and after the
addition of Al2O3 with different electrospinning parameters are very similar. No remarkable changes
are observed before and after addition of Al2O3. This is probably because of the small concentration of
the Al2O3 used compared with the PS amount. The FTIR of Al2O3, Figure 5a, shows a transmission
band located at about 3400 cm−1 that is assigned to hydrogen–bonded –O–H of the adsorbed water,
while the band at 400–1000 cm−1 can be attributed to the bending stretching band of Al–O [54].
PS/Al2O3 nanocomposite and PS show the same spectra between the 700–3100 cm−1. Bands of the IR
spectrum for PS correspond to their functional groups. The observed peaks at 3000–3100 cm−1 are
attributed to the aromatic C–H stretching vibration and the C–H group on the PS side chain. However,
the absorbance bands at 2922 and 2854 cm−1 correspond to the C–H stretching vibration of the –CH2

and –CH groups on the main PS chain. The C–C aromatic stretch and the vibration of the aromatic
ring are noticed at 1494 and 1091 cm−1, respectively. The strong peaks located at 700 and 760 cm−1 are
ascribed to –CH2 rocking mode and C–H out-of-plane bend, respectively. The inorganic segment of the
Al–O–Al band can be noticed at 400–800 cm−1, and its absorbance intensity increases with increasing
the Al2O3 content [55]. However, it is noticed that there no new bands appear after adding Al2O3

nanoparticles to the PS, which proves that (i) Al2O3 only interacted physically with PS [56], and (ii) the
electrospinning in this case does not affect the chemical structure of the polymer.
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Figure 5. FTIR for (a) Al2O3 nanoparticles, (b) PS1, (c) PS2, (d) PS3, (e) PS4, (f) PA1, (g) PA2, (h) PA3,
and (i) PA4.

To better understand the effect of nanoparticle addition on PS, AFM is used to document the
surface topography of both PS and PS/Al2O3 nanocomposite coatings. AFM images in Figure 6 and
Table 4 show the 3D height and the roughness values (Ra), respectively. It is clear from Table 4 that
the Ra of the prepared PS coatings before the addition of the Al2O3 nanoparticles (PS1, PS2, PS3,
and PS4) are slightly close to each other. In the images a–d of Figure 6, it can be noticed that the PS
surface is relatively smooth and small bumps appeared on the surface, which may happen due to the
beaded fibers structure. However, after the addition of Al2O3 nanoparticles, the Ra values significantly
increase as shown in Table 4 and in Images e–h in Figure 6.

Table 4. The Ra values of PS and PS/Al2O3 nanocomposite coatings.

Codes Ra Values (nm)

PS1 22 ± 2
PS2 26 ± 4
PS3 32 ± 3
PS4 17 ± 4
PA1 53 ± 3
PA2 61 ± 4
PA3 82 ± 2
PA4 27 ± 3

The Ra values of PS1, PS2, PS3, and PS4 before the addition of the Al2O3 nanoparticles are 22 ± 2,
26 ± 4, 32 ± 3, and 17 ± 4 nm, respectively. However after the addition of the nanoparticles, the
surface roughness values increases to 53 ± 3, 61 ± 4, 82 ± 2, and 27 ± 3 nm for PA1, PA2, PA3, and
PA4, respectively. This explains why PA3 has the highest WCAs. The AFM measurements verified
the effect of the composition ratio and the electrospinning operational parameters on the surface
roughness of superhydrophobic nanocomposite coatings. Generally, Al2O3 and the combination
of micro beads/nano fiber structure increase the roughness, which in turn increases the WCA in
comparison with the pure PS polymer. It also can be noticed that increasing the concentration of PS or
the flow rate decreases the surface roughness and consequently lowers the WCA. It is worth mentioning
that lowering the operational potential from 25 to 20 kV also decreases the surface roughness and
consequently lowers the WCA.
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3.3. Anticorrosion Performance of the As-Prepared Nanocomposite Coatings

As a non-destructive technique, EIS is usually used to study the corrosion mechanism and the
corrosion resistance of SHCs. Figures 7 and 8 show the Nyquist and Bode plots of the measured EIS
data, respectively. The dots are the measured data, while the solid lines are the fitted data using the
electrical equivalent circuit shown in Figure 9 that has two time constants. Rpo and Rct refer to the
coating pore resistance and charge transfer resistance, respectively. On the other hand, Cdl1 and Cdl2
are the double layer capacitances of the constant phase elements representing the coating/solution and
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metal/solution interfaces, respectively. The high-frequency intercept |Z100 kHz| refers to the solution
resistance (Rs), and the low-frequency intercept |Z0.01 Hz| represents the sum of the solution and
charge transfer resistances. Simply, the larger the diameter of the semicircle (charge transfer resistance),
the lower the corrosion rate is. Table 5 exhibits the fitted data that were attained from Gamry Echem
Analyst software. The capacitances are substituted by constant phase elements (Cdl1 and Cdl2) to
give a more precise fit to the experimental outcomes. The exponent (0 ≤ n ≤ 1) represents deviation
from an ideal dielectric behavior; if n = 0, it shows an ideal resistor, and if n = 1, it acts as an
ideal capacitor [57–64]. It is noticed that the Rpo and Rct significantly increase as the WCA increases.
Increasing the WCA form 141◦ ± 2◦ to 147◦ ± 1◦ of the hydrophobic coatings has a significant influence
on increasing the Rct from 102 kΩ·cm2 of PS1 to 140 kΩ·cm2 of PS3. However, increasing the WCA
to 151◦ ± 2.8◦ and 155◦ ± 1.9◦ and decreasing the CAH to 7 ± 2.3 and 3 ± 4.2 leads to a remarkable
increase of the Rct to three orders of magnitude (8 and 18 × 106 kΩ·cm2) in comparison to the uncoated
Al, respectively. On the other hand, Cdl1 and Cdl2 of the SHCs distinctly is decreased to very low
values in comparison to the uncoated and PS-coated Al substrates (PS1 and PS3), which indicates a
low permeation of the electrolyte to the SHC/metal surface and a polarization resistance. It is worth
mentioning that the shape of the phase angle of the uncoated and the coated Al (see Figure 8a,c), is not
changed, which could be ascribed to the electrolyte permeation through the coating defects. The high
corrosion resistance of the as prepared SHCs can be attributed to the trapped air in the disproportions
of the heterogeneous surface, which prevents the aggressive ions from easily attacking the underlying
surface of Al alloy. Moreover, the hydrophobic PS is non-polar and very good electrical insulator;
therefore, aggressive ions can hardly transport through such coatings and reach the metal surface,
thereby showing a superior corrosion resistance via physical modification of its surface.

Table 5. The electrochemical parameters from Nyquist and Bode plots for the uncoated and coated
aluminum substrates with pure electrospun PS (PS1 & PS3), and nanocomposite SHCs of polystyrene
and aluminum oxide (PA1 & PA3), in 3.5 wt % NaCl solution.

Samples WCA
(◦)

Rpo
(kΩ·cm2)

Rct
(kΩ·cm2)

Y01
(Ω−1·cm−2·sn)

× 10−6
n1

Cdl1
(µF·cm−2)

Y02
(Ω−1·cm−2·sn)

× 10−6
n2

Cdl2
(µF·cm−2)

uncoated
Al alloy 87 ± 2 0.7 4 1100 0.833 1500 148 0.763 120

PS1 141 ± 2 77 102 28 0.735 41 4 0.701 2.7
PS3 147 ± 1 220 140 8 0.714 8.3 1.8 0.697 0.98
PA1 151 ± 2.8 530 8000 0.048 0.692 0.033 0.004 0.408 3.4 × 10−5

PA3 155 ± 1.9 860 18000 0.013 0.585 0.0047 0.0012 0.263 2.5 × 10−8
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Figure 7. Nyquist plots of the (a) uncoated Al alloy (b) PS1, (c) PS3, (d) PA1, and (e) PA3 from the EIS
measurements in 3.5 wt % NaCl.
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4. Conclusions

The different electrospinning operational parameters have a great influence on the morphology,
surface roughness, and wettability of the pure PS and PS/Al2O3 nanocomposite coatings. Also,
the addition of Al2O3 nanoparticles markedly increases the surface roughness. The highest WCA
is measured for the nanocomposite PA3 (which has the highest surface roughness with an Ra of
82 ± 2 nm) and was found to be 155◦ ± 1.9◦. On the other hand, increasing the PS concentration
is not recommended to increase the WCA. In addition, it is revealed that increasing the nanofiber
diameter decreases the WCA and increases the CAH. The optimum conditions of electrospinning in
order to obtain the highest possible water contact angle (155◦ ± 1.9◦), and low sliding angle 3 ± 4.2,
are a flow rate of 1.5 mL·h−1 and an applied voltage of 25 kV with polystyrene: an Al2O3 ratio of 1:10.
In addition, the higher the WCA, the higher the corrosion resistance and the lower WCAH are. The
combination of the micro-nano structure of the beaded fiber morphology results in high WCA and
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low WCAH. Despite their highly porous nature, the as-synthesized SHCs (PA1 & PA3) significantly
increased the corrosion resistance of Al in saline water more than three orders of magnitude.
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