Semitransparent Decorative Coatings Based on Optical Interference of Metallic and Dielectric Thin Films for High Temperature Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- 1st Layer (transparent dielectric): this layer may have thicknesses between 0 nm and 60 nm, although in some cases, it may be omitted completely, this possibility is limited by the use of some materials with determined refractive indexes, which is a very limited possibility. Generally, this layer is deposited in order to have more degrees of freedom when adjusting the reflection spectrum, so that the desired reflectance curves can be more easily achieved.
- 2nd Layer (absorbent metal): this layer has a 7–10 nm thickness. The layer must be thin so that the reflected intensities in the lower interfaces are not strongly attenuated. These intensities must have sufficient amplitude to significantly affect the result of the interference of the reflected waves. A change in the thickness of this layer greatly affects optical reflectance [28].
- 3rd Layer (transparent dielectric): the function of this layer is to generate more interfaces, thereby increasing the degrees of freedom when adjusting the reflectance curves.
- 4th Layer (absorbent metal): the thickness of this layer is usually between 20 nm and 50 nm. The function of this layer is essentially the selection of the transmission of the coating by adjusting its thickness due to absorption of the chosen material. It allows adjustment of the said transmittance values by less than 20%, since for larger values of transmittance, it is difficult to isolate the change in the reflection coefficients of changes in transmission.
- 5th Layer (transparent dielectric): the thickness of this layer will vary between 40 nm and 50 nm. This layer hardly affects the reflection values for the glass face because it is below the absorbing metallic layers, thereby, the reflected intensities in their interfaces will be very attenuated. Its function is to protect the metal layer from atmospheric oxygen that can oxidize it and to provide the coating with greater mechanical strength.
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thelen, A. Design of Optical Interference Coatings; McGraw-Hill: New York, NY, USA, 1989; ISBN 978-0-07-063786-3. [Google Scholar]
- Dobrowolski, J.A. Dobrowolski optical properties of films and coatings. In Handbook of Optics; McGraw-Hill: New York, NY, USA, 1995; Volume I. [Google Scholar]
- Macleod, H.A. Thin-Film Optical Filters, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-1-42-007303-4. [Google Scholar]
- Gläser, H.J. Large Area Coating; Von Ardenne Anlagentechnik GmbH: Dresden, Germany, 2000. [Google Scholar]
- Garcia, J.R.; Villuendas, F.; Alonso, R.; Subias, J.M.; Pelayo, F.J.; Buñuel, M.A.; Planas, F.; Ester, F.J.; Perez, P.; Sancho, D. Placa de Cubierta de Aparato Domestico con una Placa de Soporte al Menos Semitransparente, Aparato Domestico Para Preparar Alimentos, y Procedimientos Para Fabricar una Placa de Cubierta de Aparato Domestico. P200931263, February 2013. [Google Scholar]
- Esteban, R.A.; Magdalena, M.A.B.; Chamarro, E.C.; Sola, F.J.E.; Zueco, F.J.P.; Cabeza, P.P.; Layunta, F.P.; Domingo, J.M.S.; Yuste, F.V. Hot Plate and Hob Comprising a Corresponding Hot Plate. U.S. Patent 14/007,727, 20 March 2014. [Google Scholar]
- Esteban, R.A.; Magdalena, M.A.B.; Chamarro, E.C.; Sola, F.J.E.; Zueco, F.J.P.; Cabeza, P.P.; Layunta, F.P.; Domingo, J.M.S.; Yuste, F.V. Hot Plate Comprising a Coating Applied to the Lower Side Thereof. U.S. Patent 14/007,725, 17 July 2014. [Google Scholar]
- Chandra, R.; Chawla, A.K.; Kaur, D.; Ayyub, P. Structural, optical and electronic properties of nanocrystalline TiN films. Nanotechnology 2005, 16, 3053. [Google Scholar] [CrossRef]
- Yuste, M.; Escobar Galindo, R.; Carvalho, S.; Albella, J.M.; Sanchez, O. Improving the visible transmittance of low-e titanium nitride based coatings for solar thermal applications. Appl. Surf. Sci. 2011, 258, 1784–1788. [Google Scholar] [CrossRef]
- Niyomsoan, S.; Grant, W.; Olson, D.L.; Mishra, B. Variation of color in titanium and zirconium nitride decorative thin films. Thin Solid Films 2002, 415, 187–194. [Google Scholar] [CrossRef]
- Carvalho, P.; Borges, J.; Rodrigues, M.S.; Barradas, N.P.; Alves, E.; Espinós, J.P.; González-Elipe, A.R.; Cunha, L.; Marques, L.; Vasilevskiy, M.I.; et al. Optical properties of zirconium oxynitride films: The effect of composition, electronic and crystalline structures. Appl. Surf. Sci. 2015, 358, 660–669. [Google Scholar] [CrossRef]
- Carretero, E.; Alonso, R.; Pelayo, C. Optical and electrical properties of stainless steel oxynitride thin films deposited in an in-line sputtering system. Appl. Surf. Sci. 2016, 379, 249–258. [Google Scholar] [CrossRef]
- Garcia-Garcia, F.J.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A.R. Electrochromism in WOx and WxSiyOz thin films prepared by magnetron sputtering at glancing angles. Nanosci. Nanotechnol. Lett. 2013, 5, 89–93. [Google Scholar] [CrossRef]
- Gil-Rostra, J.; Garcia-Garcia, F.; Yubero, F.; Gonzalez-Elipe, A.R. Tuning the transmittance and the electrochromic behavior of CoxSiyOz thin films prepared by magnetron sputtering at glancing angle. Sol. Energy Mater. Sol. Cells 2014, 123, 130–138. [Google Scholar] [CrossRef]
- Figueiredo, N.M.; Vaz, F.; Cunha, L.; Pei, Y.T.; De Hosson, J.T.M.; Cavaleiro, A. Optical and microstructural properties of Au alloyed Al–O sputter deposited coatings. Thin Solid Films 2016, 598, 65–71. [Google Scholar] [CrossRef]
- Kats, M.A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Panjan, M.; Klanjšek Gunde, M.; Panjan, P.; Čekada, M. Designing the color of AlTiN hard coating through interference effect. Surf. Coat. Technol. 2014, 254, 65–72. [Google Scholar] [CrossRef]
- Sullivan, B.; Byrt, K. Metal/Dielectric Transmission Interference Filters with Low Reflectance. 2. Experimental Results. Appl. Opt. 1995, 34, 5684–5694. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Lin, F.; Dobrowolski, J.A. Design and manufacture of metal/dielectric long-wavelength cutoff filters. Appl. Opt. 2011, 50, C201–C209. [Google Scholar] [CrossRef] [PubMed]
- Macadam, D. Uniform Color Scales. J. Opt. Soc. Am. 1974, 64, 1691–1702. [Google Scholar] [CrossRef] [PubMed]
- MacAdam, D.L. Visual sensitivities to color differences in daylight. J. Opt. Soc. Am. 1942, 32, 247–274. [Google Scholar] [CrossRef]
- Carretero, E.; Alonso, R.; Marco, J.M. Oxygen diffusion at high temperatures within the SnO2/Sst interlayer in sputtered thin films. Appl. Surf. Sci. 2015, 359, 669–675. [Google Scholar] [CrossRef]
- Carretero, E.; Alonso, R.; Pelayo, C. Determination of oxygen diffusion in the SnO2/stainless steel interface of thin films by spectrophotometric measurements. J. Phys. Appl. Phys. 2016, 49, 215302. [Google Scholar] [CrossRef]
- Case, W. Algebraic-Method for Extracting Thin-Film Optical-Parameters from Spectrophotometer Measurements. Appl. Opt. 1983, 22, 1832–1836. [Google Scholar] [CrossRef] [PubMed]
- Panayotov, V.; Konstantinov, I. Determination of Thin-Film Optical-Parameters from Photometric Measurements—An Algebraic-Solution for the (t,Rf,Rb) Method. Appl. Opt. 1991, 30, 2795–2800. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.; Booty, M. Computational Method for Determining N and K for Thin Film from Measured Reflectance Transmittance and Film Thickness. Appl. Opt. 1966, 5, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Marco, J.M.; Uliaque, L.; Villuendas, F. Design and manufacture of solar control coatings for its application in laminated glass. Bol. Soc. Esp. Ceram. Vidrio 2001, 40, 113–118. [Google Scholar] [CrossRef]
- Cho, S.-H.; Seo, M.-K.; Kang, J.-H.; Yang, J.-K.; Kang, S.-Y.; Lee, Y.-H.; Hwang, K.H.; Lee, B.D.; Lee, J.-G.; Song, Y.-W.; et al. A Black Metal-dielectric Thin Film for High-contrast Displays. J. Korean Phys. Soc. 2009, 55, 501–507. [Google Scholar] [CrossRef]
- International Commision on Illumination. CIE 015:2004—Colorimetry, 3rd ed.; CIE: Vienna, Austria, 2004; ISBN 3-901-906-33-9. [Google Scholar]
Film | Green | Yellow | Sky Blue | Navy/Black |
---|---|---|---|---|
SnO2 or SiAlNx | 30 | 21 | 9 | 50 |
Sst | 9 | 10 | 9 | 9 |
SnO2 or SiAlNx | 106 | 140 | 100 | 66 |
Sst | 42 | 43 | 47 | 45 |
SnO2 or SiAlNx | 41 | 48 | 47 | 47 |
N° Film | Material | Thickness (nm) |
---|---|---|
1 | SnO2 | 50 |
2 | SstOx (29% Oxygen) | 4 |
3 | SstOx (19% Oxygen) | 1.7 |
4 | Sst | 1 |
5 | SstOx (19% Oxygen) | 1.7 |
6 | SstOx (29% Oxygen) | 4 |
7 | SnO2 | 49 |
8 | SstOx (29% Oxygen) | 6 |
9 | SstOx (19% Oxygen) | 2.5 |
10 | Sst | 23 |
11 | SstOx (19% Oxygen) | 2.5 |
12 | SstOx (29% Oxygen) | 6 |
13 | SnO2 | 49 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carretero, E.; Alonso, R. Semitransparent Decorative Coatings Based on Optical Interference of Metallic and Dielectric Thin Films for High Temperature Applications. Coatings 2018, 8, 183. https://doi.org/10.3390/coatings8050183
Carretero E, Alonso R. Semitransparent Decorative Coatings Based on Optical Interference of Metallic and Dielectric Thin Films for High Temperature Applications. Coatings. 2018; 8(5):183. https://doi.org/10.3390/coatings8050183
Chicago/Turabian StyleCarretero, Enrique, and Rafael Alonso. 2018. "Semitransparent Decorative Coatings Based on Optical Interference of Metallic and Dielectric Thin Films for High Temperature Applications" Coatings 8, no. 5: 183. https://doi.org/10.3390/coatings8050183
APA StyleCarretero, E., & Alonso, R. (2018). Semitransparent Decorative Coatings Based on Optical Interference of Metallic and Dielectric Thin Films for High Temperature Applications. Coatings, 8(5), 183. https://doi.org/10.3390/coatings8050183