Photoactivated Self-Sanitizing Chlorophyllin-Containing Coatings to Prevent Microbial Contamination in Packaged Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactive Agents
2.2. Bacterial Strains
2.3. Methods
2.3.1. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration
2.3.2. Antimicrobial Coating Preparation
2.3.3. Color Measurements
2.3.4. Antimicrobial Activity of Coatings
Agar Diffusion
Surface Disinfection
2.3.5. Release of Chlorophyllins
2.3.6. Application to Bologna Slices
2.3.7. Statistical Analysis
3. Results and Discussion
3.1. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Chlorophyllins
3.2. Development of Coated Films
3.3. Antimicrobial Activity of Films Coated with Chlorphyllins
3.3.1. Agar Diffusion Method
3.3.2. Surface Disinfection
3.4. Migration of Chlorophyllins from Coatings to the Food Simulant
3.5. Application to Food
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Flint, J.A.; Van Duynhoven, Y.T.; Angulo, F.J.; DeLong, S.M.; Braun, P.; Kirk, M.; Scallan, E.; Fitzgerald, M.; Adak, G.K.; Sockett, P.; et al. Estimating the burden of acute gastroenteritis, foodborne disease, and pathogens commonly transmitted by food: An international review. Clin. Infect. Dis. 2005, 41, 698–704. [Google Scholar] [CrossRef] [PubMed]
- López-Carballo, G.; Hernández-Muñoz, P.; Gavara, R.; Ocio, M.J. Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products. Int. J. Food Microbiol. 2008, 126, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Luksiene, Z.; Paskeviciute, E. Novel approach to decontaminate food-packaging from pathogens in non-thermal and not chemical way: Chlorophyllin-based photosensitization. J. Food Eng. 2011, 106, 152–158. [Google Scholar] [CrossRef]
- Evans, H.H.; DeMarini, D.M. Ionizing radiation-induced mutagenesis: Radiation studies in neurospora predictive for results in mammalian cells. Mutat. Res. Rev. Mutat. Res. 1999, 437, 135–150. [Google Scholar] [CrossRef]
- Martins, D.; Mesquita, M.Q.; Neves, M.G.P.M.S.; Faustino, M.A.F.; Reis, L.; Figueira, E.; Almeida, A. Photoinactivation of Pseudomonas syringae pv. Actinidiae in kiwifruit plants by cationic porphyrins. Planta 2018, 248, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Paskeviciute, E.; Zudyte, B.; Luksiene, Z. Towards better microbial safety of fresh produce: Chlorophyllin-based photosensitization for microbial control of foodborne pathogens on cherry tomatoes. J. Photochem. Photobiol. B Biol. 2018, 182, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Bozja, J.; Sherrill, J.; Michielsen, S.; Stojiljkovic, I. Porphyrin-based, light-activated antimicrobial materials. J. Polym. Sci. A Polym. Chem. 2003, 41, 2297–2303. [Google Scholar] [CrossRef]
- Krouit, M.; Granet, R.; Branland, P.; Verneuil, B.; Krausz, P. New photoantimicrobial films composed of porphyrinated lipophilic cellulose esters. Bioorg. Med. Chem. Lett. 2006, 16, 1651–1655. [Google Scholar] [CrossRef] [PubMed]
- George, L.; Hiltunen, A.; Santala, V.; Efimov, A. Photo-antimicrobial efficacy of zinc complexes of porphyrin and phthalocyanine activated by inexpensive consumer led lamp. J. Inorg. Biochem. 2018, 183, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 1998, 26, 118–122. [Google Scholar] [CrossRef] [PubMed]
- LED Lights—Detrimental to Our Health and Environment. Available online: http://www.sunkissedsolar.com.au/led-light-globes-detrimental-health-environment (accessed on 27 July 2018).
- Higueras, L.; López Carballo, G.; Hernández Muñoz, P.; Gavara, R.; Rollini, M. Development of a novel antimicrobial film based on chitosan with LAE (ethyl-Nα-dodecanoyl-l-arginate) and its application to fresh chicken. Int. J. Food Microbiol. 2013, 165, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Caires, C.S.A.; Leal, C.R.B.; Ramos, C.A.N.; Bogo, D.; Lima, A.R.; Arruda, E.J.; Oliveira, S.L.; Caires, A.R.L.; Nascimento, V.A. Photoinactivation effect of eosin methylene blue and chlorophyllin sodium-copper against Staphylococcus aureus and Escherichia coli. Lasers Med. Sci. 2017, 32, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Cavaleiro, J.A.S.; Görner, H.; Lacerda, P.S.S.; MacDonald, J.G.; Mark, G.; Neves, M.G.P.M.S.; Nohr, R.S.; Schuchmann, H.-P.; von Sonntag, C.; Tomé, A.C. Singlet oxygen formation and photostability of meso-tetraarylporphyrin derivatives and their copper complexes. J. Photochem. Photobiol. A Chem. 2001, 144, 131–140. [Google Scholar] [CrossRef]
- Levine, J.S. Biomass burning: The cycling of gases and particulates from the biosphere to the atmosphere. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, UK, 2003; pp. 143–158. [Google Scholar]
- Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, Y.; Gozhansky, S.; Malik, Z. Effect of photoactivated hematoporphyrin derivative on the viability of Staphylococcus aureus. Curr. Microbiol. 1983, 8, 279–284. [Google Scholar] [CrossRef]
- Malik, Z.; Hanania, J.; Nitzan, Y. Bactercidal effects of photoactivated porphyrins-an alternative approach to antimicrobial drugs. J. Photochem. Photobiol. B Biol. 1990, 5, 281–293. [Google Scholar] [CrossRef]
- Malik, Z.; Ladan, H.; Nitzan, Y. Phtodynamic inactivation of gram-negative bacteria-problem and possible solutions. J. Photochem. Photobiol. B Biol. 1992, 14, 262–266. [Google Scholar] [CrossRef]
Microorganism | E-140 | E-141 | ||
---|---|---|---|---|
MIC | MBC | MIC | MBC | |
L. monocytogenes | 0.0031 | 0.10 | 2 | 10 |
E. coli | 0.0031 | 0.63 | 3 | 11 |
Microorganism | E-140 | E-141 | ||
---|---|---|---|---|
MIC | MBC | MIC | MBC | |
L. monocytogenes | 0.025 | 0.400 | − | − |
E. coli | 0.100 | 0.630 | − | − |
Materials | Coatings | |
---|---|---|
Control | E-140 and E-141 | |
G | 4.66 ± 1.63 | 5.16 ± 1.16 |
PVOH | 2.28 ± 1.79 | 2.00 ± 1.03 |
PE | 25.00 ± 1.87 | 25.17 ± 2.70 |
HPMC | 2.14 ± 1.06 | 2.42 ± 1.61 |
Coatings | a* | b* | L* | C* | h | |
---|---|---|---|---|---|---|
G | Control | −0.23 ± 0.02 c | 0.64 ± 0.02 a | 88.04 ± 0.01 c | 0.68 ± 0.05 b | 109.84 ± 0.02 c |
E-140 | −2.50 ± 0.01 b | 8.18 ± 0.03 a | 85.77 ± 0.01 b | 8.55 ± 0.01 a | 106.99 ± 0.02 a | |
E-141 | −3.02 ± 0.07 a | 9.31 ± 0.01 a | 83.61 ± 0.04 a | 9.78 ± 0.01 a | 107.97 ± 0.01 b | |
PVOH | Control | 0.16 ± 0.04 a | 0.32 ± 0.02 b | 88.04 ± 0.02 c | 0.36 ± 0.05 a | 115.26 ± 0.01 b |
E-140 | −2.89 ± 0.01 b | 9.76 ± 0.03 a | 85.26 ± 0.01 b | 10.18 ± 0.02 c | 106.54 ± 0.05 a | |
E-141 | −5.02 ± 0.01 c | 7.89 ± 0.01 a | 83.12 ± 0.01 a | 9.35 ± 0.01 b | 122.47 ± 0.02 c | |
PE | Control | −0.32 ± 0.01 c | -0.23 ± 0.02 a | 89.23 ± 0.01 c | 0.40 ± 0.06 a | 216.41 ± 0.02 c |
E-140 | −4.73 ± 0.01 b | 38.06 ± 0.01 b | 69.79 ± 0.02 b | 38.35 ± 0.04 b | 97.09 ± 0.01 a | |
E-141 | −26.24 ± 0.02 a | 28.12 ± 0.02 b | 67.51 ± 0.03 a | 38.46 ± 0.04 c | 133.01 ± 0.02 b | |
HPMC | Control | −0.26 ± 0.03 c | 0.38 ± 0.04 a | 88.64 ± 0.05 c | 0.47 ± 0.01 a | 124.54 ± 0.04 b |
E-140 | 1.11 ± 0.01 b | 3.15 ± 0.02 b | 87.69 ± 0.05 b | 3.34 ± 0.04 a | 109.33 ± 0.01 a | |
E-141 | −3.02 ± 0.04 a | 3.41 ± 0.01 c | 85.72 ± 0.03 a | 4.56 ± 0.03 a | 131.53 ± 0.01 c |
Coatings | Dark Conditions | Light Conditions | |||
---|---|---|---|---|---|
Control | E-140 | Control | E-140 | LRV | |
Listeria monocytogenes | |||||
G | 6.90 ± 0.02 | 7.02 ± 0.01 | 7.09 ± 0.01 | no growth | 7.09 |
PVOH | 7.13 ± 0.05 | 7.24 ± 0.04 | 7.25 ± 0.73 | no growth | 7.25 |
PE | 7.05 ± 0.05 | 6.95 ± 0.01 | 7.38 ± 0.70 | 6.73 ± 0.05 | 0.65 |
HPMC | 6.95 ± 0.01 | 6.90 ± 0.02 | 7.01± 0.02 | no growth | 7.01 |
Escherichia coli | |||||
G | 7.01 ± 0.02 | 7.02 ± 0.01 | 7.04 ± 0.01 | no growth | 7.04 |
PVOH | 7.23 ± 0.02 | 7.01 ± 0.04 | 7.47 ± 0.67 | no growth | 7.47 |
PE | 7.12 ± 0.03 | 6.95 ± 0.03 | 7.40 ± 0.70 | 6.79 ± 0.03 | 0.67 |
HPMC | 7.01 ± 0.01 | 6.90 ± 0.02 | 7.04 ± 0.04 | no growth | 7.04 |
Coatings | Activation | a* | b* | L* | C* | h |
---|---|---|---|---|---|---|
G control | before | 16.30 ± 0.04 a | 10.30 ± 0.04 a | 56.59 ± 0.04 b | 19.28 ± 0.04 c | 32.30 ± 0.17 b |
after | 14.12 ± 0.02 b | 12.70 ± 0.02 b | 50.48 ± 0.02 a | 18.99 ± 0.02 c | 41.97 ± 0.06 b | |
G E-140 | before | 15.95 ± 0.05 a | 9.24 ± 0.05 a | 56.62 ± 0.05 b | 18.44 ± 0.05 a | 30.09 ± 0.13 b |
after | 14.10 ± 0.03 a | 14.07 ± 0.03 b | 50.29 ± 0.03 a | 19.92 ± 0.03 b | 44.94 ± 0.10 c | |
PVOH control | before | 17.70 ± 0.05 a | 9.68 ± 0.05 a | 57.10 ± 0.05 b | 20.17 ± 0.05 a | 28.66 ± 0.21 b |
after | 13.53 ± 0.03 b | 12.48 ± 0.03 b | 50.47 ± 0.03 a | 18.41 ± 0.03 b | 42.69 ± 0.17 a | |
PVOH E-140 | before | 17.47 ± 0.03 a | 9.42 ± 0.03 a | 57.06 ± 0.03 b | 19.85 ± 0.03 a | 28.33 ± 0.10 b |
after | 14.74 ± 0.01 b | 13.34 ± 0.01 b | 50.99 ± 0.01 a | 19.88 ± 0.01 a | 42.13 ± 0.09 a | |
HPMC control | before | 16.20 ± 0.03 b | 10.38 ±0.03 a | 55.27 ± 0.03 b | 19.24 ± 0.03 b | 32.65 ± 0.07 b |
after | 13.48 ± 0.02 a | 12.34 ± 0.02 b | 50.23 ± 0.02 a | 18.43 ± 0.02 a | 41.41 ± 0.29 a | |
HPMC E-140 | before | 15.99 ± 0.04 b | 10.56 ± 0.04 a | 55.37 ± 0.04 b | 19.17 ± 0.04 b | 33.44 ± 0.21 b |
after | 12.94 ± 0.07 a | 12.56 ± 0.07 b | 50.51 ± 0.07 a | 18.03 ± 0.07 a | 44.16 ± 0.07 c | |
PE control | before | 17.59 ± 0.03 a | 10.65 ± 0.03 a | 54.36 ± 0.03 b | 20.57 ± 0.03 b | 31.20 ± 0.27 b |
after | 13.26 ± 0.03 b | 12.04 ± 0.03 b | 50.78 ± 0.03 a | 17.91 ± 0.03 a | 42.26 ± 0.06 a | |
PE E-140 | before | 16.61 ± 0.02 a | 10.53 ± 0.02 a | 55.87 ± 0.02 b | 19.67 ± 0.02 b | 32.37 ± 0.08 b |
after | 14.80 ± 0.01 c | 12.39 ± 0.01 b | 50.54 ± 0.01 a | 19.30 ± 0.01 b | 39.95 ± 0.10 c |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Carballo, G.; Hernández-Muñoz, P.; Gavara, R. Photoactivated Self-Sanitizing Chlorophyllin-Containing Coatings to Prevent Microbial Contamination in Packaged Food. Coatings 2018, 8, 328. https://doi.org/10.3390/coatings8090328
López-Carballo G, Hernández-Muñoz P, Gavara R. Photoactivated Self-Sanitizing Chlorophyllin-Containing Coatings to Prevent Microbial Contamination in Packaged Food. Coatings. 2018; 8(9):328. https://doi.org/10.3390/coatings8090328
Chicago/Turabian StyleLópez-Carballo, Gracia, Pilar Hernández-Muñoz, and Rafael Gavara. 2018. "Photoactivated Self-Sanitizing Chlorophyllin-Containing Coatings to Prevent Microbial Contamination in Packaged Food" Coatings 8, no. 9: 328. https://doi.org/10.3390/coatings8090328
APA StyleLópez-Carballo, G., Hernández-Muñoz, P., & Gavara, R. (2018). Photoactivated Self-Sanitizing Chlorophyllin-Containing Coatings to Prevent Microbial Contamination in Packaged Food. Coatings, 8(9), 328. https://doi.org/10.3390/coatings8090328