The Synthesis of a Superhydrophobic and Thermal Stable Silica Coating via Sol-Gel Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Superhydrophobic Coating
2.3. Characterization Techniques
3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy
3.2. Morphological Study
3.3. Static and Sliding Water Contact Angle
3.4. Thermal Stability
3.5. Thermal Degradation of the Superhydrophobic Coating
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shahabadi, S.M.S.; Brant, J.A. Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water. Sep. Purif. Technol. 2019, 210, 587–599. [Google Scholar] [CrossRef]
- Kim, W.; Kim, D.; Park, S.; Lee, D.; Hyun, H.; Kim, J. Engineering lotus leaf-inspired micro- and nanostructures for the manipulation of functional engineering. J. Ind. Eng. Chem. 2018, 61, 39–52. [Google Scholar] [CrossRef]
- Xue, C.-H.; Jia, S.-T.; Zhang, J.; Ma, J.-Z. Large-area fabrication of superhydrophobic surfaces for practical applications: An overview. Sci. Technol. Adv. Mater. 2010, 11, 033002–033017. [Google Scholar] [CrossRef] [PubMed]
- Ganbavl, V.V.; Bangi, U.K.H.; Latthe, S.S.; Mahadik, S.A.; Rao, A.V. Self-cleaning silica coatings on glass by single step sol–gel route. Surf. Coat. Technol. 2011, 205, 53338–55344. [Google Scholar] [CrossRef]
- Mozumder, M.S.; Mourad, A.-H.I.; Pervez, H.; Surkatti, R. Recent developments in multifunctional coatings for solar panel applications: A review. Sol. Energy Mater. Sol. Cells 2019, 189, 75–102. [Google Scholar] [CrossRef]
- Yang, M.; Liu, W.; Jiang, C.; He, S.; Xie, Y.; Wang, Z. Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process. Carbohydr. Polym. 2018, 197, 75–82. [Google Scholar] [CrossRef]
- Ma, M.; Hill, R.M. Superhydrophobic surfaces. Curr. Opin. Colloid Interface Sci. 2006, 11, 193–202. [Google Scholar] [CrossRef]
- Fihri, A.; Bovero, E.; Al-Shahrani, A.; Al-Ghamdi, A.; Alabedi, G. Recent progress in superhydrophobic coatings used for steel protection: A review. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 378–390. [Google Scholar] [CrossRef]
- Seraji, M.M.; Sameri, G.; Davarparah, J.; Bahramian, A.R. The effect of high temperature sol-gel polymerization parameters on the microstructure and properties of hydrophobic phenol-formaldehyde/silica hybrid aerogels. J. Colloid Interface Sci. 2017, 493, 103–110. [Google Scholar] [CrossRef]
- Cui, S.; Liu, Y.; Fan, M.-H.; Coopere, A.T.; Liu, X.-Y.; Han, G.-F.; Shen, X.-D. Temperature dependent microstructure of MTES modified hydrophobic silica aerogels. Mater. Lett. 2011, 65, 606–609. [Google Scholar] [CrossRef]
- Izarra, I.; Cubillo, J.; Serrano, A.; Rodríguez, J.F.; Carmona, M. A hydrophobic release agent containing SiO2-CH3 submicron-sized particles for water proofing mortar structures. Constr. Build. Mater. 2019, 199, 30–39. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, B.; Huang, S.; Wu, J.; Zhang, Q. Facile fabrication of superhydrophobic coating based on polysiloxane emulsion. Progr. Org. Coat. 2017, 102, 131–137. [Google Scholar] [CrossRef]
- Latthea, S.S.; Imai, H.; Ganesan, V.; Rao, A.V. Porous superhydrophobic silica films by sol–gel process. Microporous Mesoporous Mater. 2010, 130, 115–121. [Google Scholar] [CrossRef]
- Sheen, Y.-C.; Chang, W.-H.; Chen, W.-C.; Chang, Y.-H.; Huang, Y.-C.; Chang, F.-C. Non-fluorinated superamphiphobic surfaces through sol–gel processing of methyltriethoxysilane and tetraethoxysilane. Mater. Chem. Phys. 2009, 114, 63–68. [Google Scholar] [CrossRef]
- Latthe, S.S.; Imai, H.; Ganesan, V.; Rao, A.V. Superhydrophobic silica films by sol-gel co-precursor method. Appl. Surf. Sci. 2009, 256, 217–222. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Kavale, M.S.; Mukherjee, S.K.; Rao, A.V. Transparent Superhydrophobic silica coatings on glass by sol–gel method. Appl. Surf. Sci. 2010, 257, 333–339. [Google Scholar] [CrossRef]
- Shao, Z.; Luo, F.; Cheng, X.; Zhang, Y. Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying. Mater. Chem. Phys. 2010, 257, 333–339. [Google Scholar] [CrossRef]
- Zhao, A.; Li, Y.; Li, B.; Hu, T.; Yang, Y.; Li, L.; Zhang, J. Environmentally benign and durable superhydrophobic coatings based on SiO2 nanoparticles and silanes. J. Colloid Interface Sci. 2019, 542, 8–14. [Google Scholar] [CrossRef]
- Zheng, X.; Fu, S. Reconstructing micro/nano hierarchical structures particle with nanocellulose for superhydrophobic coatings. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 171–179. [Google Scholar] [CrossRef]
- Guilong, X.; Pihui, P.; Ermei, H.; Xiufang, W.; Dafeng, Z.; Zhuoru, Y. Preparation and characterization of superhydrophobic/superoleophilic silica film. J. Chim. Ceram. Soc. 2011, 39, 854–858. [Google Scholar] [CrossRef]
- Jiang, Z.; Fang, S.; Wang, C.; Wang, H.; Ji, C. Durable polyorganosiloxane superhydrophobic films with a hierarchical structure by sol-gel and heat treatment method. Appl. Surf. Sci. 2016, 390, 993–10001. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, B.; Wang, S.; Zhauo, L.; Wan, L.; Wang, E. Mechanically robust, thermally stable, highly transparent superhydrophobic coating with low-temperature sol–gel process. RSC adv. 2017, 7, 47357–47365. [Google Scholar] [CrossRef]
- Rao, A.V.; Latthe, S.S.; Mahadik, S.A.; Kappenstein, C. Mechanically stable and corrosion resistant superhydrophobic sol–gel coatings on copper substrate. Appl. Surf. Sci. 2011, 257, 5442–5776. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Du, W.; Lei, W.; Si, X.; Zhou, T.; Lin, J.; Peng, L. Superhydrophobic silica antireflective coatings with high transmittance via one-step sol-gel process. Thin Solid Films 2017, 631, 193–199. [Google Scholar] [CrossRef]
- Nguyen-Tria, P.; Tran, H.N.; Plamondon, C.O.; Tuduri, L.; Vo, D.-V.N.; Nanda, S.; Mishra, A.; Chao, H.-P.; Bajpai, A.K. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Prog. Org. Coat. 2019, 132, 235–256. [Google Scholar] [CrossRef]
- Pantoja, M.; Velasco, F.; Abenojar, J.; Martinez, M.A. Development of superhydrophobic coatings on AISI 304 austenitic stainless steel with different surface pretreatments. Thin Solid Films 2019, 671, 22–30. [Google Scholar] [CrossRef]
- Jeevahan, J.; Chandrasekaran, M.; Joseph, G.B.; Durairaj, R.B.; Mageshwaran, G. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 2018, 15, 231–250. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Criado, M.; Sobrados, I.; Sanz, J. Polymerization of hybrid organic–inorganic materials from several silicon compounds followed by TGA/DTA, FTIR and NMR techniques. Progr. Org. Coat. 2014, 77, 880–891. [Google Scholar] [CrossRef]
- Montejo, M.; Partal Ureña, F.; Márquez, F.; Ignatyev, I.S.; López González, J.J. Vibrational spectrum of methoxytrimethylsilane. J. Mol. Struct. 2005, 744–747, 331–338. [Google Scholar] [CrossRef]
- Innocenzi, P. Infrared spectroscopy of sol–gel derived silica-based films: A spectra-microstructure overview. J. Non-Cryst. Solids 2003, 316, 309–319. [Google Scholar] [CrossRef]
- Azlina, H.N.; Hasnidawani, J.N.; Norita, H.; Surip, S.N. Synthesis of SiO2 Nanostructures Using Sol-Gel Method. Acta Phys. Pol. A 2016, 129, 842–844. [Google Scholar] [CrossRef]
- Yang, H.; Pi, P.; Cai, Z.-Q.; Wen, X.; Wang, X.; Cheng, J.; Yang, Z.-R. Facile preparation of super-hydrophobic and super-oleophilic silica film on stainless steel mesh via sol-gel process. Appl. Surf. Sci. 2010, 256, 4095–4102. [Google Scholar] [CrossRef]
- Zhong, M.; Zhang, Y.; Li, X.; Wu, X. Facile fabrication of durable superhydrophobic silica/epoxy resin coatings with compatible transparency and stability. Surf. Coat. Technol. 2018, 347, 191–198. [Google Scholar] [CrossRef]
- Wen, X.-F.; Wang, K.; Pi, P.-H.; Yang, J.-X.; Cai, Z.-Q.; Zhang, L.-J.; Qian, Y.; Yang, Z.-R.; Zheng, D.-F.; Cheng, J. Organic–inorganic hybrid superhydrophobic surfaces using methyltriethoxysilane and tetraethoxysilane sol–gel derived materials in emulsion. Appl. Surf. Sci. 2011, 258, 991–998. [Google Scholar] [CrossRef]
- Strawbridge, I.; James, P.F. The factors affecting the thickness of sol-gel derived silica coatings prepared by dipping. J. Non-Cryst. Solids 1986, 86, 381–393. [Google Scholar] [CrossRef]
- Guglielmi, M.; Zenezini, S. The thickness of sol-gel silica coatings obtained by dipping. J. Non-Cryst. Solids 1990, 121, 303–309. [Google Scholar] [CrossRef]
- Brinfer, C.J.; Frye, G.C.; Hurd, A.J.; Ashley, C.S. Fundamentals of sol-gel dip coating. Thin Solid Films 1991, 201, 97–108. [Google Scholar] [CrossRef]
- Li, K.; Zeng, X.; Li, H.; Lai, X.; Xie, H. Effects of calcination temperature on the microstructure and wetting behavior of superhydrophobic polydimethylsiloxane/silica coating. Colloids Surf. A Physicochem. Eng. Asp. 2014, 445, 111–118. [Google Scholar] [CrossRef]
- Shang, Q.; Zhou, Y. Fabrication of transparent superhydrophobic porous silica coating for self-cleaning and anti-fogging. Ceram. Int. 2016, 42, 8706–8871. [Google Scholar] [CrossRef]
- Karapanagiotis, I.; Manoudis, P.; Zurba, A.; Lampakis, D. From hydrophobic to superhydrophobic and superhydrophilic siloxanes by thermal treatment. Langmuir 2014, 30, 13235–13243. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, X.; Cai, Z.-Q.; Pi, P.; Zheng, D.; Wen, X.; Cheng, J.; Yang, Z.-R. Functional silica film on stainless steel mesh with tunable wettability. Surf. Coat. Technol. 2011, 205, 5387–5393. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Gau, C. Control of Superhydrophilicity and Superhydrophobicity of a Superwetting Silicon Nanowire Surface. J. Electrochem. Soc. 2010, 157, k201–k205. [Google Scholar] [CrossRef]
Aged for 2 Days | Aged for 5 Days | Aged for 9 Days | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 min | 5 min | 0 min | 5 min | 0 min | 5 min | |||||||
WCA (°) | SA (°) | WCA (°) | SA (°) | WCA (°) | SA (°) | WCA (°) | SA (°) | WCA (°) | SA (°) | WCA (°) | SA (°) | |
1 time | 108 ± 1 | 20 ± 1 | 115 ± 1 | 40 ± 1 | 116 ± 1 | 65 ± 2 | 117 ± 2 | 58 ± 2 | 118 ± 1 | 33 ± 1 | 120 ± 1 | 28 ± 1 |
4 times | 123 ± 1 | 53 ± 1 | 121 ± 1 | 51 ± 2 | 124 ± 1 | 41 ± 2 | 132 ± 1 | 35 ± 1 | 137 ± 1 | 31 ± 1 | 149 ± 1 | <5 |
200 mm/min | 500 mm/min | 1000 mm/min | ||||
---|---|---|---|---|---|---|
WCA (°) | SA(°) | WCA (°) | SA(°) | WCA (°) | SA(°) | |
1 time | 117 ± 1 | 58 ± 2 | 139 ± 1 | 10 ± 1 | 143 ± 2 | <5 |
4 times | 131 ± 1 | 35 ± 1 | 145 ± 1 | <5 | 149 ± 1 | <5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, K.; Gómez, E.; Goitandia, A.M.; Angulo-Ibáñez, A.; Aranzabe, E. The Synthesis of a Superhydrophobic and Thermal Stable Silica Coating via Sol-Gel Process. Coatings 2019, 9, 627. https://doi.org/10.3390/coatings9100627
Vidal K, Gómez E, Goitandia AM, Angulo-Ibáñez A, Aranzabe E. The Synthesis of a Superhydrophobic and Thermal Stable Silica Coating via Sol-Gel Process. Coatings. 2019; 9(10):627. https://doi.org/10.3390/coatings9100627
Chicago/Turabian StyleVidal, Karmele, Estíbaliz Gómez, Amaia Martínez Goitandia, Adrián Angulo-Ibáñez, and Estíbaliz Aranzabe. 2019. "The Synthesis of a Superhydrophobic and Thermal Stable Silica Coating via Sol-Gel Process" Coatings 9, no. 10: 627. https://doi.org/10.3390/coatings9100627
APA StyleVidal, K., Gómez, E., Goitandia, A. M., Angulo-Ibáñez, A., & Aranzabe, E. (2019). The Synthesis of a Superhydrophobic and Thermal Stable Silica Coating via Sol-Gel Process. Coatings, 9(10), 627. https://doi.org/10.3390/coatings9100627