Ethylene Glycol Functionalized Gadolinium Oxide Nanoparticles as a Potential Electrochemical Sensing Platform for Hydrazine and p-Nitrophenol
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Synthesis of Gd2O3 Nanoparticles
2.3. Electrode Preparation
2.4. Physical Measurements
3. Results and Discussion
3.1. Characterization and Properties of Synthesized Gd2O3 Nanoparticles
3.2. Electrochemical Behaviour of Hydrazine and p-Nitrophenol on Modified Electrode
3.3. Amperometric Responses for Hydrazine and p-Nitrophenol
3.4. Selectivity Study
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M. A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J. Hazard Mater. 2012, 201, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.; Leem, J.-Y. A new technique for growing ZnO nanorods over large surface areas using graphene oxide and their application in ultraviolet sensors. Sci. Adv. Mater. 2018, 10, 405–409. [Google Scholar] [CrossRef]
- Vernot, E.H.; MacEwen, J.D.; Bruner, R.H.; Haus, C.C.; Kinkead, E.R.; Prentice, D.E.; Hall, A., III; Schmidt, R.E.; Eason, R.L.; Hubbard, G.B.; et al. Long-term inhalation toxicity of hydrazine. Fundam. Appl. Toxicol. 1985, 5, 1050–1064. [Google Scholar] [CrossRef]
- Savafi, A.; Karimi, M.A. Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. Talanta 2002, 58, 785–792. [Google Scholar] [CrossRef]
- Safavi, A.; Ensafi, A.A. Electrocatalytic oxidation of hydrazine with pyrogallol red as a mediator on glassy carbon electrode. Anal. Chem. Acta 1995, 300, 307–311. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Ding, W. Template-less preparation of meso-MnO2 fibers by localized ostwald ripening and 2,4-dinitrophenol adsorption mechanism. Sci. Adv. Mater. 2018, 10, 1241–1249. [Google Scholar] [CrossRef]
- U.S. Department of Homeland Security. Homeland Security Information Bulletin; U.S. Department of Homeland Security: Washington, DC, USA, 2003.
- Shukla, S.; Chaudhary, S.; Umar, A.; Chaudhary, G.R.; Mehta, S.K. Dodecyl ethyl dimethyl ammonium bromide capped WO3 nanoparticles: Efficient scaffolds for chemical sensing and environmental remediation. Dalton Trans. 2015, 44, 17251–17260. [Google Scholar] [CrossRef]
- Collins, G.E.; Rose-Pehrsson, S.L. Sensitive, fluorescent detection of hydrazine via derivatization with 2,3-naphthalene dicarboxaldehyde. Analytica Chimica Acta 1993, 284, 207–215. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Z.; Sheng, Q.; Zheng, J. One-pot synthesis of Au-Fe3O4-GO nanocomposites for enhanced electrochemical sensing of hydrazine. J. Electrochem. Soc. 2018, 165, B596–B602. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, S.; Hou, W.; Guo, H.; Li, Q.; Dong, D.; Wu, S.; Zhao, S.; Zhang, H. Perylene diimide derivative regulate the antimony sulfide morphology and electrochemical sensing for hydrazine. Appl. Surf. Sci. 2019, 491, 267–275. [Google Scholar] [CrossRef]
- Guo, W.; Xia, T.; Zhang, H.; Zhao, M.; Wang, L.; Pei, M.A. Molecularly imprinting electrosensor based on the novel nanocomposite for the detection of tryptamine. Sci. Adv. Mater. 2018, 10, 1805–1812. [Google Scholar] [CrossRef]
- Annalakshmi, M.; Balasubramanian, P.; Chen, S.-M.; Chen, T.-W. One pot synthesis of nanospheres-like trimetallic NiFeCo nanoalloy: A superior electrocatalyst for electrochemical sensing of hydrazine in water bodies. Sens. Actuators B 2019, 296, 126620. [Google Scholar] [CrossRef]
- Gu, D.; Dong, Y.-M.; Liu, H.; Ding, H.-Y.; Shang, S.-M. Efficient synthesis of highly fluorescence nitrogen doped carbon dots and its application for sensor and cell imaging. Sci. Adv. Mater. 2018, 10, 964–973. [Google Scholar] [CrossRef]
- Mishra, R.K.; Martin, A.; Nakagawa, T.; Barfidokht, A.; Lu, X.; Sempionatto, J.R.; Lyu, K.M.; Karajic, A.; Musameh, M.M.; Kyratzis, I.L.; et al. Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems. Biosens. Bioelectron. 2018, 101, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Hubble, L.J.; Martin, A.; Kumar, R.; Barfidokht, A.; Kim, J.; Musameh, M.M.; Kyratzis, I.L.; Wang, J. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sen. 2017, 2, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Kong, L.T.; Yang, R.; Wang, L.; Liu, H.; Huang, X.J. Single-walled carbon nanotube/pyrene cyclodextrin nanohybrids for ultrahighly sensitive and selective detection of p-nitrophenol. Langmuir 2011, 27, 10295–10301. [Google Scholar] [CrossRef]
- Karthik, R.; Chen, S.M.; Elangovan, A.; Muthukrishnan, P.; Shanmugam, R.; Lou, B.S. Phyto mediated biogenic synthesis of gold nanoparticles using Cerasus serrulata and its utility in detecting hydrazine, microbial activity and DFT studies. J. Colloid Int. Sci. 2016, 468, 163–175. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, C.L.; Lu, Y.J.; Chen, W. Graphene nanoribbon-supported Pt-Pd concave nanocubes for electrochemical detection of TNT with high sensitivity and selectivity. Anal. Chem. 2015, 87, 12262–12269. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, X.; Gooding, J.J. Detection of trace nitroaromatic isomers using Indium Tin oxide electrodes modified using β-cyclodextrin and silver nanoparticles. Anal. Chem. 2012, 84, 8557–8563. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kumar, S.; Mehta, S.K. Glycol modified gadolinium oxide nanoparticles as a potential template for selective and sensitive detection of 4-nitrophenol. J. Mater. Chem. C 2015, 3, 8824–8833. [Google Scholar] [CrossRef]
- Du, G.; Tendeloo, G.V. Preparation and structure analysis of Gd(OH)3 nanorods. Nanotechnology 2015, 16, 595–597. [Google Scholar] [CrossRef]
- Mehta, S.K.; Chaudhary, S.; Bhasin, K.K. Understanding the role of hexadecyltrimethylammonium bromide in the preparation of selenium nanoparticles: A spectroscopic approach. J. Nanopart. Res. 2009, 11, 1759–1766. [Google Scholar] [CrossRef]
- Ballem, M.A.; Söderlind, F.; Nordblad, P.; Kall, P.O.; Oden, M. Growth of Gd2O3 nanoparticles inside mesoporous silica frameworks. Microporous Mesoporous Mater. 2013, 168, 221–224. [Google Scholar] [CrossRef]
- Rahman, A.T.M.; Vasilev, K.; Majewski, P. Ultra small Gd2O3 nanoparticles: Absorption and emission properties. J. Colloid Inter. Sci. 2011, 354, 592–596. [Google Scholar] [CrossRef]
- Jia, G.; You, H.P.; Liu, K.; Zheng, Y.H.; Guo, N.; Zhang, H.J. Highly uniform Gd2O3 hollow microspheres: Template-directed synthesis and luminescence properties. Langmuir 2010, 26, 5122–5128. [Google Scholar] [CrossRef]
- Hu, L.; Ma, R.; Ozawa, T.C.; Sasaki, T. Oriented monolayer film of Gd2O3:0.05Eu crystallites: Quasi-topotactic transformation of the hydroxide film and drastic enhancement of photoluminescence properties. Angew. Chem. Int. Ed. 2009, 48, 3846–3849. [Google Scholar] [CrossRef] [PubMed]
- Manigandan, R.; Giribabu, K.; Suresh, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V. Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate. Mater. Res. Bull. 2013, 48, 4210–4215. [Google Scholar] [CrossRef]
- Abdullah, M.M.; Rahman, M.M.; Bouzid, H.; Faisal, M.; Khan, S.B.; Al-Sayari, S.A.; Ismail, A.A. Sensitive and fast response ethanol chemical sensor based on as-grown Gd2O3 nanostructures. J. Rare Earths 2015, 33, 214–220. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kumar, S.; Umar, A.; Singh, J.; Rawat, M.; Mehta, S.K. Europium-doped gadolinium oxide nanoparticles: A potential photoluminescencent probe for highly selective and sensitive detection of Fe 3+ and Cr 3+ ions. Sens. Actuators B 2017, 243, 579–588. [Google Scholar] [CrossRef]
- Mehta, S.K.; Chaudhary, S.; Kumar, S.; Bhasin, K.K.; Torigoe, K.; Sakai, H.; Abe, M. Surfactant assisted synthesis and spectroscopic characterization of selenium nanoparticles in ambient condition. Nanotechnology 2008, 19, 295601–295612. [Google Scholar] [CrossRef]
- Chaudhary, S.; Sharma, P.; Kumar, R.; Mehta, S.K. Nanoscale surface designing of cerium oxide nanoparticles for controlling growth, stability, optical and thermal properties. Ceram. Int. 2015, 41, 10995–11003. [Google Scholar] [CrossRef]
- Maalej, N.M.; Qurashi1, A.; Assadi, A.A.; Maalej, R.; Shaikh, M.N.; Ilyas, M.; Gondal, M.A. Synthesis of Gd2O3:Eu nanoplatelets for MRI and fluorescence imaging. Nanoscale Res. Lett. 2015, 10, 215. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Dasgupta, P.; Jana, P.K. Size-dependent dielectric behaviour of magnetic Gd2O3 nanocrystals dispersed in a silica matrix. J. Phys. D Appl. Phys. 2008, 41, 215004–215015. [Google Scholar] [CrossRef]
- Rogow, D.L.; Swanson, C.H.; Oliver, A.G.; Oliver, S.R.J. Two related Gadolinium aquo carbonate 2-D and 3-D structures and their thermal, spectroscopic, and paramagnetic properties. Inorg. Chem. 2009, 48, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, K.; Cheng, T.; Fang, Z. Synthesis, characterization, and photoluminescence property of LaCO3OH microspheres. Inorg. Chem. 2007, 46, 4713–4717. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Umar, A. Glycols functionalized fluorescent Eu2O3 nanoparticles: Functionalization effect on the structural and optical properties. J. Alloys Compd. 2016, 682, 160–169. [Google Scholar] [CrossRef]
- Rajan, G.; Gopchandran, K.G. Enhanced luminescence from spontaneously ordered Gd2O3: Eu3+ based nanostructures. Appl. Surf. Sci. 2009, 255, 9112–9123. [Google Scholar] [CrossRef]
- White, W.B.; Keramidas, V.G. Vibrational spectra of oxides with the C-type rare earth oxide structure. Spectrochim. Acta Part A 1972, 28, 501–509. [Google Scholar] [CrossRef]
- Riri, M.; Benjjar, A.; Eljaddi, T.; Sefiani, N.; Touaj, K.; Cherif, A.; Hlaїbi, M. Characterization of two dinuclear complexes of the gadolinium ion by IR and Raman. J. Mater. Environ. Sci. 2013, 4, 961–966. [Google Scholar]
- Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Madhusudanan, P.M.; Krishnan, K.; Ninan, K.N. New approximation for the p(x) function in the evaluation of non-isothermal kinetic data. Thermochimica Acta 1986, 97, 189–201. [Google Scholar] [CrossRef]
- Tang, W.; Liu, Y.; Zhang, H.; Wang, Z.; Wang, C. New temperature integral approximate formula for non-isothermal kinetic analysis. J. Therm. Anal. Calorim. 2003, 74, 309–315. [Google Scholar] [CrossRef]
- Horowitz, H.H.; Metzger, G.A. A new analysis of thermogravimetric traces. Anal. Chem. 1963, 35, 1464–1468. [Google Scholar] [CrossRef]
- Singh, K.; Kaur, A.; Umar, A.; Chaudhary, G.R.; Singh, S.; Mehta, S.K. A comparison on the performance of zinc oxide and hematite nanoparticles for highly selective and sensitive detection of para-nitrophenol. J. Appl. Electrochem. 2015, 45, 253–261. [Google Scholar] [CrossRef]
- Raoof, J.B.; Ojani, R.; Beitollahi, H.; Hosseinzadeh, R. Electrocatalytic oxidation and highly selective voltammetric determination of L-cysteine at the surface of a 1-[4-(ferrocenyl ethynyl)phenyl]-1-ethanone modified carbon paste electrode. Anal. Sci. 2006, 22, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.M.; Rameshkumar, P.; Basirunc, W.J.; Wijayantha, U.; Chiu, W.S.; Khiew, P.S.; Huang, N.M. An electrochemical sensing platform of cobalt oxide@gold nanocubes interleaved reduced graphene oxide for the selective determination of hydrazine. Electrochimica Acta 2018, 259, 606–616. [Google Scholar] [CrossRef]
- Liu, Z.; Du, J.; Qiu, C.; Huang, L.; Ma, H.; Shen, D.; Ding, Y. Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem. Commun. 2009, 11, 1365–1368. [Google Scholar] [CrossRef]
- Ndlovu, T.; Arotiba, O.A.; Krause, R.W.; Mamba, B.B. Electrochemical detection of o-nitrophenol on a poly(propyleneimine)-gold nanocomposite modified glassy carbon electrode. Int. J. Electrochem. Sci. 2010, 5, 1179–1186. [Google Scholar]
- Shukla, S.; Chaudhary, S.; Umar, A.; Chaudhary, G.R.; Mehta, S.K. Tungsten oxide (WO3) nanoparticles as scaffold for the fabrication of hydrazine chemical sensor. Sens. Actuators B 2014, 196, 231–237. [Google Scholar] [CrossRef]
- De Oliveira, F.M.; Guedesa, T.d.; Lima, A.B.; da Silvaa, L.M.; dos Santos, W.T.P. Alternative method to obtain the Tafel plot for simple electrode reactions using batch injection analysis coupled with multiple-pulse amperometric detection. Electrochimica Acta 2017, 242, 180–186. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Wang, Q.; Gao, F.; Gao, F.; Yang, Y.; Guo, H. Highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl. Mater. Interfaces 2014, 6, 11573–11580. [Google Scholar] [CrossRef] [PubMed]
- Guerra, S.V.; Ubota, L.T.K.; Xavier, C.R.; Nakagaki, S. Experimental optimization of selective hydrazine detection in flow injection analysis using a carbon paste electrode modified with copper porphyrin occluded into zeolite cavity. Anal. Sci. 1999, 15, 1231–1234. [Google Scholar] [CrossRef]
- Salimi, A.; Miranzadeh, L.; Hallaj, R. Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives. Talanta 2008, 75, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Salami, A.; Abdi, K. Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol–gel technique: Application to amperometric detection of hydrazine and hydroxyl amine. Talanta 2004, 63, 475–483. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Zhang, W.D.; Chen, H.; Luo, Q.M. Anodic oxidation of hydrazine at carbon nanotube powder microelectrode and its detection. Talanta 2002, 58, 529–534. [Google Scholar] [CrossRef]
- Umar, A.; Rahman, M.M.; Hahn, Y.B. ZnO nanorods based hydrazine sensors. J. Nanosci. Nanotechnol. 2009, 9, 4686–4691. [Google Scholar] [CrossRef]
Electrode Materials | Analyte | Detection Limit/µM | Response Time/s | Refs. |
---|---|---|---|---|
Copper tetraphenylporphyrin (CuTPP) onto zeolites cavity-modified carbon paste electrode | Hydrazine, p-nitrophenol | 1 | – | [53] |
Multi wall carbon nanotubes (MWCNT) and chlorogenic acid | Hydrazine | 8 | – | [54] |
Single wall carbon nanotube (SWCNT) and catechin hydrate | Hydrazine and hydroxyl amine | 2.0 | – | [54] |
Nickel hexacyanoferrate modified carbon ceramic electrode | Hydrazine | 2.28 | <3 | [55] |
Carbon nanotubes powder microelectrode | Hydrazine | – | <3 | [56] |
ZnO nanorods | Hydrazine, p-nitrophenol | 2.2 | <10 | [57] |
Gd2O3 nanoparticles | – | 0.704 | <10 | This work |
Sample | Added Amount (µM) | Hydrazine | p-Nitrophenol |
---|---|---|---|
Recovery Mean ± RSD (%) | |||
Tap water | 1.5 | 98.2 ± 2.9 | 97.6 ± 2.5 |
3.5 | 100.2 ± 1.8 | 99.7 ± 3.9 | |
7.5 | 101.9 ± 1.5 | 100.3 ± 3.7 | |
Lake water | 1.5 | 96.6 ± 1.5 | 97.3 ± 1.1 |
3.5 | 96.9 ± 2.6 | 99.1 ± 2.4 | |
7.5 | 98.4 ± 3.5 | 100.1 ± 1.6 | |
Water from Village Dhanas | 1.5 | 99.6 ± 2.3 | 97.4 ± 1.3 |
3.5 | 100.2 ± 1.4 | 99.4 ± 2.8 | |
7.5 | 101.5 ± 1.2 | 100.2 ± 1.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, S.; Kumar, S.; Kumar, S.; Chaudhary, G.R.; Mehta, S.K.; Umar, A. Ethylene Glycol Functionalized Gadolinium Oxide Nanoparticles as a Potential Electrochemical Sensing Platform for Hydrazine and p-Nitrophenol. Coatings 2019, 9, 633. https://doi.org/10.3390/coatings9100633
Chaudhary S, Kumar S, Kumar S, Chaudhary GR, Mehta SK, Umar A. Ethylene Glycol Functionalized Gadolinium Oxide Nanoparticles as a Potential Electrochemical Sensing Platform for Hydrazine and p-Nitrophenol. Coatings. 2019; 9(10):633. https://doi.org/10.3390/coatings9100633
Chicago/Turabian StyleChaudhary, Savita, Sandeep Kumar, Sushil Kumar, Ganga Ram Chaudhary, S.K. Mehta, and Ahmad Umar. 2019. "Ethylene Glycol Functionalized Gadolinium Oxide Nanoparticles as a Potential Electrochemical Sensing Platform for Hydrazine and p-Nitrophenol" Coatings 9, no. 10: 633. https://doi.org/10.3390/coatings9100633
APA StyleChaudhary, S., Kumar, S., Kumar, S., Chaudhary, G. R., Mehta, S. K., & Umar, A. (2019). Ethylene Glycol Functionalized Gadolinium Oxide Nanoparticles as a Potential Electrochemical Sensing Platform for Hydrazine and p-Nitrophenol. Coatings, 9(10), 633. https://doi.org/10.3390/coatings9100633