A Short Overview of Recent Developments on Antimicrobial Coatings Based on Phytosynthesized Metal Nanoparticles
Abstract
:1. Introduction
2. General Considerations Regarding Nanoparticle Phytosynthesis
- related to the extract: the extraction procedure, the solvent used for the extraction, the part of the plant used, the pH of the solution, etc.
- related to the process: temperature, metal salt concentration, extract concentration, reaction time, presence of light radiation, synthesis time, etc.
3. Antimicrobial Textiles
4. Biomedical Applications of Antimicrobial Coatings Based on Phytosynthesized NPs
5. Antimicrobial Coatings for Increasing the Quality of Food
6. Other Applications of NPs-Based Antimicrobial Coatings
7. Conclusions and Future Perspectives
Funding
Conflicts of Interest
References
- Fierascu, I.; Georgiev, M.I.; Ortan, A.; Fierascu, R.C.; Avramescu, S.M.; Ionescu, D.; Sutan, A.; Brinzan, A.; Ditu, L.M. Phyto-mediated metallic nanoarchitectures via Melissa officinalis L.: Synthesis, characterization and biological properties. Sci. Rep. 2017, 7, 12428. [Google Scholar] [CrossRef]
- Sutan, N.A.; Manolescu, D.S.; Fierascu, I.; Neblea, A.M.; Sutan, C.; Ducu, C.; Soare, L.C.; Negrea, D.; Avramescu, S.M.; Fierascu, R.C. Phytosynthesis of gold and silver nanoparticles enhance in vitro antioxidant and mitostimulatory activity of Aconitum toxicum Reichenb. rhizomes alcoholic extracts. Mater. Sci. Eng. C 2018, 93, 746–758. [Google Scholar] [CrossRef] [PubMed]
- Fierascu, R.C.; Fierascu, I.; Lungulescu, E.M.; Nicula, N.; Somoghi, R.; Diţu, L.M.; Ungureanu, C.; Sutan, A.N.; Drăghiceanu, O.A.; Paunescu, A.; et al. Phytosynthesis and radiation-assisted methods for obtaining metal nanoparticles. J. Mater. Sci. 2020, 55, 1915–1932. [Google Scholar] [CrossRef]
- Tripathi, R.M.; Chung, S.J. Biogenic nanomaterials: Synthesis, characterization, growth mechanism, and biomedical applications. J. Microbiol. Meth. 2019, 157, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother. 2019, 109, 2561–2572. [Google Scholar] [CrossRef]
- Some, S.; Kumar Sen, I.; Mandal, A.; Aslan, T.; Ustun, Y.; Yilmaz, E.Ş.; Kati, A.; Demirbas, A.; Mandal, A.K.; Ocsoy, I. Biosynthesis of silver nanoparticles and their versatile antimicrobial properties. Mater. Res. Express 2019, 6, 012001. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Ghorbannezhad, F.; Issaabadi, Z.; Sajadi, S.M. Recent developments in the biosynthesis of Cu-based recyclable nanocatalysts using plant extracts and their application in the chemical reactions. Chem. Rec. 2019, 19, 601–643. [Google Scholar] [CrossRef]
- Nabi, G.; Qurat-ul-Aain; Khalid, N.R.; Tahir, M.B.; Rafique, M.; Rizwan, M.; Hussain, S.; Iqbal, T.; Majid, A. A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1552–1564. [Google Scholar] [CrossRef]
- Long, N.N.V.; Joly, C.; Dantigny, P. Active packaging with antifungal activities. Int. J. Food Microbiol. 2016, 220, 73–90. [Google Scholar] [CrossRef]
- Zambrano-Zaragoza, M.L.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.F.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystems in edible coatings: A novel strategy for food preservation. Int. J. Mol. Sci. 2018, 19, 705. [Google Scholar] [CrossRef]
- Xing, Y.; Li, W.; Wang, Q.; Li, X.; Xu, Q.; Guo, X.; Bi, X.; Liu, X.; Shui, Y.; Lin, H.; et al. Antimicrobial nanoparticles incorporated in edible coatings and films for the preservation of fruits and vegetables. Molecules 2019, 24, 1695. [Google Scholar] [CrossRef] [PubMed]
- Gallo, J.; Panacek, A.; Prucek, R.; Kriegova, E.; Hradilova, S.; Hobza, M.; Holinka, M. Silver Nanocoating technology in the prevention of prosthetic joint infection. Materials 2016, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Noronha, V.T.; Paula, A.J.; Durán, G.; Galembeck, A.; Cogo-Müller, K.; Franz-Montan, M.; Durán, N. Silver nanoparticles in dentistry. Dent. Mater. 2017, 33, 1110–1126. [Google Scholar] [CrossRef] [PubMed]
- Burdusel, A.C.; Gherasim, O.; Grumezescu, A.M.; Mogoanta, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [PubMed]
- Bottagisio, M.; Lovati, A.B.; Galbusera, F.; Drago, L.; Banfi, G. A Precautionary approach to guide the use of transition metal-based nanotechnology to prevent orthopedic infections. Materials 2019, 12, 314. [Google Scholar] [CrossRef]
- Selvaraj, A.S.; Rajendran, M. Antimicrobial nanomaterials for wound dressings. In Nanomedicine and Tissue Engineering: State of the Art and Recent Trends; Nandakumar, K., Robin, A., Oluwatobi, S.O., Joshy, K.S., Sabu, T., Eds.; Apple Academic Press: Oakville, ON, Canada, 2016; pp. 435–492. [Google Scholar]
- Joshi, M.; Roy, A. Antimicrobial textiles based on metal and metal oxide nano-particles. In Nanomaterials in the Wet Processing of Textiles; ul-Islam, S., Butola, B.S., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2018; pp. 71–111. [Google Scholar]
- Eduok, S.; Coulon, F. Microbiological toxicity of nanoparticles. In Emerging Nanotechnologies in Food Science. Micro and Nano Technologies; Busquets, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 97–117. [Google Scholar]
- Colman, B.P.; Espinasse, B.; Richardson, C.J.; Matson, C.W.; Lowry, G.W.; Hunt, D.E.; Wiesner, M.R.; Bernhardt, E.S. Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ. Sci. Technol. 2014, 48, 5229–5236. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Davar, F.; Mir, N. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 2008, 27, 3514–3518. [Google Scholar] [CrossRef]
- Ealias, A.M.; Saravanakumar, M.P. A review on the classification, characterization, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032019. [Google Scholar]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm. J. 2016, 24, 473–484. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Ortan, A.; Avramescu, S.M.; Fierascu, I. Phyto-nanocatalysts: Green synthesis, characterization, and applications. Molecules 2019, 24, 3418. [Google Scholar] [CrossRef]
- Moldovan, B.; Sincari, V.; Perde-Schrepler, M.; David, L. Biosynthesis of silver nanoparticles using Ligustrum ovalifolium fruits and their cytotoxic effects. Nanomaterials 2018, 8, 627. [Google Scholar] [CrossRef] [PubMed]
- Coradi, M.L.; Zanetti, M.; Valério, A.; de Oliveira, D.; da Silva, A.; de Souza, S.M.A.G.U.; de Souza, A.A.U. Production of antimicrobial textiles by cotton fabric functionalization and pectinolytic enzyme immobilization. Mater. Chem. Phys. 2018, 208, 28–34. [Google Scholar] [CrossRef]
- Shahid-ul-Islam; Butola, B. S. Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int. J. Biol. Macromol. 2019, 121, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Cranston, R. Recent advances in antimicrobial treatments of textiles. Text. Res. J. 2008, 78, 60–72. [Google Scholar]
- Lin, J.; Winkelman, C.; Worley, S.D.; Broughton, R.M.; Williams, J.F. Antimicrobial treatment of nylon. J. Appl. Polym. Sci. 2001, 81, 943–947. [Google Scholar] [CrossRef]
- Tripathi, A.; Chandrasekaran, N.; Raichur, A.M.; Mukherjee, A. Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J. Biomed. Nanotechnol. 2009, 5, 93–98. [Google Scholar] [CrossRef]
- Ravindra, S.; Murali Mohan, Y.; Narayana Reddy, N.; Mohana Raju, K. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloids Sur. A Physicochem. Eng. Asp. 2010, 367, 31–40. [Google Scholar] [CrossRef]
- Yang, N.; Li, W.H. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind. Crop. Prod. 2013, 48, 81–88. [Google Scholar] [CrossRef]
- Prathna, T.C.; Raichur, A.M.; Chandrasekaran, N.; Mukherjee, A. Process Development for functionalization of cotton with silver nanoparticles synthesized by bio-based approaches. Curr. Nanosci. 2013, 9, 479–488. [Google Scholar] [CrossRef]
- Velmurugan, P.; Cho, M.; Lee, S.M.; Park, J.H.; Bae, S.; Oh, B.T. Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver. Carbohydr. Polym. 2014, 106, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Gowri, S.; Rajiv Gandhi, R.; Senthil, S.; Suresh, J.; Sundrarajan, M. Enhancing antimicrobial activity of biotemplated TiO2 nanoparticles using aloe vera plant extract. J. Bionanosci. 2016, 10, 181–190. [Google Scholar] [CrossRef]
- Kashid, S.B.; Lakkakula, J.R.; Chauhan, D.S.; Srivastava, R.; Raut, R.W. Biocompatible antimicrobial cotton fibres for healthcare industries: A biogenic approach for synthesis of bio-organic-coated silver nanoparticles. IET Nanobiotechnol. 2017, 11, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Das, M.P.; Rebecca, L.J. Evaluation of antibacterial efficacy of biogenic zinc oxide nanoparticles on cotton fabrics. J. Pharm. Sci. Res. 2017, 9, 2553–2557. [Google Scholar]
- Saha, R.; Karthik, S.; Kumar, P.M.R.S.A.; Suriyaprabha, R.; Rajendran, V. Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Prog. Org. Coat. 2018, 124, 80–91. [Google Scholar] [CrossRef]
- Rajaboopathi, S.; Thambidurai, S. Evaluation of UPF and antibacterial activity of cotton fabric coated with colloidal seaweed extract functionalized silver nanoparticles. J. Photochem. Photobiol. B 2018, 183, 75–87. [Google Scholar] [CrossRef]
- Sharma, P.; Pant, S.; Rai, S.; Yadav, R.B.; Sharma, S.; Dave, V. Green synthesis and characterization of silver nanoparticles by Allium cepa L. to produce silver nano-coated fabric and their antimicrobial evaluation. Appl. Organometal. Chem. 2018, 32, e4146. [Google Scholar] [CrossRef]
- Sathiyavimal, S.; Vasantharaj, S.; Bharathi, D.; Saravanan, M.; Manikandan, E.; Kumar, S.S.; Pugazhendhi, A. Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of gram negative and gram positive bacteria. J. Photochem. Photobiol. B 2018, 188, 126–134. [Google Scholar] [CrossRef]
- Hiremath, L.; Kumar, N.S.; Sukanya, P. Development of antimicrobial smart textiles fabricated with magnetite nano particles obtained through green synthesis. Mater. Today Proc. 2018, 5, 21030–21039. [Google Scholar] [CrossRef]
- Khatami, M.; Varma, R.S.; Zafarnia, N.; Yaghoobi, H.; Sarani, M.; Kumar, V.G. Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustain. Chem. Pharm. 2018, 10, 9–15. [Google Scholar] [CrossRef]
- Sivaranjana, P.; Nagarajan, E.; Rajini, N.; Ayrilmis, N.; Rajulu, A.V.; Siengchin, S. Preparation and characterization studies of modified cellulosic textile fabric composite with in situ-generated AgNPs coating. J. Ind. Text. 2019, in press. [Google Scholar] [CrossRef]
- Sharma, P.; Pant, S.; Dave, V.; Tak, K.; Sadhu, V.; Reddy, K.R. Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J. Microbiol. Meth. 2019, 160, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Turakhia, B.; Chikkala, S.; Shah, S. Novelty of bioengineered iron nanoparticles in nanocoated surgical cotton: a green chemistry. Adv. Pharmacol. Sci. 2019, 2019, 9825969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, R.M.; Prabu, H.G. Synthesis of gold nanoparticles using herbal Acorus calamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications. Arab. J. Chem. 2015, in press. [Google Scholar] [CrossRef] [Green Version]
- Wagener, S.; Dommershausen, N.; Jungnickel, H.; Laux, P.; Mitrano, D.; Nowack, B.; Schneider, G.; Luch, A. Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat. Environ. Sci. Technol. 2016, 50, 5927–5934. [Google Scholar] [CrossRef]
- Parnia, F.; Yazdani, J.; Javaherzadeh, V.; Maleki Dizaj, S. Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. J. Pharm. Pharm. Sci. 2017, 20, 148–160. [Google Scholar] [CrossRef]
- Orapiriyakul, W.; Young, P.S.; Damiati, L.; Tsimbouri, P.M. Antibacterial surface modification of titanium implants in orthopaedics. J. Tissue Eng. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Zhou, Z.; Yu, X. Coatings as the useful drug delivery system for the prevention of implant-related infections. J. Orthop. Surg. Res. 2018, 13, 220. [Google Scholar] [CrossRef] [Green Version]
- Cyphert, E.L.; von Recum, H.A. Emerging technologies for long-term antimicrobial device coatings: Advantages and limitations. Exp. Biol. Med. 2017, 242, 788–798. [Google Scholar] [CrossRef]
- Shariatinia, Z. Carboxymethyl chitosan: Properties and biomedical applications. Int. J. Biol. Macromol. 2018, 120, 1406–1419. [Google Scholar] [CrossRef]
- Narendhar, C.; Abey, T.; Jatin, B.; Kumar, M.M.S.; Regitha, M. Facile Synthesis of carboxy methyl chitosan coated iron oxide nanoparticles and their antimicrobial activity. In Proceedings of the International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, Chennai, India, 24–26 July 2013; pp. 290–292. [Google Scholar] [CrossRef]
- Sripriya, J.; Anandhakumar, S.; Achiraman, S.; Antony, J.J.; Siva, D.; Raichur, A.M. Laser receptive polyelectrolyte thin films doped with biosynthesized silver nanoparticles for antibacterial coatings and drug delivery applications. Int. J. Pharmaceut. 2013, 457, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Anghel, A.G.; Grumezescu, A.M.; Chirea, M.; Grumezescu, V.; Socol, G.; Iordache, F.; Oprea, A.E.; Anghel, I.; Holban, A.M. MAPLE Fabricated Fe3O4@Cinnamomum verum antimicrobial surfaces for improved gastrostomy tubes. Molecules 2014, 19, 8981–8994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jyoti, K.; Singh, A. Evaluation of antibacterial activity from phytosynthesized silver nanoparticles against medical devices infected with Staphylococcus spp. J. Taibah Univ. Med. Sci. 2017, 12, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Lozoya-Rodríguez, D.A.; de Lima, R.; Fraceto, L.F.; Pérez, A.L.; Domínguez, M.B.; Batres, R.G.; Rojas, A.R.; Carmona, V.O. Development of HA/Ag-NPs composite coating from green process for hip applications. Molecules 2017, 22, 1291. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, C.M.; Purwar, R.; Gupta, A.P. Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering. Int. J. Biol. Macromol. 2019, 130, 437–453. [Google Scholar] [CrossRef]
- Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta 2018, 184, 537–556. [Google Scholar] [CrossRef]
- Emmanuel, R.; Saravanan, M.; Ovais, M.; Padmavathy, S.; Shinwari, Z.K.; Prakash, P. Antimicrobial efficacy of drug blended biosynthesized colloidal gold nanoparticles from Justicia glauca against oral pathogens: A nanoantibiotic approach. Microb. Pathog. 2017, 113, 295–302. [Google Scholar] [CrossRef]
- Fierascu, I.; Fierascu, R.C.; Somoghi, R.; Ion, R.M.; Moanta, A.; Avramescu, S.M.; Damian, C.M.; Ditu, L.M. Tuned apatitic materials: Synthesis, characterization and potential antimicrobial applications. Appl. Surf. Sci. 2018, 438, 127–135. [Google Scholar] [CrossRef]
- De Laurentiis, V.; Corrado, S.; Sala, S. Quantifying household waste of fresh fruit and vegetables in the EU. Waste Manag. 2018, 77, 238–251. [Google Scholar] [CrossRef]
- Barth, M.; Hankinson, T.R.; Zhuang, H.; Breidt, F. Microbiological spoilage of fruits and vegetables. In Compendium of the Microbiological Spoilage of Foods and Beverages; Sperber, W.H., Doyle, M.P., Eds.; Springer: New York, NY, USA, 2009; pp. 135–183. [Google Scholar]
- Petruzzi, L.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Microbial spoilage of foods. In The Microbiological Quality of Food; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; Woodhead Publishing: Duxford, UK, 2017; pp. 1–21. [Google Scholar]
- Gudadhe, J.A.; Yadav, A.; Gade, A.; Marcato, P.D.; Durán, N.; Rai, M. Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits. IET Nanobiotechnol. 2014, 8, 190–195. [Google Scholar] [CrossRef]
- Muthulakshmi, L.; Rajini, N.; Nellaiah, H.; Kathiresan, T.; Jawaid, M.; Varada Rajulu, A. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Int. J. Biol. Macromol. 2017, 95, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Basumatary, K.; Daimary, P.; Das, S.K.; Thapa, M.; Singh, M.; Mukherjee, A.; Kumar, S. Lagerstroemia speciosa fruit-mediated synthesis of silver nanoparticles and its application as filler in agar based nanocomposite films for antimicrobial food packaging. Food Packag. Shelf Life 2018, 17, 99–106. [Google Scholar] [CrossRef]
- Vishnuvarthanan, M.; Rajeswari, N. Food packaging: Pectin–laponite–Ag nanoparticle bionanocomposite coated on polypropylene shows low O2 transmission, low Ag migration and high antimicrobial activity. Environ. Chem. Lett. 2019, 17, 439–445. [Google Scholar] [CrossRef]
- Vishnuvarthanan, M.; Rajeswari, N. Preparation and characterization of carrageenan/silver nanoparticles/Laponite nanocomposite coating on oxygen plasma surface modified polypropylene for food packaging. J. Food Sci. Technol. 2019, 56, 2545–2552. [Google Scholar] [CrossRef] [PubMed]
- Kowsalya, E.; Mosa Christas, K.; Balashanmugam, P.; Tamil Selvi, A.; Jaquline Chinna Rani, I. Biocompatible silver nanoparticles/poly(vinyl alcohol) electrospun nanofibers for potential antimicrobial food packaging applications. Food Packag. Shelf Life 2019, 21, 100379. [Google Scholar]
- Mathew, S.; Snigdha, S.; Mathew, J.; Radhakrishnan, E.K. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag. Shelf Life 2019, 19, 155–166. [Google Scholar] [CrossRef]
- Kadam, D.; Momin, B.; Palamthodi, S.; Lele, S.S. Physicochemical and functional properties of chitosan-based nanocomposite films incorporated with biogenic silver nanoparticles. Carbohydr. Polym. 2019, 211, 124–132. [Google Scholar] [CrossRef]
- Valdés, A.; Ramos, M.; Beltrán, A.; Jiménez, A.; Garrigós, M.C. State of the art of antimicrobial edible coatings for food packaging applications. Coatings 2017, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [Green Version]
- Ajdary, M.; Moosavi, M.A.; Rahmati, M.; Falahati, M.; Mahboubi, M.; Mandegary, A.; Jangjoo, S.; Mohammadinejad, R.; Varma, R.S. Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials 2018, 8, 634. [Google Scholar] [CrossRef] [Green Version]
- Manjumeena, R.; Venkatesan, R.; Duraibabu, D.; Sudha, J.; Rajendran, N.; Kalaichelvan, P.T. Green nanosilver as reinforcing eco-friendly additive to epoxy coating for augmented anticorrosive and antimicrobial behavior. Silicon 2016, 8, 277–298. [Google Scholar] [CrossRef]
- Saravanan, A.; Senthil Kumar, P.; Karthiga Devi, G.; Arumugam, T. Synthesis and characterization of metallic nanoparticles impregnated onto activated carbon using leaf extract of Mukia maderasapatna: Evaluation of antimicrobial activities. Microb. Pathog. 2016, 97, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Lateef, A.; Azeez, M.A.; Asafa, T.B.; Yekeen, T.A.; Akinboro, A.; Oladipo, I.C.; Azeez, L.; Ajibade, S.E.; Ojo, S.A.; Gueguim-Kana, E.B.; et al. Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive. J. Taibah Univ. Sci. 2016, 10, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Deyá, C.; Bellotti, N. Biosynthesized silver nanoparticles to control fungal infections in indoor environments. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 025005. [Google Scholar] [CrossRef] [Green Version]
- ASTM D5590—Standard Test Method for Determining the Resistance of Paint Films and Related Coatings to Fungal Defacement by Accelerated Four-Week Agar Plate Assay; ASTM International: West Conshohocken, PA, USA, 2017.
- Barberia-Roque, L.; Gámez-Espinosa, E.; Viera, M.; Bellotti, N. Assessment of three plant extracts to obtain silver nanoparticles as alternative additives to control biodeterioration of coatings. Int. Biodeter. Biodegr. 2019, 141, 52–61. [Google Scholar] [CrossRef]
- Kähkönen, E.; Hirvonen, T.; Nordström, K. New biocide active substances: Needs and challenges in the EU as viewed by industry. J. Bus. Chem. 2010, 7, 69–79. [Google Scholar]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar]
- Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef]
- Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” Nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae 2014, 6, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M. Antimicrobial coatings for textiles. In Handbook of Antimicrobial Coatings; Tiwari, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 321–355. [Google Scholar]
- Carrillo-Inungaray, M.L.; Trejo-Ramirez, J.A.; Reyes-Munguia, A.; Carranza-Alvarez, C. Use of nanoparticles in the food industry: advances and perspectives. In Impact of Nanoscience in the Food Industry. Handbook of Food Bioengineering; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: London, UK, 2018; pp. 419–444. [Google Scholar]
- Khanna, L.; Verma, N.K.; Tripathi, S.K. Burgeoning tool of biomedical applications—Superparamagnetic nanoparticles. J. Alloy Compd. 2018, 752, 332–353. [Google Scholar] [CrossRef]
- Olajire, A.A. Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures. J. Mol. Liq. 2018, 269, 572–606. [Google Scholar] [CrossRef]
- Gressmann, A.; Mondragon, Y.B.; Bacigalupo, D. Critical Review of the Relevance and Reliability of Data Sources, Methods, Parameters and Determining Factors to Produce Market Studies on Manufactured Nanomaterials on the EU Market; European Chemicals Agency: Helsinki, Finland, 2018; Available online: https://euon.echa.europa.eu/documents/23168237/24095696/170718_critical_review_of_market_studies_nanomaterials_final_report_en.pdf/ec77f39e-0918-5984-d7b1-654e3b1f14da (accessed on 26 October 2019).
Application | Support Material | Antimicrobial Assay | Strains | NPs | Plant Extract Used | NP Characteristics | Ref. |
---|---|---|---|---|---|---|---|
Textile coating | Cotton | Disk diffusion method | Escherichia coli | AgNPs | Aqueous extract of Azadirachta indica A. Juss., 1830 leaves | Spherical, 50–100 nm | [30] |
Textile coating | Cotton | Disk diffusion method; Textile Fabrics—Determination of the Antibacterial Activity—Agar Diffusion Plate Test standard SNV 195920-1992 | Escherichia coli | AgNPs | Eucalyptus citriodora Hook. and Ficus benghalensis L. 1753 leaves aqueous extracts | Spherical, average diameters~21 nm | [31] |
Textile coating | Non-woven fabric | Disk diffusion method | Escherichia coli, Staphylococcus aureus, Bacillus subtilis | AgNPs | Aqueous Mangifera indica Linn peel extract | Quasi-spherical, 7–37 nm average sizes | [32] |
Textile coating | Cotton | Immersion of coated textile in microbial culture solutions | Escherichia coli, Staphylococcus aureus | AgNPs | Aqueous extracts of Azadirachta indica A. Juss., 1830 and Citrus lemon (L.) Burm.f. | Under 50 nm | [33] |
Textile coating | Cotton, tanned leather | Disk diffusion method, Brain Heart Infusion broth; Determination of minimum bactericidal concentrations, standard AATCC 100 | Brevibacterium linens, Staphylococcus epidermidis | AgNPs | Aqueous Erigeron annuus (L.) Pers. flowers extract. | Spherical, hexagonal, 10–20 nm | [34] |
Textile coating | Cotton | Disk diffusion method | Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus niger | TiO2NPs | Aloe vera (L.) Burm.f. extract | Spherical, 40 nm | [35] |
Textile coating | Cotton | Disk diffusion method; | Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Candida albicans | AgNPs | Aqueous extract of Vitex negundo Linn | Spherical, 50 nm | [36] |
Textile coating | Cotton | Disk diffusion method, live/dead bacterial fluorescence viability assay (propidium iodide and fluorescein diacetate dyes) | Escherichia coli, Staphylococcus aureus | ZnONPs | Cardiospermum halicacabum L. leaves aqueous extract | Spherical, rod shaped, 30–80 nm | [37] |
Textile coating | Cotton | Agar well diffusion method, disk diffusion method, determination of minimum bactericidal concentrations, standard AATCC 100 | Escherichia coli, Staphylococcus aureus | ZnONPs | Psidium guajava L. extract | Irregular, spherical, 12–45 nm | [38] |
Textile coating | Cotton | Agar well diffusion method | Escherichia coli, Staphylococcus aureus | AgNPs | Extract of Padina gymnospora (Kützing) Sonder powder | Spherical, 2–20 nm | [39] |
Textile coating | Cotton | Disk diffusion method, determination of IC50, bactericidal efficiency | Escherichia coli, Staphylococcus aureus | AgNPs | Allium cepa L., 1753 aqueous extract | Spherical, 36–98 nm | [40] |
Textile coating | Cotton | Disk diffusion method | Escherichia coli, Proteus vulgaris, Staphylococcus aureus | CuONPs | Aqueous Sida acuta Burm.f.extract | Nanorods, 50 nm | [41] |
Textile coating | Cotton | Agar well diffusion method, disk diffusion method | Escherichia coli | Fe3O4NPs | Aqueous Cymbopogon schoenanthus (L.) Spreng. leaves extract | Irregular, under 100 nm | [42] |
Textile coating | Cotton | Disk diffusion method | Acinetobacter baumannii, Pseudomonas aeruginosa | AgNPs ZnONPs AgNPs + ZnONPs | Aqueous Prosopis farcta J.F.Macbr. seed (AgNPs) and coffee extract (ZnONPs) | Spherical, 5–35 nm (AgNPs), 5–40 nm (ZnONPs) | [43] |
Textile coating | Cotton | Disk diffusion method, disk diffusion method under stable sewage water conditions | Escherichia coli | AgNPs | Cassia alata L. leaves extract | Spherical, 20–119 nm | [44] |
Textile coating | Cotton | Disk diffusion method, bactericidal efficiency | Escherichia coli, Staphylococcus aureus | CuNPs | Aqueous extract of Tinospora cordifolia (Thunb.) Miers leaves | Spherical, 63.3 nm | [45] |
Textile coating | Cotton | Agar well diffusion method | Bacillus subtilis, Staphylococcus aureus, Escherichia coli | FeNPs | Zingiber officinale Roscoe root extract | 56.2 nm | [46] |
Textile coating | Cotton | Determination of minimum bactericidal concentrations, standard AATCC 100 | Escherichia coli, Staphylococcus aureus | AuNPs | Acorus calamus L., 1753 rhizomes aqueous extracts obtained at different temperatures | Spherical, from under 100 nm up to 500 nm | [47] |
Application | Support Material | Antimicrobial Assay | Strains | NPs | Plant Extract Used | NP Characteristics | Ref. |
---|---|---|---|---|---|---|---|
Biomedical applications | Carboxymethyl chitosan | Evaluation of the optical density of bacterial cultures after addition of NPs | Pseudomonas aeruginosa, E. coli, Enterobacter, Staphylococcus aureus, Klebsiella | Fe3O4NPs | Aqueous extract of Cuminum cyminum L. | Under 10 nm | [54] |
Antimicrobial coating and drug delivery | Polyelectrolyte thin film | Disk diffusion method | Escherichia coli, Proteus vulgaris, Bacillus cereus, Staphylococcus aureus | AgNPs | Aqueous Hybanthus enneaspermus (L.) F.Muell. leaves extract | Spherical, 80 nm | [55] |
Antimicrobial coating | Gastronomy tubes | Evaluation of adherence and biofilm formation using a static model for monospecific biofilms on coated glass slides | Escherichia coli, Staphylococcus aureus | Fe3O4NPs | Cinnamomum verum J.Presl aqueous extract | 9.4 nm | [56] |
Antimicrobial coating | Glass | Evaluation of bactericidal effect of coated glass slides in contact with liquid films containing bacteria | Staphylococcus epidermidis and Staphylococcus aureus | AgNPs | Aqueous extract of Berberis asiatica DC. leaves | Spherical, 15–35 nm | [57] |
Antimicrobial coating | Ti6Al4V alloy | JIS Z 2801:2000 standard (Antimicrobial products—Test for antimicrobial activity and efficacy) | Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa | AgNPs/hydroxyapatite | Opuntia ficus-indica extract | Not determined | [58] |
Antimicrobial coating | Tasar fibroin nanofibrous mats | Disk diffusion method, standard AATCC 30 (Antifungal Assessment and Mildew Resistance Test) | Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis | AgNPs | Aqueous Tridax procumbens L. leaves extract | Nearly spherical, 20–50 nm | [59] |
Antimicrobial agents (drug delivery) | Drug (azithromycin and clarithromycin) conjugated AuNPs | Well diffusion method | Micrococcus luteus, Bacillus subtilis, Staphylococcus aureus, Streptococcus mutans, Lactobacillus acidophilus, Escherichia coli, Pseudomonas aeruginosa, Saccharomyces cerevisiae and Candida albicans | AuNPs | Aqueous Justicia glauca Heyne ex Wall. leaves extract | Hexagonal, spherical, nanoprism shaped, average size 32.5 nm | [61] |
Application | Support Material | Antimicrobial Assay | Strains | NPs | Plant Extract Used | NP Characteristics | Ref. |
---|---|---|---|---|---|---|---|
Increasing shelf-life of fruits | Agar | Disk diffusion method | Escherichia coli, Staphylococcus aureus | AgNPs | Ocimum sanctum L. leaves aqueous extract | Spherical and quasi-spherical, 50–200 nm, average size 95 nm | [66] |
Antimicrobial packaging | Cellulose | Well diffusion method | Escherichia coli | CuNPs | Terminalia catappa L. leaves aqueous extract | Spherical, 10–60 nm | [67] |
Food packaging | Agar | Disk diffusion method | Aeromonas hydrophilla | AgNPs | Aqueous fruit extract of Lagerstroemia speciose (L.) Pers. | Hexagonal, 32–62 nm | [68] |
Food packaging | Polypropylene | Disk diffusion method | Escherichia coli, Staphylococcus aureus | AgNPs (in pectin-laponite nanocomposite) | Aqueous Digitalis purpurea L. extract | Spherical, 25 nm | [69] |
Food packaging | Polypropylene | Disk diffusion method | Escherichia coli, Staphylococcus aureus | AgNPs (in carrageenan-laponite nanocomposite) | Aqueous Digitalis purpurea L. extract | Spherical, 25 nm | [70] |
Increasing shelf-life of fruits | PVA | Disk diffusion method | Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa. | AgNPs | Vitis vinifera L. fruits peels extract | Spherical, quasi-spherical, 10–50 nm, average size 30 nm | [71] |
Extending the shelf life of chicken meat products | PVA | Microdilution method, according CLSI guidelines M26-A (Methods for determining bactericidal activity of antimicrobial agents. Approved guideline); Standard aerobic plate count assay | Salmonella typhimurium, Staphylococcus aureus | AgNPs | Zingiber officinale Rosc. rhizomes extract | Not determined | [72] |
Active packaging and coating | Chitosan | Disk diffusion method; growth inhibition assay | Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus | AgNPs | Aqueous Nigela sativa L. seedcake extract | Predominant spherical, triangular, pentagonal, and hexagonal observed, 2–15 nm | [73] |
Application | Support Material | Antimicrobial Assay | Strains | NPs | Plant Extract Used | NP Characteristics | Ref. |
---|---|---|---|---|---|---|---|
Antimicrobial epoxy resin | Epoxy resin–DGEBA | Diffusion method (modified resin coated over mild steel) | Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli, Candida albicans | AgNPs | Aqueous Couroupita guianensis Aubl. leaves extract | Spherical, 5–15 nm | [77] |
Water disinfection | Activated carbon | Well diffusion method | Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, Candida albicans | AgNPs CuNPs PbNPs | Methanolic extract of Mukia maderasapatna (L.) M.Roem. leaves | Not determined | [78] |
Antimicrobial paint | Emulsion paint | Bacterial/fungal growth evaluation using the pour plate method | Escherichia coli, Pseudomonas aeruginosa. Aspergillus flavus, Aspergillus fumigatus and Aspergillus niger | AgNPs | Aqueous extract of Cola nitida Schott & Endl. pods | Spherical, 12–80 nm | [79] |
Antimicrobial paint | Acrylic water-based paint | Agar diffusion method (cylindric samples); bio-resistance test, according ASTM D 5590 (Standard Test Method for Determining the Resistance of Paint Films and Related Coatings to Fungal Defacement by Accelerated Four-Week Agar Plate Assay | Chaetomium globosum, Alternaria alternate | AgNPs | Aloysia triphylla (L’Hér.) Britton, Laurelia sempervirens (Ruiz & Pav.)Tul., and Ruta chalepensis L. extracts | Quasi-spherical, average size 9.8 nm (laurel) | [80] |
Antimicrobial paint | Waterborne paint | Disk diffusion method; Fungal resistance test (ASTM D 5590); antibacterial biofilm tests | Escherichia coli, Staphylococcus aureus, Alternaria alternate, Chaetomium globosum | AgNPs | Aqueous extracts of Schinus molle L. and Equisetum giganteum L. leaves, aqueous extract of Ilex paraguariensis A.St.-Hil. | Quasi-spherical, 20.0 ± 1.0 nm (E. giganteum), 12.0 ± 0.6 nm (S. molle), 41.0 ± 2.0 nm (I. paraguariensis) | [82] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fierascu, I.; Fierascu, I.C.; Dinu-Pirvu, C.E.; Fierascu, R.C.; Anuta, V.; Velescu, B.S.; Jinga, M.; Jinga, V. A Short Overview of Recent Developments on Antimicrobial Coatings Based on Phytosynthesized Metal Nanoparticles. Coatings 2019, 9, 787. https://doi.org/10.3390/coatings9120787
Fierascu I, Fierascu IC, Dinu-Pirvu CE, Fierascu RC, Anuta V, Velescu BS, Jinga M, Jinga V. A Short Overview of Recent Developments on Antimicrobial Coatings Based on Phytosynthesized Metal Nanoparticles. Coatings. 2019; 9(12):787. https://doi.org/10.3390/coatings9120787
Chicago/Turabian StyleFierascu, Irina, Ioana Catalina Fierascu, Cristina Elena Dinu-Pirvu, Radu Claudiu Fierascu, Valentina Anuta, Bruno Stefan Velescu, Mariana Jinga, and Viorel Jinga. 2019. "A Short Overview of Recent Developments on Antimicrobial Coatings Based on Phytosynthesized Metal Nanoparticles" Coatings 9, no. 12: 787. https://doi.org/10.3390/coatings9120787
APA StyleFierascu, I., Fierascu, I. C., Dinu-Pirvu, C. E., Fierascu, R. C., Anuta, V., Velescu, B. S., Jinga, M., & Jinga, V. (2019). A Short Overview of Recent Developments on Antimicrobial Coatings Based on Phytosynthesized Metal Nanoparticles. Coatings, 9(12), 787. https://doi.org/10.3390/coatings9120787