Cyclic Hot Corrosion Failure Behaviors of EB-PVD TBC Systems in the Presence of Sulfate and Vanadate Molten Salts
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Substrate Material, and Bond and Top Coatings
2.2. Hot Corrosion Tests
2.3. Characterization
3. Results and Discussion
3.1. Characterization of as-Sprayed Coatings
3.2. Effect of Hot Corrosion on TBC Samples
4. Conclusions
- The structure of metallic bond coat produced with CGDS technique was found to have a denser structure with lower porosity and oxide content due to the production characteristics of the process.
- Along with the hot corrosion effect, the formation of TGO was also observed on the specimens, since the furnace environment in which the hot corrosion tests were conducted was open to the atmosphere.
- The EDS analyses indicate that formations of rod crystal structures observed in the microstructural images obtained from the top surface of TBC systems belong to YVO4 crystals. Chemical reactions of NaVO3, forming as a result of the reaction of Y2O3, Na2SO4, and V2O5 salts penetrating into YSZ top coating, also contributed to the formation of YVO4 crystals.
- The molten salts that leaked from the top coating caused deterioration of the structure with the columnar openings provided by EB-PVD, which played a role in accelerating damage. At the end of the hot corrosion tests, it was determined that the columnar structure was destroyed.
- Along with the YVO4 crystals in rod form, the reasons underlying the failure of coatings in TBC systems were found to be volumetric changes and transformations at the rate of 3%–5% during the cooling process of ZrO2, which has been transformed into monoclinic phase structure from tetragonal phase structure.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ozgurluk, Y.; Doleker, K.M.; Karaoglanli, A.C. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt. Appl. Surf. Sci. 2018, 438, 96–113. [Google Scholar] [CrossRef]
- Sreedhar, G.; Raja, V.S. Hot corrosion of YSZ/Al2O3 dispersed NiCrAlY plasma-sprayed coatings in Na2SO4–10 wt.% NaCl melt. Corros. Sci. 2010, 52, 2592–2602. [Google Scholar] [CrossRef]
- Eliaz, N.; Shemesh, G.; Latanision, R.M. Hot corrosion in gas turbine components. Eng. Fail. Anal. 2002, 9, 31–43. [Google Scholar] [CrossRef]
- Clarke, D.R.; Levi, C.G. Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. 2003, 33, 383–417. [Google Scholar] [CrossRef]
- Karaoglanli, A.C.; Doleker, K.M.; Demirel, B.; Türk, A.; Varol, R. Effect of shot peening on the oxidation behavior of thermal barrier coatings. Appl. Surf. Sci. 2015, 354, 314–322. [Google Scholar] [CrossRef]
- Habibi, M.H.; Wang, L.; Guo, S.M. Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050 °C. J. Eur. Ceram. Soc. 2012, 32, 1635–1642. [Google Scholar] [CrossRef]
- Hui, Y.; Zhao, S.; Xu, J.; Zou, B.; Wang, Y.; Cai, X.; Zhu, L.; Cao, X. High-temperature corrosion behavior of zirconia ceramic in molten Na2SO4 + NaVO3 salt mixture. Ceram. Int. 2016, 42, 341–350. [Google Scholar] [CrossRef]
- Moy, C.K.S.; Cairney, J.; Ranzi, G.; Jahedi, M.; Ringer, S.P. Investigating the microstructure and composition of cold gas-dynamic spray (CGDS) Ti powder deposited on Al 6063 substrate. Surf. Coat. Technol. 2010, 204, 3739–3749. [Google Scholar] [CrossRef]
- Kuzmichew, A.; Tsybulski, L. Evaporators with induction heating and their applications. In Advances in Induction and Microwave Heating of Mineral and Organic Materials; Grundas, S., Ed.; IntechOpen: London, UK, 2011; pp. 269–302. [Google Scholar]
- Burlacov, I.; Jirkovský, J.; Kavan, L.; Ballhorn, R.; Heimann, R.B. Cold gas dynamic spraying (CGDS) of TiO2 (anatase) powders onto poly(sulfone) substrates: Microstructural characterisation and photocatalytic efficiency. J. Photochem. Photobiol. A Chem. 2007, 187, 285–292. [Google Scholar] [CrossRef]
- Wahl, G.; Metz, C.; Samoilenkov, S. Thermal barrier coatings. J. Phys. IV France 2001, 11, Pr3-835–Pr3-846. [Google Scholar] [CrossRef]
- Jiang, S.M.; Peng, X.; Bao, Z.B.; Liu, S.C.; Wang, Q.M.; Gong, J.; Sun, C. Preparation and hot corrosion behaviour of a MCrAlY + AlSiY composite coating. Corros. Sci. 2008, 50, 3213–3220. [Google Scholar] [CrossRef]
- ISO 3274:1996 Geometrical Product Specifications (GPS)–Surface Texture: Profile Method–Nominal Characteristics of Contact (Stylus) Instruments; International Organization for Standardization: Geneva, Switzerland, 1996.
- Afrasiabi, A.; Saremi, M.; Kobayashi, A. A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3. Mater. Sci. Eng. A 2008, 478, 264–269. [Google Scholar] [CrossRef]
- Habibi, M.H.; Wang, L.; Liang, J.; Guo, S.M. An investigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4 + V2O5 salt at 1100 °C. Corros. Sci. 2013, 75, 409–414. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Bakhsheshi-Rad, H.R.; Hamzah, E.; Nazoktabar, M. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones. J. Rare Earths 2014, 32, 989–1002. [Google Scholar] [CrossRef]
- Mensch, A.; Thole, K.A.; Craven, B.A. Conjugate heat transfer measurements and predictions of a blade endwall with a thermal barrier coating. J. Turbomach. 2014, 136, 121003. [Google Scholar] [CrossRef]
- Ajay, A.; Raja, V.S.; Sivakumar, G.; Joshi, S.V. Hot corrosion behavior of solution precursor and atmospheric plasma sprayed thermal barrier coatings. Corros. Sci. 2015, 98, 271–279. [Google Scholar] [CrossRef]
- Mifune, N.; Harada, Y.; Doi, T.; Yamasaki, R. Hot-corrosion behavior of graded thermal barrier coatings formed by plasma-spraying process. J. Therm. Spray Technol. 2004, 13, 561–569. [Google Scholar] [CrossRef]
- Mobarra, R.; Jafari, A.H.; Karaminezhaad, M. Hot corrosion behavior of MCrAlY coatings on IN738LC. Surf. Coat. Technol. 2006, 201, 2202–2207. [Google Scholar] [CrossRef]
- Levi, C.G.; Vidal-Sétif, M.H.; Johnson, C.A.; Hutchinson, J.W. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 2012, 37, 932–941. [Google Scholar] [CrossRef]
- Tsai, P.C.; Lee, J.H.; Hsu, C.S. Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5. Surf. Coat. Technol. 2007, 201, 5143–5147. [Google Scholar] [CrossRef]
- Li, S.; Liu, Z.G.; Ouyang, J.H. Growth of YbVO4 crystals evolved from hot corrosion reactions of Yb2Zr2O7 against V2O5 and Na2SO4 + V2O5. Appl. Surf. Sci. 2013, 276, 653–659. [Google Scholar] [CrossRef]
- Yugeswaran, S.; Kobayashi, A.; Ananthapadmanabhan, P.V. Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barrier coatings. J. Eur. Ceram. Soc. 2012, 32, 823–834. [Google Scholar] [CrossRef]
- Feuerstein, A.; Knapp, J.; Taylor, T.; Ashary, A.; Bolcavage, A.; Hitchman, N. Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: A review. J. Therm. Spray Technol. 2008, 17, 199–213. [Google Scholar] [CrossRef]
- Ghasemi, R.; Shoja-Razavi, R.; Mozafarinia, R.; Jamali, H. The influence of laser treatment on thermal shock resistance of plasma-sprayed nanostructured yttria stabilized zirconia thermal barrier coatings. Ceram. Int. 2014, 40, 347–355. [Google Scholar] [CrossRef]
- Saremi, M.; Valefi, Z.; Abaeian, N. Hot corrosion, high temperature oxidation and thermal shock behavior of nanoagglomerated YSZ–alumina composite coatings produced by plasma spray method. Surf. Coat. Technol. 2013, 221, 133–141. [Google Scholar] [CrossRef]
- Kotlan, J.; Ctibor, P.; Pala, Z.; Homola, P.; Nehasil, V. Improving dielectric properties of plasma sprayed calcium titanate (CaTiO3) coatings by thermal annealing. Ceram. Int. 2014, 40, 13049–13055. [Google Scholar] [CrossRef]
- Mohan, P. Environmental Degradation of Oxidation Resistant and Thermal Barrier Coatings for Fuel-Flexible Gas Turbine Applications. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, May 2010. [Google Scholar]
- Liu, H.F.; Xiong, X.; Li, X.B.; Wang, Y.L. Hot corrosion behavior of Sc2O3–Y2O3–ZrO2 thermal barrier coatings in presence of Na2SO4 + V2O5 molten salt. Corros. Sci. 2014, 85, 87–93. [Google Scholar] [CrossRef]
- Wang, X.; Guo, L.; Peng, H.; Zheng, L.; Guo, H.; Gong, S. Hot-corrosion behavior of a La2Ce2O7/YSZ thermal barrier coating exposed to Na2SO4 + V2O5 or V2O5 salt at 900 °C. Ceram. Int. 2015, 41, 6604–6609. [Google Scholar] [CrossRef]
- Xu, Z.; He, L.; Mu, R.; He, S.; Huang, G.; Cao, X. Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings. Surf. Coat. Technol. 2010, 204, 3652–3661. [Google Scholar] [CrossRef]
- Gavendová, P.; Čížek, J.; Čupera, J.; Hasegawa, M.; Dlouhý, I. Microstructure modification of CGDS and HVOF sprayed CoNiCrAlY bond coat remelted by electron beam. Procedia Mater. Sci. 2016, 12, 89–94. [Google Scholar] [CrossRef]
- Khanna, A.S.; Rathod, W.S. Development of CoNiCrAlY oxidation resistant hard coatings using high velocity oxy fuel and cold spray techniques. Int. J. Refract. Met. Hard Mater. 2015, 49, 374–382. [Google Scholar] [CrossRef]
Surface Roughness | Ra (µm) |
---|---|
Inconel-718 substrate | 5.25 |
CGDS bond coat | 7.20 |
EB-PVD top coat | 7.92 |
Material | Hardness Values (Hv) |
---|---|
Inconel-718 | 203.9 |
CoNiCrAlY Bond Coat | 407.9 |
YSZ Top Coat | 713.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozgurluk, Y.; Doleker, K.M.; Ozkan, D.; Ahlatci, H.; Karaoglanli, A.C. Cyclic Hot Corrosion Failure Behaviors of EB-PVD TBC Systems in the Presence of Sulfate and Vanadate Molten Salts. Coatings 2019, 9, 166. https://doi.org/10.3390/coatings9030166
Ozgurluk Y, Doleker KM, Ozkan D, Ahlatci H, Karaoglanli AC. Cyclic Hot Corrosion Failure Behaviors of EB-PVD TBC Systems in the Presence of Sulfate and Vanadate Molten Salts. Coatings. 2019; 9(3):166. https://doi.org/10.3390/coatings9030166
Chicago/Turabian StyleOzgurluk, Yasin, Kadir Mert Doleker, Dervis Ozkan, Hayrettin Ahlatci, and Abdullah Cahit Karaoglanli. 2019. "Cyclic Hot Corrosion Failure Behaviors of EB-PVD TBC Systems in the Presence of Sulfate and Vanadate Molten Salts" Coatings 9, no. 3: 166. https://doi.org/10.3390/coatings9030166
APA StyleOzgurluk, Y., Doleker, K. M., Ozkan, D., Ahlatci, H., & Karaoglanli, A. C. (2019). Cyclic Hot Corrosion Failure Behaviors of EB-PVD TBC Systems in the Presence of Sulfate and Vanadate Molten Salts. Coatings, 9(3), 166. https://doi.org/10.3390/coatings9030166