Ammonium-Induced Synthesis of Highly Fluorescent Hydroxyapatite Nanoparticles with Excellent Aqueous Colloidal Stability for Secure Information Storage
Abstract
:1. Introduction
- Synthesizing highly fluorescent hydroxyapatite nanoparticles without sacrificing colloidal stability;
- Rendering the synthesized fluorescent hydroxyapatite more bio-compatible, such as by using neither quantum dots nor fluorescent dyes;
- Rendering synthesis facile and not using expensive rare earth elements.
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Hydroxyapatite Nanoparticles
2.2.2. Secure Information Storage Based on Fluorescent Hydroxyapatite Colloidal Dispersion
2.3. Characterization
3. Results
3.1. Effect of RAMP and Hydrothermal Time on the Physicochemical Properties of the Product
3.1.1. XRD Patterns Analysis
3.1.2. Fluorescence Behavior Analysis
3.1.3. Colloidal Stability Analysis
3.1.4. Morphology Analysis
3.1.5. XPS Analysis
3.1.6. Elemental Analysis
3.1.7. FTIR Analysis
4. Discussion
- All involve ammonium and citrate ions;
- The maximum excitation and emission wavelengths are 340 and 440 nm, respectively;
- All require hydrothermal treatment.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, L.; Nancollas, G.H. Calcium orthophosphates: Crystallization and dissolution. Chem. Rev. 2008, 108, 4628–4669. [Google Scholar] [CrossRef]
- Qi, C.; Lin, J.; Fu, L.H.; Huang, P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem. Soc. Rev. 2018, 47, 357–403. [Google Scholar] [CrossRef]
- Iannotti, V.; Adamiano, A.; Ausanio, G.; Lanotte, L.; Aquilanti, G.; Coey, J.M.; Lantieri, M.; Spina, G.; Fittipaldi, M.; Margaris, G.; Trohidou, K.; et al. Fe-doping-induced magnetism in nano-hydroxyapatites. Inorg. Chem. 2017, 56, 4446–4458. [Google Scholar] [CrossRef]
- Chen, X.; Jin, X.; Tan, J.; Li, W.; Chen, M.; Yao, L.; Yang, H. Large-scale synthesis of water-soluble luminescent hydroxyapatite nanorods for security printing. J. Colloid Interface Sci. 2016, 468, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, X.; Mao, H.; Li, T.; Zhao, R.; Yan, Y.; Pang, X. Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method. RSC Adv. 2015, 5, 17076–17086. [Google Scholar] [CrossRef]
- Samani, S.; Hossainalipour, S.M.; Tamizifar, M.; Rezaie, H.R. In vitro antibacterial evaluation of sol-gel-derived Zn-, Ag-, and (Zn + Ag)-doped hydroxyapatite coatings against methicillin-resistant Staphylococcus aureus. J. Biomed. Mater. Research. Part A 2013, 101, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, C.S.; Massuyeau, F.; Constantin, L.V.; Predoi, D. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100 degrees C. Nanoscale Res. Lett. 2011, 6, 613. [Google Scholar] [CrossRef]
- Schumacher, M.; Henss, A.; Rohnke, M.; Gelinsky, M. A novel and easy-to-prepare strontium(II) modified calcium phosphate bone cement with enhanced mechanical properties. Acta Biomater. 2013, 9, 7536–7544. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.; Cui, Z.; Li, Z.; Zhu, S.; Liang, Y.; Lu, W.W.; Yang, X. Synthesis, characterization and the formation mechanism of magnesium- and strontium-substituted hydroxyapatite. J. Mater. Chem. B 2015, 3, 3738–3746. [Google Scholar] [CrossRef]
- Li, C.; Zhao, L.; Han, J.; Wang, R.; Xiong, C.; Xie, X. Synthesis of citrate-stabilized hydrocolloids of hydroxyapatite through a novel two-stage method: A possible aggregates-breakdown mechanism of colloid formation. J. Colloid Interface Sci. 2011, 360, 341–349. [Google Scholar] [CrossRef]
- Jin, X.; Chen, X.; Cheng, Y.; Wang, L.; Hu, B.; Tan, J. Effects of hydrothermal temperature and time on hydrothermal synthesis of colloidal hydroxyapatite nanorods in the presence of sodium citrate. J. Colloid Interface Sci. 2015, 450, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhuang, J.; Zhang, Z.; Guo, H.; Tan, J. Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH. J. Colloid Interface Sci. 2015, 443, 125–130. [Google Scholar] [CrossRef]
- Ridi, F.; Meazzini, I.; Castroflorio, B.; Bonini, M.; Berti, D.; Baglioni, P. Functional calcium phosphate composites in nanomedicine. Adv. Colloid Interface Sci. 2017, 244, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Teotia, A.K.; Raina, D.B.; Singh, C.; Sinha, N.; Isaksson, H.; Tagil, M.; Lidgren, L.; Kumar, A. Nano-hydroxyapatite bone substitute functionalized with bone active molecules for enhanced cranial bone regeneration. ACS Appl. Mater. Interfaces 2017, 9, 6816–6828. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Gu, X.; Yang, Y.; Huang, J.; Hu, M.; Chen, W.; Tong, Z.; Wang, C. Facile fabrication of poly(l-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates. ACS Appl. Mater. Interfaces 2014, 6, 17166–17175. [Google Scholar] [CrossRef]
- Fernando, M.S.; de Silva, R.M.; de Silva, K.M.N. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions. Appl. Surf. Sci. 2015, 351, 95–103. [Google Scholar] [CrossRef]
- Googerdchian, F.; Moheb, A.; Emadi, R.; Asgari, M. Optimization of Pb(II) ions adsorption on nanohydroxyapatite adsorbents by applying Taguchi method. J. Hazard. Mater. 2018, 349, 186–194. [Google Scholar] [CrossRef]
- Victor, S.P.; Gayathri Devi, M.G.; Paul, W.; Vijayan, V.M.; Muthu, J.; Sharma, C.P. Europium doped calcium deficient hydroxyapatite as theranostic nanoplatforms: Effect of structure and aspect ratio. ACS Biomater. Sci. Eng. 2017, 3, 3588–3595. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Xu, J.; Huang, L.; Qiu, T.; Zhong, S. Interconnectivity of macroporous molecularly imprinted polymers fabricated by hydroxyapatite-stabilized Pickering high internal phase emulsions-hydrogels for the selective recognition of protein. Colloids Surf. Biointerfaces 2017, 155, 142–149. [Google Scholar] [CrossRef]
- Li, P.; Li, L.; Zhao, Y.; Sun, L.; Zhang, Y. Selective binding and magnetic separation of histidine-tagged proteins using Fe3O4/Cu-apatite nanoparticles. J. Inorg. Biochem. 2016, 156, 49–54. [Google Scholar] [CrossRef]
- Das, P.; Jana, N.R. Length-Controlled Synthesis of Calcium Phosphate Nanorod and Nanowire and Application in Intracellular Protein Delivery. ACS Appl. Mater. Interfaces 2016, 8, 8710–8720. [Google Scholar] [CrossRef]
- Heng, C.; Zheng, X.; Liu, M.; Xu, D.; Huang, H.; Deng, F.; Hui, J.; Zhang, X.; Wei, Y. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications. Appl. Surf. Sci. 2016, 386, 269–275. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, M.; Hui, J.; Fan, D.; Ma, H.; Zhang, X.; Wang, Y.; Wei, Y. Ln(3+)-doped hydroxyapatite nanocrystals: Controllable synthesis and cell imaging. Phys. Chem. Chem. Phys. Pccp 2015, 17, 20301–20307. [Google Scholar] [CrossRef]
- Hui, J.; Wang, X. Luminescent, colloidal, F-substituted, hydroxyapatite nanocrystals. Chemistry 2011, 17, 6926–6930. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, D.; Lian, J.; Dong, Z.; Wang, W.; Cho, H.; Liu, G.; Wang, L.; Ewing, R.C. Quantum dot conjugated hydroxylapatite nanoparticles for in vivo imaging. Nanotechnology 2008, 19, 175102. [Google Scholar] [CrossRef]
- Liu, H.; Chen, F.; Xi, P.; Chen, B.; Huang, L.; Cheng, J.; Shao, C.; Wang, J.; Bai, D.; Zeng, Z. Biocompatible Fluorescent Hydroxyapatite: Synthesis and Live Cell Imaging Applications. J. Phys. Chem. C 2011, 115, 18538–18544. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Huang, S.; Hou, Z.; Cheng, Z.; Yang, P.; Peng, C.; Lin, J. Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 2010, 31, 3374–3383. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, D.P.; Ye, S.; Zhao, X. Strontium-substituted, luminescent and mesoporous hydroxyapatite microspheres for sustained drug release. J. Mater. Sci. Mater. Med. 2014, 25, 391–400. [Google Scholar] [CrossRef]
- Singh, R.K.; Kim, T.-H.; Patel, K.D.; Kim, J.-J.; Kim, H.-W. Development of biocompatible apatite nanorod-based drug-delivery system with in situ fluorescence imaging capacity. J. Mater. Chem. B 2014, 2, 2039. [Google Scholar] [CrossRef]
- Jiang, D.; Zhao, H.; Yang, Y.; Zhu, Y.; Chen, X.; Sun, J.; Yu, K.; Fan, H.; Zhang, X. Investigation of luminescent mechanism: N-rich carbon dots as luminescence centers in fluorescent hydroxyapatite prepared using a typical hydrothermal process. J. Mater. Chem. B 2017, 5, 3749–3757. [Google Scholar] [CrossRef]
- Loo, S.C.; Siew, Y.E.; Ho, S.; Boey, F.Y.; Ma, J. Synthesis and hydrothermal treatment of nanostructured hydroxyapatite of controllable sizes. J. Mater. Sci. Mater. Med. 2008, 19, 1389–1397. [Google Scholar] [CrossRef]
- Kusnieruk, S.; Wojnarowicz, J.; Chodara, A.; Chudoba, T.; Gierlotka, S.; Lojkowski, W. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles. Beilstein J. Nanotechnol. 2016, 7, 1586–1601. [Google Scholar] [CrossRef]
- Delgado-Lopez, J.M.; Frison, R.; Cervellino, A.; Gomez-Morales, J.; Guagliardi, A.; Masciocchi, N. Crystal size, morphology, and growth mechanism in bio-inspired apatite nanocrystals. Adv. Funct. Mater. 2014, 24, 1090–1099. [Google Scholar] [CrossRef]
- Santos, C.; Almeida, M.M.; Costa, M.E. Morphological evolution of hydroxyapatite particles in the presence of different citrate:Calcium ratios. Cryst. Growth Des. 2015, 15, 4417–4426. [Google Scholar] [CrossRef]
- Ibsen, C.J.S.; Chernyshov, D.; Birkedal, H. Apatite formation from amorphous calcium phosphate and mixed amorphous calcium phosphate/amorphous calcium carbonate. Chem.-Eur. J. 2016, 22, 12347–12357. [Google Scholar] [CrossRef]
- Zhu, S.; Zhao, X.; Song, Y.; Lu, S.; Yang, B. Beyond bottom-up carbon nanodots: Citric-acid derived organic molecules. Nano Today 2016, 11, 128–132. [Google Scholar] [CrossRef]
- Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 2012, 24, 2037–2041. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, L.; Fang, J.; Feng, X. Bio-nanoplatforms based on carbon dots conjugating with F-substituted nano-hydroxyapatite for cellular imaging. Nanoscale 2015, 7, 20033–20041. [Google Scholar] [CrossRef]
- Morgan, H.; Wilson, R.M.; Elliott, J.C.; Dowker, S.E.P.; Anderson, P. Preparation and characterisation of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate. Biomaterials 2000, 21, 617–627. [Google Scholar] [CrossRef]
- Max, J.-J.; Chapados, C. Infrared spectroscopy of aqueous carboxylic acids: Comparison between different acids and their salts. J. Phys. Chem. A 2004, 108, 3324–3337. [Google Scholar] [CrossRef]
- Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. 2013, 52, 3953–3957. [Google Scholar] [CrossRef]
- Delgado-Lopez, J.M.; Iafisco, M.; Rodriguez, I.; Tampieri, A.; Prat, M.; Gomez-Morales, J. Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomater. 2012, 8, 3491–3499. [Google Scholar] [CrossRef] [PubMed]
- Manuel Delgado-López, J.; Bertolotti, F.; Lyngsø, J.; Skov Pedersen, J.; Cervellino, A.; Masciocchi, N.; Guagliardi, A. The synergic role of collagen and citrate in stabilizing amorphous calcium phosphate precursors with platy morphology. Acta Biomater. 2017, 49, 555–562. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, J.; Zhang, R.; Liu, Y.; Liu, D.; Goldys, E.M.; Yang, X.; Xi, P.; Sunna, A.; Lu, J.; Shi, Y.; et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics 2013, 8, 32–36. [Google Scholar] [CrossRef]
- Deng, C.; Yang, Z.; Zheng, Z.; Liu, N.; Ling, J. Photoluminescent nanoparticles in water with tunable emission for coating and ink-jet printing. J. Mater. Chem. C 2015, 3, 3666–3675. [Google Scholar] [CrossRef]
- Han, T.; Yuan, Y.; Liang, X.; Zhang, Y.; Xiong, C.; Dong, L. Colloidal stable quantum dots modified by dual functional group polymers for inkjet printing. J. Mater. Chem. C 2017, 5, 4629–4635. [Google Scholar] [CrossRef]
- Yang, R.L.; Zhu, Y.J.; Chen, F.F.; Dong, L.Y.; Xiong, Z.C. Luminescent, fire-resistant, and water-proof ultralong hydroxyapatite nanowire-based paper for multimode anticounterfeiting applications. ACS Appl. Mater. Interfaces 2017, 9, 25455–25464. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, J.; Quan, Z.; Yang, P.; Li, C.; Hou, Z.; Lin, J. Hydroxyapatite nano- and microcrystals with multiform morphologies: Controllable synthesis and luminescence properties. Cryst. Growth Des. 2009, 9, 2725–2733. [Google Scholar] [CrossRef]
- Zhang, C.; Cheng, Z.; Yang, P.; Xu, Z.; Peng, C.; Li, G.; Lin, J. Architectures of strontium hydroxyapatite microspheres: Solvothermal synthesis and luminescence properties. Langmuir 2009, 25, 13591–13598. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Kim, T.H.; Patel, K.D.; Mahapatra, C.; Dashnyam, K.; Kang, M.S.; Kim, H.W. Novel hybrid nanorod carriers of fluorescent hydroxyapatite shelled with mesoporous silica effective for drug delivery and cell imaging. J. Am. Ceram. Soc. 2014, 97, 3071–3076. [Google Scholar] [CrossRef]
- Singh, R.K.; Kim, T.H.; Mahapatra, C.; Patel, K.D.; Kim, H.W. Preparation of self-activated fluorescence mesoporous silica hollow nanoellipsoids for theranostics. Langmuir 2015, 31, 11344–11352. [Google Scholar] [CrossRef]
- Wang, C.; Liu, D.D.; Zhang, C.M.; Sun, J.D.; Feng, W.P.; Liang, X.J.; Wang, S.X.; Zhang, J.C. Defect-related luminescent hydroxyapatite-enhanced osteogenic differentiation of bone mesenchymal stem cells via an atp-induced camp/pka pathway. ACS Appl. Mater. Interfaces 2016, 8, 11262–11271. [Google Scholar] [CrossRef]
- Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L.; Li, D.; Tan, H.; Zhao, Z.; Xie, Z.; Sun, Z. Highly luminescent s, n co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 2013, 5, 12272–12277. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xu, M.; Liu, Y.; He, F.; Gao, F.; Su, Y.; Wei, H.; Zhang, Y. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 2014, 6, 1890–1895. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.L.; Gao, M.X.; Wang, T.T.; Wan, X.Y.; Zheng, L.L.; Huang, C.Z. A general quantitative pH sensor developed with dicyandiamide n-doped high quantum yield graphene quantum dots. Nanoscale 2014, 6, 3868–3874. [Google Scholar] [CrossRef]
- Ju, J.; Zhang, R.Z.; He, S.J.; Chen, W. Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Adv. 2014, 4, 52583–52589. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, W.H.; Qiu, L.P.; Jiang, X.W.; Zuo, D.Y.; Wang, D.K.; Yang, L. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale 2015, 7, 6104–6113. [Google Scholar] [CrossRef]
- Yang, H.; Long, Y.W.; Li, H.X.; Pan, S.; Liu, H.; Yang, J.D.; Hu, X.L. Carbon dots synthesized by hydrothermal process via sodium citrate and nh4hco3 for sensitive detection of temperature and sunset yellow. J. Colloid Interface Sci. 2018, 516, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Khan, W.U.; Tang, Z.B.; Wang, Y.H. Applicability evaluation of bright green-emitting carbon dots in the solid state for white light-emitting diodes. Chem. Asian J. 2018, 13, 292–298. [Google Scholar] [CrossRef]
- Ren, G.; Meng, Y.; Zhang, Q.; Tang, M.; Zhu, B.; Chai, F.; Wang, C.; Su, Z. Nitrogen-doped carbon dots for the detection of mercury ions in living cells and visualization of latent fingerprints. New J. Chem. 2018, 42, 6824–6830. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Q.; Yuan, Y.; Wu, Y. Hydrothermal synthesis of fluorescent carbon dots from sodium citrate and polyacrylamide and their highly selective detection of lead and pyrophosphate. Carbon 2017, 115, 550–560. [Google Scholar] [CrossRef]
- Xu, Q.; Li, B.; Ye, Y.; Cai, W.; Li, W.; Yang, C.; Chen, Y.; Xu, M.; Li, N.; Zheng, X.; et al. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Res. 2018, 11, 3691–3701. [Google Scholar] [CrossRef]
- Lu, S.; Wu, D.; Li, G.; Lv, Z.; Chen, Z.; Chen, L.; Chen, G.; Xia, L.; You, J.; Wu, Y. Carbon dots-based ratiometric nanosensor for highly sensitive and selective detection of mercury(ii) ions and glutathione. RSC Adv. 2016, 6, 103169–103177. [Google Scholar] [CrossRef]
Improved Property or Applications | References |
---|---|
Rendered magnetic by introducing iron ions | [3] |
Rendered fluorescent by introducing rare earth elements | [4] |
Catalytic and antibacterial properties imparted by introducing silver, copper, or zinc ions | [5,6,7] |
Enhanced biological activity and mechanical performance by introducing cesium ions | [8,9] |
Stable colloidal stability due to surface modification of citrate | [10,11,12] |
Utility in drug delivery and other applications due to molecular (drug) adsorption | [13] |
Good blending with polymers to form nanocomposites due to surface modification by surfactants | [14] |
Samples | D[002] (nm) | D[310] (nm) | D[002]/D[310] |
---|---|---|---|
100%-0.5 h | 19.5 | 8.4 | 2.3 |
50%-0.5 h | 17.7 | 5.6 | 3.2 |
50%-0.5 h | 23.4 | 6.9 | 3.4 |
0%-0.5 h | 14.8 | 4.1 | 3.6 |
100%-2 h | 28.4 | 17.0 | 1.7 |
50%-2 h | 27.3 | 12.6 | 2.2 |
5%-2 h | 24.9 | 19.9 | 1.3 |
0%-2 h | 25.8 | 8.7 | 3.0 |
100%-4 h | 31.1 | 14.0 | 2.2 |
50%-4 h | 30.7 | 13.3 | 2.3 |
5%-4 h | 32.0 | 8.1 | 4.0 |
0%-4 h | 33.3 | 8.2 | 4.1 |
RAMP (%) | Fluorescence Lifetime (ns) | Absolute Quantum Yield (%) |
---|---|---|
5 | 7.4553 | 47.20 |
50 | 7.9083 | 73.80 |
100 | 8.7402 | 65.95 |
XPS Wide Spectrum a | High-Resolution C 1s Spectrum a | High-Resolution N 1s Spectrum a | |||
---|---|---|---|---|---|
Peak (eV) | Element Confirmed | Peak (eV) | Bond Confirmed | Peak (eV) | Bond Confirmed |
285.0 | C 1s | 284.6 | C–C/C–H | 399.8 | C–N |
399.0 | N 1s | 286.0 | C–N | 401.9 | N–H |
532.0 | O 1s | 288.0 | C=O | – | – |
437.8 | Ca 2s | – | – | – | – |
346.6 | Ca 2p | – | – | – | – |
189.0 | P 2s | – | – | – | – |
130.6 | P 2p | – | – | – | – |
Peak (cm−1) | Functional Group Confirmed |
---|---|
3570, 632 | OH− stretching modes and vibrations |
3430 (broad) | OH vibration of absorbed water |
473, 565, 605, 962, 1033, 1093 | PO43− absorption [12] |
1415, 1454 | CO32− replacing PO43− [39] |
2925, 2854 (weak peaks) | –CH2 groups |
1573 (comparatively strong) | COO− and/or N–H, possibly derived from the citrate chelating ligands or carbon dots within the HA particles [40,41]. |
Source of Nitrogen | D (nm) | PDI | Zeta Potential (mV) | EX (nm) | EM (nm) | XRD |
---|---|---|---|---|---|---|
Arginine | 85.0 (±38.3) | 0.124 | −36.0 (±1.2) | 340 | 420 | Pure HA |
Urea | 101.1 (±40.1) | 0.117 | −34.2 (±0.6) | 340 | 427 | Pure HA |
Ethylenediamine | 107.5 (±46.5) | 0.112 | −33.8 (±0.9) | 340 | 443 | Pure HA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Tong, K.; Fang, Y.; Wang, J.; Liu, Y.; Tan, J. Ammonium-Induced Synthesis of Highly Fluorescent Hydroxyapatite Nanoparticles with Excellent Aqueous Colloidal Stability for Secure Information Storage. Coatings 2019, 9, 289. https://doi.org/10.3390/coatings9050289
Cheng C, Tong K, Fang Y, Wang J, Liu Y, Tan J. Ammonium-Induced Synthesis of Highly Fluorescent Hydroxyapatite Nanoparticles with Excellent Aqueous Colloidal Stability for Secure Information Storage. Coatings. 2019; 9(5):289. https://doi.org/10.3390/coatings9050289
Chicago/Turabian StyleCheng, Cheng, Kun Tong, Yajun Fang, Jintao Wang, Yang Liu, and Junjun Tan. 2019. "Ammonium-Induced Synthesis of Highly Fluorescent Hydroxyapatite Nanoparticles with Excellent Aqueous Colloidal Stability for Secure Information Storage" Coatings 9, no. 5: 289. https://doi.org/10.3390/coatings9050289
APA StyleCheng, C., Tong, K., Fang, Y., Wang, J., Liu, Y., & Tan, J. (2019). Ammonium-Induced Synthesis of Highly Fluorescent Hydroxyapatite Nanoparticles with Excellent Aqueous Colloidal Stability for Secure Information Storage. Coatings, 9(5), 289. https://doi.org/10.3390/coatings9050289