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Abstract: This review presents the latest processes for designing anode materials to improve the
efficiency of water photolysis. Based on different contributions towards the solar-to-hydrogen
efficiency, we mainly review the strategies to enhance the light absorption, facilitate the charge
separation, and enhance the surface charge injection. Although great achievements have been
obtained, the challenges faced in the development of anode materials for solar energy to make water
splitting remain significant. In this review, the major challenges to improve the conversion efficiency
of photoelectrochemical water splitting reactions are presented. We hope that this review helps
researchers in or coming to the field to better appreciate the state-of-the-art, and to make a better
choice when they embark on new research in photocatalytic water splitting.
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1. Introduction

Nowadays, it is becoming the world’s biggest challenge to meet the increasing energy demand
by developing new sustainable substitution energy and reducing carbon dioxide emission. Overall,
water splitting using sunlight is identified as a promising technology for production of renewable fuels
and chemicals without causing environmental pollution.

In a photoelectrochemical cell for solar water-splitting, there are three main elements; namely,
an anode, a cathode, and an electrolyte. At the anode, the oxygen evolution reaction (OER) will happen,
while through the hydrogen evolution reaction (HER), hydrogen forms at the cathode, as shown in
reactions R1 and R2 [1].

R1 : 2H2O(l)→ 4e− + 4H+ + O2(g) (1)

R2 : 4H+(aq) + 4e− → 2H2 (2)

The two half-reactions constitute the overall water splitting process (2H2O→ 2H2 + O2), with the
thermodynamic threshold energy E0 = 1.23 eV. Although both reactions are important for the overall
water splitting efficiency, the process is mainly hindered by the hypokinetic four-electron water
oxidation. Based on electron transfer process, OER can be divided into four reaction paths with 1.23 eV
in the surface site (denoted by the * symbol) of anode materials for thermodynamic threshold energy,
as shown in reactions R3 to R6 [2].

R3 : H2O + ∗ ↔ OH∗ + H+ + e− (3)
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R4 : OH∗ ↔ O∗ + H+ + e− (4)

R5 : O∗ + H2O↔ OOH∗ + H+ + e− (5)

R6 : OOH∗ ↔ O2 + H+ + e− (6)

After the Honda–Fujishima effect was discovered in the early 1970s [3], intensive studies
were carried out for photoelectrochemical (PEC) water splitting on semiconducting materials.
The semiconducting anode materials will greatly determine the efficiency of absorbing light, suitable
over-potential, and stability. It is challenging to develop efficient new anode materials or improve the
ability of existing anode materials. Consequently, extensive efforts were implemented to improve the
efficiency of anode materials; for example, TiO2, α-Fe2O3, WO3, and BiVO4 [4]. However, there is still
lack of cheap and stable photoanode materials with sufficient efficiency for water oxidation. Although
significant progress has been made by developing new materials, nanostructures, and other novel
concepts over the past decades, efficiencies are still below our expectations. Therefore, to assist future
development, we wish to summarize the strategies to develop anode materials for improved efficiency
in PEC water splitting in a concise manner. It is up to the readers to decide how different strategies
could be applied in their specific applications, or to apply them synergistically in some situations.

The solar-to-hydrogen (STH) efficiency is an important metric for benchmarking and performance
evaluation. The STH for a PEC system constructed by photoelectrodes can be expressed by [5]:

STH =
JP × 1.23

I0
× 100% (7)

where JP is the photocurrent observed from the experiment, I0 is the power intensity of the sunlight.
The number 1.23 in the equation is the approximated value of the threshold energy for water splitting
which requires the bandgap energy of any possible photoanode lager than 1.23 eV. For a photoelectrode,
JP is determined by the photogeneration absorption efficiency (ηabs), the product of the injection
efficiency (ηsep), and the injection efficiency (ηinj) of the photogenerated carrier to the reactant [6],
which can be described by:

JP = J0 × ηabs × ηsep × ηinj (8)

where J0 is the theoretical photocurrent when 100% of the photons in the solar spectrum with energies
exceeding the bandgap are absorbed and converted. Theoretical STH and solar photocurrent of a
photoelectrode under AM 1.5 G irradiation (100 mW·cm−2) are displayed in Figure 1 [6].
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Figure 1. Dependence of theoretical solar-to-hydrogen (STH) efficiency and solar photocurrent density
of photoelectrodes on their bandgap absorption edges. Reprinted with permission from ref. [5].
Copyright 2013. The Royal Society of Chemistry.
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Thus, to achieve efficient PEC water splitting, several key criteria must be met, as shown in
Figure 2: (1) wide range of light absorption of a material that can utilize more energy from sunlight;
(2) effective generation of the charges and their transportation from the internal electrode to the
photoelectric surface; (3) fast reaction of photogenerated carriers on the surface. Therefore, we will
summarize recent progress of improving those efficiencies separately.
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Figure 2. Schematic illustration of the three efficiencies of photoelectrochemical (PEC) water splitting
for enhancing performance.

In this review, we summarize recent progress in the development of anode materials for
photoelectrochemical water splitting, which are mainly based on our research work. This is carried
out through a review of the strategies to enhance the light absorption, facilitate the charge separation,
and enhance the surface charge injection. Finally, we share our critical views on the remaining
challenges in this field.

2. Strategies to Enhance the Light Absorption

Generally, light absorption of a photoelectrode depends on its bandgap. For a known
photoelectrode with a fixed bandgap, the film thickness and structure would affect its light absorption
efficiency. Some reported strategies used to enhance the light absorption are summarized below.

2.1. Nanostructure Formation

Nanostructure is a good way to capture the scattered light if the light is not absorbed immediately
after it reaches the surface. Nanostructure formation is a well-known strategy for silicon solar cells
to reduce reflection loss and increase the energy conversion efficiency [7]. Similarly, nanostructure
construction is proven effective in improving the light capture in PEC electrodes [8]. It has been
reported that multiple light scattering in engineered tapered nanostructures enhances light absorption.
(Figure 3) [9]. With a nanoporous Mo:BiVO4 layer on the engineering conical nanophotonic structure
combined with a solar cell, a STH efficiency of 6.2% was realized. Zhou et al. reported a hierarchical
BiVO4 photoelectrode, which consists of small nanoparticles and voids, could induce efficient light
harvesting due to multiple light scattering [6]. Kim reported high-efficiency light absorption of GaN
truncated nanocones. The truncated nanocones can trap the light within the nanostructure; thus, light
loss, which is caused by surface reflection, is reduced. The TiO2 solar cell prepared by using a 1D
nanowire array can have a light conversion efficiency of up to 5.02%, which is much higher than that of a
simple TiO2 powder [10].
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2.2. Band Engineering

To reduce the band gap of semiconductors, one commonly adopted and promising strategy is to
add a foreign element (doping). Doping of foreign elements may include adding cation(s), anion(s),
or adding cation(s) and anion(s) at same time.

Addition of cations usually induces a shallow valence band in the wide band gap through the
hybrid valence orbital [11]. In metal oxide photocatalysts, incorporation of metal ions will introduce
a donor level by hybridizing the O 2p valence orbitals with a metal ion having high-lying valence
orbitals, such as Bi(III), Ag(I), Sn(II), Pb(II), or Cu(I). The crystal structure and the amount of metal
incorporated greatly affect the contribution of the valence band. For example, in a MoO3 electrode, Li+,
Na+, and Mg2+ can greatly reduce the gap of the band [12,13]. Thus, modulating the band structure by
cation doping is considered to be effective at the atomic level.

Anion doping has been employed to shift the absorption edge from the UV to the visible region;
indeed, it is one of the strategies to enhance the light absorption. A lot of attention has been paid
to nonmetal doping into TiO2 to tune the light absorption, such as N doping as well as C, F, S,
B doping [14]. For example, N and B doping greatly expands the light absorption to 700 nm [15]. Also,
O incorporation in MoS2 is able to improve the hybridization between Mo d-orbital and S p-orbital,
resulting in a much smaller band gap [16]. Similarly, replacement of O by N in Ta2O5 induces a
narrowed bandgap; for example, it was observed that the absorption was extended from 320 to 500 nm
by N-doping (Figure 4) [17]. Simultaneously adding cations and anions can greatly change the band
structure for enhancing the light absorption; e.g., the band gap of GaN is about 3.4 eV and the band
gap of ZnO is 3.2 eV (Figure 5). However, the solid solution of GaN and ZnO narrowed the band gap
to around 2.58 eV with visible light response [18]. This strategy provides us with a powerful method
for adjusting the bandgap of photoelectrode materials through band engineering.

Another strategy for enlarging the light absorption is by intrinsic doping, such as introducing
oxygen vacancy in oxides. The typical example is black TiO2, in which lots of Ti3+ species are generated
accompanied with the oxygen vacancy, being self-doping [19,20]. Doping and presence of lattice
vacancies introduce midgap states which form the band tails and narrow the band gap. The light
absorption of TiO2 was enlarged to around 1000 nm from the 400 nm of white TiO2. However, it is
noted that the enlarged light absorption has little contribution to the enhanced performance, because
the there is little visible light response for the black TiO2 (Figure 6) [21]. The enhanced performance is
possibly from the better conductivity.
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2.3. Dual Absorber

Wang et al. reported extraordinary PEC performance by using dual BiVO4 photoanodes made
of two BiVO4 which has the same transparency (Figure 7) [22]. The second electrode can use the
transmitted light unabsorbed by the first electrode. It was found that the enhanced performance was
mainly because of the higher light utilization rate in the airway scope of band edge (400–520 nm).
A similar strategy was employed by Kim et al. with a different absorber; BiVO4 in the front, and
Fe2O3 behind BiVO4 (Figure 8) [23]. This can further utilize the solar light, because Fe2O3 has a
smaller bandgap than BiVO4; thus, the transmitted light can be utilized by Fe2O3. This has increased
the efficiency of hydrogen conversion to 7.7%. Wang et al. reported PEC water splitting using a
hematite/Si nanowire dual-absorber system, which yielded a lower onset potential [24]. In their work,
hematite was coated on the surface of Si nanowire, and the transmitted light through hematite was
utilized by Si. The generated electrons of hematite combine with the holes generated on Si. Thus,
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holes generated on hematite are used for water oxidation, and at the same time, electrons generated
on Si are used for reduction reaction. The match of the band edge positions of the two absorbers is
important. A double absorber series battery was reported by Sivula et al., in which the light transmitted
through the photoelectrode material is utilized by the dye-sensitized solar cells (DSSC) that provides
the bias needed by the photoelectrode [25]. This concept is very useful in tandem PEC cells, which
do not need additional bias and can increase the solar conversion efficiency. Besides, Chang and Ye
also added Co3O4 and carbon quantum dot (CQDs) components on the surface of BiVO4 to enlarger
light absorption range [26,27]. For instance, CQDs decorated BiVO4 photoanode cocatalyzed by a
bi-layered Ni-FeOOH oxygen evolution catalyst have obtained an outstanding photocurrent density of
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3. Strategies to Improve the Charge Separation

3.1. Doping

Doping is proved to be an effective way to improve the conductivity of semiconducting compounds
and thus increase the charge separation efficiency [5]. Zhao et al. reported that extrinsic Ti doping and
oxygen vacancy generation (intrinsic doping) have greatly enhanced the PEC performance of hematite
(Figure 9) [31]. In another example, incorporation of Mo6+ into a partial site of V5+ in BiVO4 not only
has changed the crystal symmetry of BiVO4 and introduced some polarons, but also provided more
free carriers (electrons) which facilitate the charge transport [32,33].

Exploration of new materials with suitable band position and narrow bandgap for water splitting
is still a vital issue. Since doping is proven as an effective method to ameliorate the efficiency through
improved conductivity, this method is usually combined with the design and synthesis of new PEC
electrode materials. Recently, the performance of a new promising material, Zn2FeO4, for PEC water
splitting was improved by Ti doping (Figure 10) [34]. Lumley et al. reported that the performance of
Cu11V6O26 was enhanced after doping by Mo or W [35]. Jo et al. found the 0.5% PO4-doped BiVO4

can lower the charge transfer resistance of BiVO4 remarkably, about 30 times higher than that of BiVO4

before doping [36].
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Figure 10. The photocurrents of (a) ZnFe2O4 photoanodes and Ti-doped ZnFe2O4 photoanodes in
1 M NaOH aqueous solution under AM 1.5 G illumination (100 mW·cm−2); (c) IPCE spectrum of
Ti-doped ZnFe2O4 and pure ZnFe2O4 in range from 330 to 589 nm at different applied potential;
(d) Mott–Schottky plots of pure Ti-doped ZnFe2O4 and ZnFe2O4 photoanodes in 1 M NaOH, the AC
amplitude is 5 mV and the frequency is 1000 Hz. Reprinted with permission from ref. [34]. Copyright
2018. American Chemical Society.
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One special doping is gradient doping, which means that the dopant concentration varies from
surface to the bulk. In such a case, the band bending not only occurs on the surface, but also in the bulk,
which provides an electric field throughout the bulk material. It is easier for the carriers to separate and
transport to the surface in a gradient electrode. Yang et al. investigated how gradient doping affects a
GaAs photocathode and found that both the escape probability and the diffusion length increased
when compared with uniform doping [37]. Abdi et al. synthesized a doped W gradually decreased
BiVO4 from 1% to 0% between the interface of the FTO/semiconductor and semiconductor/electrolyte
(Figure 11) [38]. Based on their experiment, the efficiency of charge separation increases to ~60%,
while the efficiency of charge separation is ~38% for equally doped BiVO4 (Figure 12).Coatings 2017, 7, x FOR PEER REVIEW  8 of 19 
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diameter of nanowires ensures short hole diffusion path lengths. Reprinted with permission from
ref. [39]. Copyright 2008. The Royal Society of Chemistry.

3.2. Nanostructure to Shorten the Diffusion Length

Besides conductivity improvement, the minority carrier’s diffusivity is another key factor influencing
the charge separation efficiency. Nanostructure provides a shorter diffusion distance for the minority
carrier; therefore, it has been widely applied to improve the charge separation as shown in Figure 12 [39].
Kim et al. found nanoporous morphology of BiVO4 can effectively suppress recombination, which
yields an electron-hole separation efficiency as high as 90% at 1.23 V vs. RHE [40]. Zhao et al. also
found enhancement of the performance by nanostructure compared with dense structure (Figure 13)
and proved that the main contribution of the observed enhancement is the improved charge separation
efficiency, which is caused by the easy diffusion of minority carriers to the interface [41]. Zhu et al.
reported a nanorod-structured ZnFe2O4 with a new benchmark solar photocurrent of 1.0 mA·cm−2 at
1.23 V and 1.7 mA·cm−2 at 1.6 V vs. RHE (Figure 14) [42]. In general, if the average particle diameter of
the nanopores is shorter than holes diffusion length, carrier recombination in bulk can be effectively
inhibited. Table 1 shows holes diffusion length of some typical materials for OER.
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Figure 14. The performance of ZnFe2O4 (ZFO) photoanodes. (a) Linear scanning J–V curves in 1 m
NaOH under 100 mW·cm−2 illumination; (b) Calculated charge separation efficiency, ηsep, and minority
charge carrier injection efficiency, ηinj. Reprinted with permission from ref. [42]. Copyright 2018. Wiley.

Table 1. The hole diffusion length of different materials.

Materials Hole Diffusion Length Ref.

BiVO4 100 nm [43]
α-Fe2O3 2–4 nm [44]

TiO2 70 nm [45]
WO3 150 nm [46]

3.3. Heterojunction

A heterojunction comprises, but is not limited to, two materials, whereby electron–hole pairs
are produced by one or more semiconductor photocatalysts and then transfer to the other material,
which facilitates the space charge separation [47]. The two materials should meet some requirements.
Taking a photoanode as an example, the valence band of A is more positive than B; at the same
time, the conduction band of photocatalyst B should be more negative than A. This would facilitate
the electron and hole transfer from one to the other (Figure 15). A lot of work has reported the
heterojunction for enhanced PEC performance, such as WO3/BiVO4 [48,49], Cu2O/g-C3N4 [50],
Cu2O/TiO2, p-Cu2O/n-TaON [51]. It is also found that heterojunction can be formed between different
facets of the same crystal, e.g., BiVO4 (010) and BiVO4 (110) surfaces. The electrons and holes can
accumulate on different surfaces of BiVO4 (Figure 16) [52], which causes the space separation of
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electron–hole. Wang et al. found improved hydrogen production in a TiO2 photocatalyst by forming
{001}-{010} “quasi” heterojunctions [53]. Another case of heterojunctions is α-Fe2O3-TiO2 heterojunction.
Holes generated in TiO2 will be transferred to α-Fe2O3 with electrons preferentially accumulating
in TiO2 at the same time. Under specific conditions, hybrid composites such as Fe2TiO5, Fe3TiO4,
and FeTiO3 form at the interface between hematite and titania that, despite some controversial results,
exhibit remarkable performances as photoanode materials in PEC devices [54].
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3.4. Internal Electric Field to Improve the Charge Separation

Recent studies indicate that the internal electric field in a photocatalyst can improve the charge
separation [55]. The internal electric field provides a driving force for the separation of photoinduced
charge carriers. Ferroelectric materials are a big family for having internal electric field due to their
spontaneous electric polarization property among various photocatalytic materials. The spontaneous
polarization in ferroelectric materials are due to the noncentrosymmetric property and the polarization
occurs because the positive and negative charges have different centers of symmetry [56]. Perovskite
oxides (ABO3) are among the most extensively studied ferroelectrics, such as BaTiO3 [57] and
BiFeO3 [58]. Rohrer et al. found that BaxSr1−xTiO3 solid solution by replacing Ba with Sr can enlarge
the space-charge region and improve the activity [59]. Zhang et al. also found that incorporation of
carbon into the Bi3O4Cl lattice can increase internal electric field to boost bulk charge separation [60].
Hao et al. found that double perovskite ferroelectric Bi2FeMoxNi1−xO6 thin films also possess strong
ferroelectric self-polarization, which has played a crucial part in improving the photovoltaic effect [61].
Another case of charge separation is α-Fe2O3-TiO2 heterojunction. Some research works found that the
Fe2O3-TiO2 heterojunction showed enhancement in the photocurrent [62,63]. However, somehow it is
not consistent with our general understanding on the heterojunction, because hematite has a more
positive conduction band potential than TiO2, which prohibits the electron transfer from hematite to
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TiO2. Further study shows that this kind of heterojunction is through iron titanates (e.g., Fe2TiO5,
Fe3TiO4, and FeTiO3) formed at the interface [54].

4. Strategies to Enhance the Surface Charge Injection

4.1. Catalyst Loading

In PEC water splitting, the catalyst loading play three vital roles for improving both the activity
and reliability: (1) to reduce the overpotential or activation energy; (2) to assist charge separation at the
semiconductor/electrolyte interface; (3) to suppress the photocorrosion and improve the durability of the
working device [64]. Transition metal or transition metal oxides are usually used as catalyst loading to
achieve a higher activity and decent reaction rates [65]. Recently, many (Fe, Co, Ni)-based catalyst loading
have been widely investigated. For example, cobalt phosphate (CoPi) is the star cocatalyst to lower the
overpotential and enhance the performance of water oxidation (Figure 17) [66]. Hydro-oxides are also one
kind of effective catalyst loading, such as FeOOH, NiOOH, and CoOOH [67,68]. Kim et al. employed
FeOOH/NiOOH dual-layer catalyst loading and achieved maximum ABPE of 1.75% due to reduction of
the surface recombination [40]. Zhang et al. extended the catalyst loading to metal organic framework
(MOF) materials, through applying in situ synthesized poly[-Co2(benzimidazole)4] nanoparticles on the
surface of BiVO4 to boost surface reaction kinetics (Figure 18) [69]. In this respect, the bilayered Ni-FeOOH
oxygen evolution catalyst layer has been reported as the best catalysts for BiVO4 to date [70].
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Figure 17. (a) Dark (dashed) and photocurrent (solid) densities for Fe2O3 (red) and Co–Pi/Fe2O3

(blue) photoanodes, collected using simulated AM 1.5 illumination (1 sun, backside) at a scan rate of
50 mV·s−1; (b) Electronic absorption and (c) IPCE spectra for Fe2O3 and Co–Pi/Fe2O3 at 1.23 and 1 V vs.
RHE, respectively. The absorption spectrum of Co–Pi on FTO without Fe2O3 is included in (b), but no
photocurrent was detected for these anodes. Reprinted with permission from ref. [66]. Copyright 2018.
American Chemical Society.
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Figure 18. (a) Synthesis process of [Co2(bim)4]-modified BiVO4 photoanodes; (b) XRD patterns of BiVO4,
Cobim/BiVO-20, Cobim/BiVO-40, Cobim/BiVO-100, and simulated [[Co2(bim)4], where the symbols
asterisk, dot, and triangle correspond to the peaks from FTO, BiVO4, and [Co2(bim)4], respectively;
(c) Crystal structure of [Co2(bim)4], where gray, blue, and red balls represent carbon, nitrogen, and cobalt,
respectively. Reprinted with permission from ref. [69]. Copyright 2018. American Chemical Society.
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4.2. Surface Treatment and Surface Passivation

Point defects are usually found on the surface of photoelectrode. In some cases, defects play a
positive role in the surface catalysis. However, in some other cases, defects serve as recombination
centers. Thus, it is important to suppress the recombination on these surface centers. Recently, it was
found that the surface treatment can improve the PEC performance. The mechanism for surface
treatment and surface passivation is illustrated in Figure 19 [71].
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Figure 19. Band structure of an n-type semiconductor photoelectrode experiencing corrosion (a) when
contacting an aqueous electrolyte; (b) with passivation layer without corrosion. φox is the corrosion
potential of the n-type semiconductor; and φred is the corrosion potential of the p-type semiconductor.
Corrosion may reduce the light absorption and/or generate more surface defect states. Reprinted with
permission from ref. [71] Copyright 2014. The Royal Society of Chemistry.

Surface defect states will lead to high charge recombination rate and water oxidation with low
efficiency, caused by the photogenerated holes. Surface passivation and treatment can passivate
defect states, forcefully suppressing surface recombination for improving water oxidation efficiency.
For example, Luo et al. found that electrochemical cyclic voltammetry surface pretreatment on
Mo-doped BiVO4 can greatly enhances the photocurrent of Mo-doped BiVO4 [72]. This is mainly
because the pretreatment that can remove the surface recombination center MoOx which is segregated
during the preparation of the photoelectrode. After the preprocessing, MoOx on the surface is dissolved
into the electrolyte (Figure 20).
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Further, Wang et al. found that the electrochemical treatment is not only suitable for doped BiVO4,
but also applicable to pristine BiVO4 and other materials, such as TiO2, Fe2O3 [73]. Besides the surface
treatment, a thin passivation layer is also proved to be effective to enhance the surface catalysis. Originally,
passivation layers were applied to semiconductor photoelectrodes to improve their photochemical or
chemical stability. It was reported that even an extremely thin layer on the photoelectrodes can change
the surface properties [74]. Hisatomi investigated the oxide surface layer on the onset potential of
hematite photoanode, such as Al2O3, Ga2O3, and In2O3, which can greatly weaken the original potential
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for oxidation of water [75]. Formal et al. covered an extremely thin layer (0.1 to 2 nm) of alumina
on nanostructured hematite photoanodes. The photocurrent was shifted cathodically by as much as
100 mV. Further investigation found that the cathodic shift is owing to the passivation of surface trapping
states caused by the Al2O3 overlayer [76]. Besides, IrO2 and CoOx thin layers on TaON photoanodes
were found to improve the durability by reducing the self-oxidation of the electrode [77,78]. In general,
a suitable structure of the passivation layer for photoelectrodes can either improve the reaction kinetics,
or increase the chemical or physical protection against corrosion, or both.

4.3. Active Sites

The chemical reactions for water splitting occur on the electrode surface through its active sites.
The active sites, therefore, affect the performance of the surface catalysis. The low catalytic activities
are mainly attributed to the relatively lower activity and smaller number of reactive sites. The activity
of active sites can be reflected by the overpotential at the anode. Experimentally, it might be extremely
challenging to identify the atomic surface active sites. Therefore, calculations using density functional
theory (DFT) become important to reveal the overpotential at different sites, as well as to understand
the atomic/molecular mechanism. There are some methods to calculate the overpotential based on
different reaction process [79,80]. The well acceptable reaction process is the four intermediate steps
reaction path, as shown in R3 to R6.

The overpotential tends to zero if ∆Gθ
R3 = ∆Gθ

R4 = ∆Gθ
R5 = ∆Gθ

R6 = 1.23 eV and this would define
the ideal catalyst, as shown in Figure 21 [81].
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Until now, the atomic level interaction between catalytic activity and active sites is still an 
outstanding problem, owing to the large difference between idealized models and real catalysts. 
Thus, it is necessary to identify the pivotal factors that influence the activity of reactive sites, in order 
to promote the catalytic properties. It is generally considered that the low coordinated steps, edges, 
terraces, kinks, and/or corner atoms are often the favorable catalytic reaction sites [82,83]. For 
example, Sun et al. suggested that the low-coordinated Co3+ atoms of porous atomically-thick Co3O4 
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Figure 21. The free energy diagram for the OER ideal catalyst. The black continuous line is the OER
ideal catalyst, where the over-potential is 0 eV because all free energies of the intermediate steps
equal to 1.23 V. Red lines show the actual HOO* and HO* levels for the catalysts, which have to be
moved down and up, respectively, in order to reduce the over-potential. Unfortunately, a metal oxide
catalyst usually changes these two levels in the same direction, as indicated by the red (move up) and
blue arrows (move down). O* level is positioned between the HOO* and HO* level. Reprinted with
permission from ref. [81]. Copyright 2012. The Royal Society of Chemistry.

Until now, the atomic level interaction between catalytic activity and active sites is still an
outstanding problem, owing to the large difference between idealized models and real catalysts. Thus,
it is necessary to identify the pivotal factors that influence the activity of reactive sites, in order to
promote the catalytic properties. It is generally considered that the low coordinated steps, edges,
terraces, kinks, and/or corner atoms are often the favorable catalytic reaction sites [82,83]. For example,
Sun et al. suggested that the low-coordinated Co3+ atoms of porous atomically-thick Co3O4 sheets
serve as the catalytically active sites [84]. Currently, there are no quantitative models to describe the
relationship between the coordinated number and activity. The main reason for this difficulty is that
there might be other key parameters that have not been separately verified. For example, some results
show that the surface state of the atom and position of neighbor atom will greatly affect the activity of
the reactive sites. Hu et al. found that oxygen vacancy in BiVO4 will induce more active sites on a
BiVO4 surface, which makes the vacancy sites active for water oxidation (Figure 22) [85]. Similarly,
a Ti 3d defect state in the band gap of titania also plays an important role in the surface catalysis of
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defect contained TiO2 [86]. Zhao et al. also revealed that W doping and W–Ti codoping into BiVO4

have led to more active sites on the surface and reduced charge transfer resistance (Figure 23) [87,88].
Theoretical calculation revealed that Ti sites become active after the codoping.
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Figure 23. Electrochemistry results in 0.5 M Na2SO4 aqueous solution under 1.5 G illumination
(a) Mott-Schottky plots of pristine, W doped BiVO4 and W–Ti codoped BiVO4 at the frequency of
1 kHz; (b) Css determined from EIS (rectangle points). Inset is the equivalent circuits employed to fit
the experimental EIS data; (c) EIS of pristine, W doped, and W–Ti codoped BiVO4 photoelectrodes
at the applied potential of 1.23 V RHE; (d) Cyclic voltammetry scan of pristine, W doped and W–Ti
codoped BiVO4 in the dark at a scan rate of 100 mV·s−1 after holding the electrode at the potential of
1.8 V RHE for 120 s; (e) Free-energy profiles of OER on different sites of BiVO4 surfaces. Reprinted with
permission from ref. [88]. Copyright 2018. The Royal Society of Chemistry.

5. Conclusions and Outlook

In this review, we have highlighted the latest studies directed at developing metal oxide-based
photoanodes, including BiVO4, α-Fe2O3, TiO2, and WO3 nanostructures. We have summarized the
strategies to enhance the light absorption, charge separation, and surface charge injection of this
class of n-type semiconductor oxide materials. Although great achievements have been obtained,
significant challenges remain before commercially viable solar-driven water splitting can be realized.
Among them, one challenge is to balance the contributions from factors affecting light absorption,
charge separation, and charge injection. Sometimes, their contributions contradict each other; e.g.,
a thicker layer increases absorption efficiency, but reduces the charge separation efficiency due to a
longer distance to be travelled by the charge carrier. Another challenge lies with the lack of thorough
understanding of the effect of the surface-state, due to the complex roles it plays in the water splitting
process. Surface states may affect the amount of stored charges, act as surface recombination centers,
and pin the Fermi-level. Most of the existing models can only explain one of these potential effects
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and there is no commonly used model to describe the full impact of surface state. A big challenge
is to combine all the advantages and improve the overall efficiency for water splitting. Usually, it is
inevitable to introduce some other problems when improving one factor. For example, nanostructuring
is mostly employed to enhance the charge separation and light absorption; however, more surface
states will be formed which sometimes are unfavorable to the interfacial charge injection. Thus, catalyst
loading is required to passivate the surface states. Then, the challenge becomes finding a suitable
catalyst loading to passivate and to control its thickness through a proper deposition technology.

Recently, researchers are focusing on the formation of ultrathin layers of cocatalyst on the surface,
which will provide very efficient charge injection while avoiding the recombination in the surface layer
and at the interface. However, it is very difficult to precisely control the formation of a uniform cover layer
of the cocatalyst on the surface with reasonable cost of production. New low-cost processing technology
and materials need to be developed. Another related issue is the stability and durability from the point of
view of practical application. Newly developed materials should be coated with good adhesion while
having good chemical and photochemical stability. More work is needed to build a more comprehensive
model to guide the design and optimization of the electrode materials for solar water splitting.
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