Experimental Investigation of the Influence of Metallic Coatings on Yarn Pull-Out Behavior in Kevlar® Fabrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing of Metal-Coated Yarns via Direct Vapor Deposition
2.2. Quasi-Static Yarn Pull-Out Setup and Test Methodology
2.3. Quasi-Static Yarn Tensile Test Setup
3. Results
3.1. Yarn Pull-Out Response of Hand-Woven Specimens
3.2. Inter-Yarn Friction Coefficient Calculations
3.3. Surface Profile Evalaution
3.4. Tensile Testing Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sockalingam, S.; Chowdhury, S.C.; Gillespie, J.W.; Keefe, M. Recent advances in modeling and experiments of Kevlar ballistic fibrils, fibers, yarns and flexible woven textile fabrics—A review. Text. Res. J. 2017, 87, 984–1010. [Google Scholar] [CrossRef]
- Sockalingam, S.; Gillespie, J.W.; Keefe, M. Modeling the fiber length-scale response of Kevlar KM2 yarn during transverse impact. Text. Res. J. 2017, 87, 2242–2254. [Google Scholar] [CrossRef]
- Cunniff, P.M. An analysis of the system effects in woven fabrics under ballistic impact. Text. Res. J. 1992, 62, 495–509. [Google Scholar] [CrossRef]
- Gawandi, A.; Thostenson, E.T.; Gilllespie, J.W., Jr. Tow pullout behavior of polymer-coated Kevlar fabric. J. Mater. Sci. 2011, 46, 77–89. [Google Scholar] [CrossRef]
- Dong, Z.; Sun, C.T. Testing and modeling of yarn pull-out in plain woven Kevlar fabrics. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1863–1869. [Google Scholar] [CrossRef]
- Nilakantan, G.; Gillespie, J.W. Yarn pull-out behavior of plain woven Kevlar fabrics: Effect of yarn sizing, pullout rate, and fabric pre-tension. Compos. Struct. 2013, 101, 215–224. [Google Scholar] [CrossRef]
- Kirkwood, K.M.; Kirkwood, J.E.; Lee, Y.S.; Egres, R.G.; Wagner, N.J.; Eric, D. Yarn pull-out as a mechanism for dissipating impact energy in Kevlar KM-2 fabric Part I: Quasi-static characterization of yarn pull-out. Text. Res. J. 2004, 74, 920–928. [Google Scholar] [CrossRef]
- Bilisik, K. Properties of yarn pull-out in para-aramid fabric structure and analysis by statistical model. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1930–1942. [Google Scholar] [CrossRef]
- LaBarre, E.D.; Calderon-Colon, X.; Morris, M.; Tiffany, J.; Wetzel, E.; Merkle, A.; Trexler, M. Effect of a carbon nanotube coating on friction and impact performance of Kevlar. J. Mater. Sci. 2015, 50, 5431–5442. [Google Scholar] [CrossRef]
- Duan, Y.; Keefe, M.; Bogetti, T.A.; Cheeseman, B.A.; Powers, B. A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact. Int. J. Impact Eng. 2006, 32, 1299–1312. [Google Scholar] [CrossRef]
- Decker, M.J.; Halbach, C.J.; Nam, C.H.; Wagner, N.J.; Wetzel, E.D. Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Technol. 2007, 67, 565–578. [Google Scholar] [CrossRef]
- Dong, Z.; Manimala, J.M.; Sun, C.T. Mechanical behavior of silica nanoparticle-impregnated Kevlar fabrics. J. Mech. Mater. Struct. 2010, 5, 529–548. [Google Scholar] [CrossRef] [Green Version]
- Tan, V.B.C.; Tay, T.E.; Teo, W.K. Strengthening fabric armour with silica colloidal suspensions. Int. J. Solids Struct. 2005, 42, 1561–1576. [Google Scholar] [CrossRef]
- Groves, J.F.; Mattusch, G.; Morgner, H.; Haas, D.D.; Wadley, H.N. Directed vapour deposition. Surf. Eng. 2000, 16, 461–464. [Google Scholar]
- Buckley, D.H. Friction and Wear of Tin and Tin Alloys from 110 to 150 °C; NASA Tech. Note D-8004; National Aeronautics and Space Administration: Washington, DC, USA, 1975.
- Buckley, D.H. Friction, Wear, and Lubrication in Vacuum; National Aeronautics and Space Administration: Washington, DC, USA, 1971.
- Rabinowicz, E. Friction coefficients of noble metals over a range of loads. Wear 1992, 159, 89–94. [Google Scholar] [CrossRef]
- Antler, M. Wear and friction of the platinum metals. Platin. Met. Rev. 1966, 10, 2–8. [Google Scholar]
- Sockalingam, S.; Casem, D.; Weerasooriya, T.; McDaniel, P.; Gillespie, J. Experimental Investigation of the High Strain Rate Transverse Compression Behavior of Ballistic Single Fibers. J. Dyn. Behav. Mater. 2017, 3, 474–484. [Google Scholar] [CrossRef]
- Sockalingam, S.; Gillespie, J.W.; Keefe, M. International Journal of Solids and Structures Dynamic modeling of Kevlar KM2 single fiber subjected to transverse impact. Int. J. Solids Struct. 2015, 67–68, 297–310. [Google Scholar] [CrossRef]
- Sockalingam, S.; Gillespie, J.W.; Keefe, M. Influence of multiaxial loading on the failure of Kevlar KM2 single fiber. Text. Res. J. 2018, 88, 483–498. [Google Scholar] [CrossRef]
- Zhu, D.; Soranakom, C.; Mobasher, B.; Rajan, S.D. Experimental study and modeling of single yarn pull-out behavior of kevlar® 49 fabric. Compos. Part A Appl. Sci. Manuf. 2011, 42, 868–879. [Google Scholar] [CrossRef]
- Das, S.; Jagan, S.; Shaw, A.; Pal, A. Determination of inter-yarn friction and its effect on ballistic response of para-aramid woven fabric under low velocity impact. Compos. Struct. 2015, 120, 129–140. [Google Scholar] [CrossRef]
- ASTM D7269; Standard Test Methods for Tensile Testing of Aramid Yarns. ASTM International: West Conshohocken, PA, USA, 2017.
- Yu, J.H.; Dehmer, P.G.; Yen, C.F. High-Speed Photogrammetric Analysis on the Ballistic Behavior of Kevlar Fabrics Impacted by Various Projectiles; Report ARL-TR-5333; Army Research Laboratory: Aberdeen Proving Ground, MD, USA, 2010. [Google Scholar]
- Kirkwood, J.E.; Kirkwood, K.M.; Lee, Y.S.; Egres, R.G., Jr.; Wagner, N.J.; Wetzel, E.D. Yarn pull-out as a mechanism for dissipating ballistic impact energy in Kevlar® KM-2 fabric: Part II: Predicting ballistic performance. Text. Res. J. 2004, 74, 939–948. [Google Scholar] [CrossRef]
Experimental Group | Description | Linear Density (Denier) | Effective Fiber Diameter (µm) |
---|---|---|---|
Control | Hot water rinsed 600 denier Kevlar KM2+ | 600 | 12.0 |
Aluminum | Aluminum Coating on Control | 605 | 12.05 |
Copper | Copper Coating on Control | 637 | 12.36 |
Silver | Silver Coating on Control | 646 | 12.45 |
Aluminum/Aluminum Nitride | Aluminum/Aluminum Nitride Coating on Control | 627 | 12.27 |
Hybrid Al/Control | Hybrid Aluminum (warp)/Control (weft) | 604 | 12.04 |
As-received | 600 denier KM2+ 34 × 34 Scoured Fabric Roll | 600 | 12.0 |
Parameters | Units | As-Received Kevlar® S706 without Any Pre-Tension | As-Received Kevlar® S706 with 100 N Pre-Tension | Hand-Woven Control with 100 N Pre-Tension |
---|---|---|---|---|
F | N/m | 2.57/0.0254 = 101.18 | 6.457/0.032 = 201.79 | 1.495/0.02858 = 52.3 |
C | -- | 0.573 | 0.573 | 0.573 |
Count | Yarns per inch | 34 | 34 | 50 |
Diameter | Meter | 1.2 × 10−5 | 1.2 × 10−5 | 1.2 × 10−5 |
Modulus | Pascal | 9.2 × 1010 | 9.2 × 1010 | 8.683 × 1010 |
Waviness | Meter | 5 × 10−5 | 5 × 10−5 | 5 × 10−5 |
Friction | 0.20 | 0.397 | 0.0233 |
Experimental Group | Normalized Frictional Coefficient | |
---|---|---|
100 N pre-tension | 200 N pre-tension | |
Control | 0.0233/0.0233 = 1 | 1 |
Aluminum | 0.0355/0.0233 = 1.52 | 1.93 |
Copper | 0.0407/0.0233 = 1.75 | 2.34 |
Silver | 0.0291/0.0233 = 1.24 | 1.81 |
Al/AlN | 0.0329/0.0233 = 1.40 | 1.54 |
Hybrid Al/Control | 0.029/0.0233 = 1.27 | 1.37 |
Scan Area (μm2) | Average Height (nm) | Number of Events | Surface Skewness | Surface Kurtosis | |
---|---|---|---|---|---|
As-Received S706 | 15.43 | 23.08 | 1365 | −0.13 | 3.21 |
Control | 27.41 | 105.61 | 1881 | −0.31 | 2.41 |
Aluminum | 27.58 | 94.577 | 7500 | 2.89 | 25.26 |
Copper | 13.17 | 25.35 | 1697 | 1.74 | 12.68 |
Experimental Group | Modulus (GPa) | True Tenacity (N/Denier) | Relative Tenacity Reduction (%) | Strain to Failure |
---|---|---|---|---|
Control | 86.83 ± 2.41 | 0.229 ± 0.007 | - | 0.036 ± 0.001 |
Aluminum | 94.01 ± 1.74 | 0.1834 ± 0.0058 | 19.91 | 0.0267 ± 0.0015 |
Copper | 81.33 ± 2.88 | 0.1749 ± 0.0096 | 23.62 | 0.028 ± 0.001 |
Silver | 89.75 ± 3.40 | 0.1757 ± 0.007 | 23.27 | 0.0275 ± 0.0018 |
Aluminum/Aluminum Nitride | 89.11 ± 1.89 | 0.1706 ± 0.0063 | 25.50 | 0.02 ± 0.0007 |
Hybrid Al/Control | 94.01 ± 1.74 | 0.1834 ± 0.0058 | 19.91 | 0.0267 ± 0.0015 |
As received | 92.91 ± 1.19 | 0.1938 ± 0.007 | 15.37 | 0.03 ± 0.0015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roark, J.; Thomas, F.D.; Sockalingam, S.; Kempf, J.; Christy, D.; Haas, D.; O’Brien, D.J.; Senecal, K.J.; Crittenden, S.R. Experimental Investigation of the Influence of Metallic Coatings on Yarn Pull-Out Behavior in Kevlar® Fabrics. Fibers 2023, 11, 7. https://doi.org/10.3390/fib11010007
Roark J, Thomas FD, Sockalingam S, Kempf J, Christy D, Haas D, O’Brien DJ, Senecal KJ, Crittenden SR. Experimental Investigation of the Influence of Metallic Coatings on Yarn Pull-Out Behavior in Kevlar® Fabrics. Fibers. 2023; 11(1):7. https://doi.org/10.3390/fib11010007
Chicago/Turabian StyleRoark, Julie, Frank D. Thomas, Subramani Sockalingam, Julia Kempf, Dan Christy, Derek Haas, Daniel J. O’Brien, Kris J. Senecal, and Scott R. Crittenden. 2023. "Experimental Investigation of the Influence of Metallic Coatings on Yarn Pull-Out Behavior in Kevlar® Fabrics" Fibers 11, no. 1: 7. https://doi.org/10.3390/fib11010007
APA StyleRoark, J., Thomas, F. D., Sockalingam, S., Kempf, J., Christy, D., Haas, D., O’Brien, D. J., Senecal, K. J., & Crittenden, S. R. (2023). Experimental Investigation of the Influence of Metallic Coatings on Yarn Pull-Out Behavior in Kevlar® Fabrics. Fibers, 11(1), 7. https://doi.org/10.3390/fib11010007