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Abstract: Atomic force microscopy (AFM) is a powerful tool that enables imaging and nanome-
chanical properties characterization of biological materials. Nanofibers are the structural units of
many biological systems and their role in the development of advanced biomaterials is crucial.
AFM methods have proven to be effective towards the characterization of fibers with respect to
biological and bioengineering applications at the nanoscale. However, both the topographical and
mechanical properties’ nanocharacterizations of single fibers using AFM are challenging procedures.
In particular, regarding imaging procedures, significant artifacts may arise from tip convolution
effects. The geometrical characteristics of the AFM tip and the nanofibers, and the fact that they have
similar magnitudes, may lead to significant errors regarding the topographical imaging. In addition,
the determination of the mechanical properties of nanofibers is also challenging due to their small
dimensions and heterogeneity (i.e., the elastic half-space assumption is not valid in most cases). This
review elucidates the origins of errors in characterizing individual nanofibers, while also providing
strategies to address limitations in experimental procedures and data processing.

Keywords: AFM artifacts; tip convolution effects; mechanical properties; biological samples; contact
mechanics models; data processing; microscopy; nanoscale

1. Introduction

Atomic force microscopy (AFM) is a high-resolution imaging technique in nanotech-
nology and materials science, enabling visualization and manipulation of atomic and
molecular surfaces [1–4]. Operating as a type of scanning probe microscopy, AFM provides
intricate data on surface topography [5], roughness [6], and mechanical properties [7,8].
AFM utilizes a small, sharp probe attached to the end of a cantilever to scan samples,
interacting through forces such as van der Waals, electrostatics, and chemical bonds [9].
As the probe traverses, vertical movement due to interaction forces generates topographic
images. With contact, tapping, and non-contact modes, AFM offers versatility; contact
maintains touch, tapping involves oscillation, and non-contact hovers slightly above the
surface, measuring attractive forces [9]. AFM’s outstanding spatial resolution enables
atomic-level visualizations, surpassing optical microscopes’ limits.

AFM finds applications in various fields, including biology and medicine [10], ma-
terials science [11], and physics [12]. It is even used to study individual molecules and
their interactions [13,14]. In addition to imaging, AFM aids in nanomanipulation [14] and
in determining the mechanical properties of single molecules [15] and nanofibers [16–20].
The determination of the mechanical and structural properties of individual nanofibers
is crucial. A notable example highlighting their significance is the case of collagen. Col-
lagens are the most abundant proteins in mammals [21–26]. Within the human body,
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approximately 28 distinct types of collagens exist, with significant focus placed on fibrillar
collagens, particularly collagen type I [27,28]. Collagen type I stands as a predominant pro-
tein within the extracellular matrix [29], marked by distinctive attributes like self-assembly,
biocompatibility, biodegradability, and non-toxicity [30].

Another example is a cellulose nanofibril, which is the fundamental unit of almost all
types of natural fibers playing a significant role in shaping their mechanical properties [20].
Cellulose, a renewable biopolymer found abundantly in plant cell walls and bacteria, repre-
sents a promising alternative to petroleum-based resources [31–33]. Nanocellulose can be
described as cellulose where at least one dimension (length, diameter, or height) falls within
the nanoscale [34]. Among the various categories of nanocellulose, cellulose nanofibrils
(CNFs) have consistently captivated researchers because of their exceptional properties.
These properties encompass a substantial specific surface area, remarkable stiffness and
strength, low weight, strong biocompatibility, and facile film-forming abilities [31,35]. In
addition, an intriguing protein complex in the fibrous form is the amyloid fibril [36]. Nu-
merous researchers have directed their attention towards the self-assembly of amyloid
peptides and proteins at interfaces, providing valuable insights into understanding the
mechanisms underlying certain neurodegenerative diseases [37]. The generation of fibrous
particles is linked to various particular disorders (e.g., Alzheimer’s disease (AD) [38,39]).

Moreover, a significant focus has recently emerged in exploring methods for fabricating
nanofibers from various materials through the utilization of electrospinning. The building
blocks of many human organs and tissues have structural similarities with nanofibers,
which is advantageous for the use of electrospun nanofibers in repairing human tissues and
organs [40]. Many materials used in electrospinning exhibit favorable biocompatibility and
degradability properties, rendering them suitable for use as carriers for drugs [40]. Electro-
spun nanofibers offer promising opportunities in the fields of tissue repair [41,42], biological
dressings [43,44], controlled drug release [40,45,46], and enzyme immobilization [40].

As already presented in previous paragraphs, the exploration of nanofiber properties
is crucial in various fields such as biology, medicine, bioengineering, and materials science.
A strong tool for the determination of nanofibers’ properties is AFM. AFM’s capabilities
encompass visualizing nanofibrils with remarkable precision, unravelling their surface
morphology and mechanical properties [47]. The dynamic interplay between the AFM tip
and nanofibrils is unveiled through force spectroscopy, offering insights into their adhesive
forces, and elasticity [48]. Although there are advantages, significant issues arise when
using an AFM for imaging surfaces with features that are comparable to or smaller than
the mean radius of curvature of the probing tip [49]. Therefore, a primary constraint of
AFM lies in its lateral resolution, stemming from the finite size of the probe tip [50,51]. If
the tip and the scanned motifs are of a similar size, the width measurements experience
a significant overestimation, leading to an inability to accurately resolve the shape of
the motifs [50]. This phenomenon is referred to as tip convolution, and the process of
determining the actual dimensions of surface objects is known as tip deconvolution [51–54].
It is worth noting that special attention has been given for the accurate topographical
characterization of nanosized materials [55–58] and cylindrical-shaped samples due to the
applications related to nanofibrils [59].

In addition, the mechanical characterization of nanofibers (i.e., transverse and axial
modulus) is also a challenging procedure. A significant source of errors is related to the
contact mechanics models used for calculating the Young’s modulus of materials [60]. In
particular, it is challenging to experimentally determine the indenter shape and size [60,61],
especially for nanoindentation tests. This can lead to the possibility of choosing an inappro-
priate model for data processing. For example, in many cases where pyramidal indenters
are used, Sneddon’s model considers the tip as a perfect cone [4]. However, it is important
to note that the shape of the AFM tip may vary significantly [62]. In addition, the contact
mechanics models used for calculating Young’s modulus are highly dependent on the
dimensions of the indenter [4]. Therefore, even if the correct model is employed for data
processing, uncertainties associated with the dimensions of the tip can exert a significant
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influence on the results, such as errors in contact area determination [63,64]. Another source
of errors is associated with the size and shape of the tested sample. For instance, when the
radii of nanofibers are similar to the AFM tip radius, the assumption of an elastic half space
is no longer valid. It is worth noting that in the literature, the Young’s moduli of collagen
nanofibrils present a wide range of values. Specifically, for dry collagen fibrils type I, the
Young’s modulus is calculated to be within the range of 1–10 GPa [17,19,21,65]. The reasons
for these results are linked to the conditions under which the experiments were conducted
(e.g., dehydration state) [16], as well as errors in data processing [66]. Additionally, the
mechanical heterogeneity of biological structures [4,67,68] can lead to significant errors in
the mechanical characterization at the nanoscale.

This review concentrates on the characterization of nanofibers for biomedical appli-
cations using AFM. The first objective is to clearly elucidate any artifacts associated with
AFM imaging and offer corresponding solutions. The analysis of the tip convolution effect
is conducted, and straightforward methods to mitigate the resultant error are presented.
Subsequently, techniques for the mechanical nanocharacterization of individual nanofibers
are presented. Special attention is given to the AFM nanoindentation method, which is the
leading method for the mechanical characterization at the nanoscale [4,10,21]. As already
mentioned, measuring the mechanical properties of nanoscale fibers presents a challenging
task due to the invalidation of the assumption of an elastic half space. Hence, adjustments
to equations derived from Hertzian mechanics become necessary, specifically in the form of
‘correction factors’ applied to traditional equations of contact mechanics. The appropriate
corrections are presented for both purely elastic and elastic–plastic contact. Additionally, a
quantitative analysis of the errors incurred when assuming the fibril as an elastic half space
is provided. The effects of the relative dimensions of the tip and the fibril on the errors in
Young’s modulus calculations are presented in detail.

It is also noteworthy that achieving an accurate mechanical characterization of fibers
necessitates the precise determination of their radius. Hence, the tip convolution effect
constitutes a significant source of error in the determination of the Young’s modulus for
nanofibers. Examples demonstrating the extent of errors in calculating Young’s modulus
under the influence of tip convolution effects are also provided. In addition to the AFM
nanoindentation method, several alternatives for characterizing mechanical properties at
the nanoscale are presented and discussed. Furthermore, it is worth noting that biological
structures and biomaterials at the nanoscale often exhibit high mechanical heterogeneity.
Therefore, the classic Hertzian equations are extended to account for these cases.

In summary, this review paper discusses the challenges and limitations associated with
the accurate nanocharacterization of nanofibers, and it provides suggestions for mitigating
errors arising from data processing.

2. AFM Imaging Artifacts

The most extensively used methods for nanoscale imaging using AFM are the contact
mode and the tapping mode [10]. In contact mode, a sharp tip attached to a cantilever is
brought into physical contact with the sample surface, allowing the interaction between the
tip and the surface to provide information about the surface topography and properties [69].
In contact mode, the goal is to maintain a consistent force between the tip and the sample
surface as the tip scans across the surface. This force is usually in the range of nanonewtons
and ensures that the tip remains in contact with the surface [10]. Tapping mode is designed
to minimize the interaction forces between the AFM tip and the sample surface, making
it particularly useful for imaging delicate samples or surfaces that are sensitive to contact
forces [10]. Instead of maintaining continuous physical contact with the surface, the tip is
made to oscillate at its resonant frequency [9]. This oscillation is typically in the range of
a few hundred kilohertz [70]. As the cantilever oscillates, the tip alternately approaches
and retracts from the sample surface during each oscillation cycle [10]. The tip only makes
momentary, intermittent contact with the surface during its downward swing, resulting
in reduced interaction forces compared to continuous contact modes [71]. The tapping
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mode offers numerous advantages when contrasted with the constant contact mode [72].
To begin with, the tapping mode has the capability to mitigate the impacts of adhesion and
friction [71]. Moreover, it contributes to the enhancement of repeatability and resolution
in imaging [71]. These benefits make the tapping mode a preferable option for various
applications (e.g., tapping mode is considered to be more appropriate for imaging soft
biological samples because it reduces the possibility of damaging the sample [10]).

Despite the precise method used for data processing, significant errors may be induced
in the surface topography [73,74]. Convolution effects in AFM arise from the finite dimen-
sions of the probe, which determine the extension of the surface area interacting with the
tip [74]. Several articles have addressed the process of reconstructing the true surface based
on measured images that have undergone distortion due to tip convolution [74]. Reiss et al.
introduced groundbreaking research in this domain, in which they discussed the impact of
tip size on scanning probe images [75]. Keller formulated a reconstruction approach using
Legendre transforms. This technique allows the estimation of the actual sample surface
from distorted images through the deconvolution of the tip effect [76]. Another method,
introduced by Villarrubia, is based on the principles of mathematical morphology [77,78].
This formalism is a branch of set theory dealing with unions and intersections of sets and
their translations, which provides a precise language for problems related to convolution
effects [74,77,78]. In this approach, the tip and the sample are represented as a complete
set of peaks. Therefore, this formalism can be applied to any type of tip and sample,
with the resolution of the method determined with the number of peaks forming each
set. Nevertheless, techniques based on mathematical morphology face limitations due
to the significant time intervals required using reconstruction algorithms. Additionally,
obtaining quantitative data from distorted images mandates extensive information about
both the tip and the sample. On the other hand, applying mathematical morphology to
the tip convolution problem is not easy. The phenomenon occurring during the scan de-
mands an advanced mathematical background. Due to these factors, convolution effects are
frequently addressed with the presumption that surface features exhibit a recognizable sym-
metrical form. Approaches of this nature rely on geometric evaluations in which both the
tip and surface configurations are approximated using analytical functions, such as circles
or parabolas [79–82]. In this way, the lateral resolution and the real size of surface features
can be estimated from distorted AFM images. Nevertheless, certain complexities may arise
from the problem’s simplification, as achieving true surface reconstruction is challenging in
practical scenarios, even when considering spherical shapes [83,84]. Possessing equivalent
adaptability to the mathematical morphology framework, yet not requiring an extensive
mathematical background, Canet-Ferrer et al. introduced a straightforward algorithm to
reconstruct AFM images [74]. This algorithm is adept at emulating convolution effects
during the scanning process of any type of AFM tip, applicable across a broad spectrum of
nanostructures encompassing varied sizes and shapes [74].

As already mentioned, artifacts arising from the tip convolution effects consistently
impact AFM images, leading to a reduction in the lateral resolution. When imaging
nanofibers, the AFM tip radius is of a similar order of magnitude to the radius of the
nanofiber, leading to notable errors in topographical images. To provide a brief explanation
of the artifacts that result from AFM imaging, let us consider the case of scanning a surface
using a pyramidal AFM tip (pyramidal tips are typically employed for accurate imaging at
the nanoscale). In most cases, pyramidal tips are treated as sphero-conical indenters [85].
The reason is that only the tip apex comes into contact with the sample. For example, the
MLCT tips constructed by Bruker are pyramidal tips with a rounded tip apex and a nominal
radius of 20 nm. The sphero-conical model is presented in Figure 1a. To calculate the angle
ϕ in Figure 1a, the procedure presented in [85] can be used. In Figure 1b, the interaction
between an AFM tip and a cylindrical-shaped sample (i.e., a nanofiber) is presented. The
tip radius is assumed to be similar to that of the nanofiber. The red dotted line presents
‘what is being recorded’ using the AFM tip. In particular, the recorded fiber appears to have
a significantly larger radius compared to the actual one. The reason for this error is a result



Fibers 2023, 11, 83 5 of 25

of the simple geometry of the interaction between a sphere and a cylinder. The simplest
method to determine the accurate dimensions of nanosized materials was presented by
Canet-Ferrer et al. and is based on straightforward geometrical relationships [74,86,87].
Regarding the topographical images of nanofibers, two cases should be examined. The
first one is the case in which the tip radius is smaller than the ‘height (H)’ of the nanofiber
(i.e., rtip < H). This case is presented in Figure 1c. The tip to face angle ϕ in Figure 1c
equals to the cone’s half angle in Figure 1a. The second one is the case for which rtip > H
(Figure 1d). At this point, it is important to introduce the magnitudes he f f and we f f referred
to as effective height and effective width, respectively. These magnitudes are different
compared to the fiber’s height (H) and width (w) for rounded objects (the equality, i.e.,
he f f = H and we f f = w holds only for rectangular-shaped objects) [74]. The value of he f f
indicates the height in which point C is placed (i.e., point C is the contact point between
the tip and the fiber), and it can be correlated with the effective contact area between the
tip and the sample [74]. Similarly, we f f (which is the distance between points C and C’
(Figure 1c)) determines the effective area of interaction between the tip and the object in an
analogous manner.
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Figure 1. (a) A sphero-conical indenter. (b) A nanofiber is scanned using an AFM tip. The red dotted
line presents ‘what is being recorded’ using the AFM tip. In particular, the recorded fiber appears to
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In addition, wexp is the ‘expected value’ (i.e., wexp is the width that is being measured
using AFM). Thus, the convolution error results in C.E. = wexp − w. To calculate the
convolution error, simple equations have been previously derived [74].

For round objects and for rtip < H,

wexp − we f f = 2
(
∆+ rtip

)
(1)

In Equation (1), ∆ equals to

∆ = (he f f − rtip) tan(ϕ) (2)

For round objects and for rtip > H,

wexp − we f f = 2∆′ (3)

In Equation (3), ∆′ equals to

∆′ = rtip cos

[
sin−1

(
rtip − he f f

rtip

)]
(4)

At this point, it is significant to note once again that Equations (1)–(4) lead to the
calculation of wexp −we f f and for rounded objects, we f f 6= w (Relationships (1)–(4) result in
C.E. = wexp −w for rectangular-shaped objects as already mentioned). However, as shown
in [74], the difference in convolution error is small assuming a square and a circumference
of the same height. Equations (1)–(4) unveil that, regardless of the shape of the object,
if C (the point of contact between the tip and the sample) is positioned along the linear
side portion of the tip (Figure 1c), the convolution error is predominantly influenced by ϕ
and rtip.

In Figure 2a, the (wexp − we f f )/rtip = f
(

he f f /rtip

)
function is presented for various

tip to face angles (ϕ = 15
◦
, 30

◦
, 45

◦
, 60

◦
, and 70.3

◦
). The case ϕ = 70.3

◦
is the case of

the equivalent conical geometry of a Berkovich tip (this tip is used in many cases for
indentation experiments as it will be presented in the next section). An interesting example
is presented as follows. Assuming that he f f ≈ rtip, ∆ ≈ 0. Thus, wexp − we f f = 2rtip (this
case is represented in Figure 2a with the point of intersection between all linear curves
and the vertical axis). If rtip ≈ 10 nm, wexp − we f f = 20 nm (hence, if w ≈ we f f ≈ 10 nm,
wexp ≈ 30 nm, which is three times bigger compared to the real value). In addition, as
shown in Figure 2a, the extent of convolution error primarily relies on ϕ for objects with
H� rtip. In such cases, where the object’s height significantly exceeds the tip’s radius, the
tip engages the object along its linear side section. Conversely, as the height H decreases, the
impact of rtip becomes more pronounced, gradually rendering the influence of ϕ negligible.
The impact of shape is consistently more significant in situations involving larger objects.
For objects whose sizes are similar with rtip, convolution effects are distinctly around
2rtip, and they tend to exhibit minimal reliance on the specific shape in most cases (point
of intersection between linear curves and the vertical axis on Figure 2a). Thus, it can
be concluded that the experimental error can be approximated without necessitating an
intricate understanding of the object’s precise shape. This is because, for objects with
substantial disparities in shape, such as squares and circles, comparable convolution errors
are encountered. On the other hand, if C (i.e., the point of contact) is situated beneath the
rounded end of the tip, the convolution error is solely dependent on rtip, considering a
fixed H value (Figure 2b). For example, assuming that rtip = 10 nm and H ≈ he f f = 5 nm,
wexp − we f f ≈ wexp − w ≈ 17 nm. Thus, w ≈ 5 nm and wexp ≈ 12 nm.
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The validity of the simple geometrical approach (Equations (1)–(4)) depends on the
sample’s shape. For rectangular or round shapes, they provide accurate results. For exotic
geometries, specialized algorithms have also been developed [74]. This is because the algo-
rithms allow for the representation of the surface motifs as they are, without approaching
any mathematical expression. However, this is not the case studied in this paper, which
focuses on the topography of nanofibers. It should also be noted that similar geometrical
considerations for determining the tip’s convolution error in the case of nanofibers are also
presented in [88]. The equations to calculate the convolution error are presented as follows:

1
2
(
wexp − w

)
=
√

r2
tip −

(
rtip − H

)2, for H ≤ rtip
1
2
(
wexp − w

)
= rtip +

(
H − rtip

) sin(ϕ)

sin(90◦−ϕ)
, for H > rtip

(5)

For example, if rtip = H, Equation (5) results in wexp − w = 2rtip as expected.
The diagram of 1

2
(
wexp − w

)
with respect to the fibril’s height is also presented for the

case of rtip = 8 nm and the cone’s half angle ϕ = 20
◦

in [88]. We also provided the
1
2

(
wexp−w

rtip

)
= f

( he f f
rtip

)
functions for ϕ = 70.3

◦
using Equations (1)–(5) for comparison (in

the domain 0 ≤ he f f
rtip
≤ 2). The results are identical. It was assumed that H ≈ he f f .

It must also be noted that the spatial mapping of magnetic domains on a sample
surface can be performed using Magnetic Force Microscopy (MFM) [89]. In its standard
configuration, the MFM technique utilizes a probe coated with magnetic material to scan
a sample using the non-contact or dynamic mode of atomic force microscopy (AFM) [89].
This approach entails monitoring the sample’s surface features, where the probe comes into
direct contact with the sample. Subsequently, a series of scans are conducted at different lift
heights (z) above the topographical surface, enabling the detection of long-range magnetic
forces between the MFM probe and the magnetic domains on the sample [90]. MFM was
initially designed for characterizing and studying inorganic materials like magnetostrictive
films or IC components [90]. However, certain biological [91] and organic/inorganic [92]
films, and even individual proteins [93], can demonstrate magnetic properties. As a
result, MFM has emerged as a viable choice for their characterization. As an example, the
assessment of iron deficiency in the human body typically relies on the measurement of
ferritin protein levels [94]. It is important to note that MFM is not artifact-free [95–97].
Previous studies on an MFM analysis of biological materials have revealed a significant
challenge, namely, the potential contamination of the signal due to artifacts arising from
topographical cross-talk. This has been demonstrated in samples comprising solid-state
materials or nanoparticles [89]. To improve the efficiency of MFM, the effect of increasing
scan rate has been previously explored [89]. It was demonstrated that MFM images of
tissue sections may exhibit contamination from artifacts caused by topographical cross-talk,
particularly at elevated scan rates. These anomalies were noted both in rodent spleen
samples and in sections of brain tissue extracted from Alzheimer’s Disease patients [89].
It is also worth noting that traditional MFM necessitates multiple scans of the samples, is
susceptible to various artifacts, and has constraints in its capacity for multimodal imaging or
imaging in a fluid environment [98]. For this purpose, Indirect Magnetic Force Microscopy
(ID-MFM) has been developed, as it enables the magnetic mapping of iron deposits in cells
and tissue sections without the risk of probe contamination [98].

3. Determining the Mechanical Properties of Nanofibers Using AFM
3.1. A Brief Overview of AFM Nanoindentation Method

The leading method for determining the mechanical properties of nanofibers is the
AFM nanoindentation method [99,100]. To apply this method, an experiment on a reference
stiff material that is not being deformed by the AFM tip is first required [99]. In this case,
the piezo-driven movement of the material relative to the tip is equal to the displacement of
the tip. Thus, the graph ‘applied force with respect to the piezo-displacement’ is linear [99].
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Subsequently, the procedure is repeated to the sample of interest. The indentation depth
(h) for each applied force (F) value can be easily calculated by subtracting the piezo-
displacement for the hard reference material

(
zsti f f

)
from the piezo-displacement for

the soft material
(

zso f t

)
, i.e., h = zso f t − zsti f f . Thus, using the F and h data, a force–

indentation curve can easily be plotted. Subsequently, the force–indentation data are
fitted to an appropriate model of contact mechanics and the sample’s Young’s modulus is
determined as a fitting parameter.

3.2. Calibration of Probe Parameters

Accurate quantitative measurements necessitate the calibration of probe parameters.
The force applied to the sample can be determined using Hooke’s law, which relates it to the
deflection of the cantilever. This relationship involves the cantilever’s spring constant (k),
deflection sensitivity (which converts the cantilever’s deflection from volts to nanometers),
and the measured cantilever’s deflection (in volts) [101].

The deflection (∆z) is directly measured with the system’s position-sensitive split
photodiode detector [101]. To perform sensitivity calibration, which establishes the rela-
tionship between cantilever deflection and the voltage signal of the laser detection system,
it is essential to generate a force-versus-distance curve on a clean, rigid surface, such as
mica or glass [101]. Subsequently, the deflection sensitivity (∆z per volt of the laser de-
tection system) is determined by simply placing two cursors on the contact region of this
force-versus-distance curve [101]. Calibration of the spring constant is achieved using the
thermal noise method [101]. Additionally, aside from the aforementioned techniques, other
innovative and precise methods, such as the “Standardized Nanomechanical Atomic Force
Microscopy Procedure (SNAP),” can also be employed [102].

3.3. Elastic Contact

The AFM indentation on a nanofiber can be modelled as the interaction of a rigid
sphere with a cylinder (Figure 3a). Assuming that the sphere is made from a material
that is orders of magnitude stiffer than the cylinder (this assumption is valid when testing
biological materials), the equation that relates the applied force (F) to the indentation depth
(h) is provided as follows [103]:

F =
4
3

E
1− v2 r1/2

tip h3/2 1
Z

(6)

In Equation (6), E and v are the Young’s modulus and Poisson’s ratio of the cylinder,
respectively, rtip is the radius of the sphere (i.e., the radius of the AFM tip), and Z is a
correction factor that is defined as follows [103,104]:

Z =
2k√
2π

[
K3(k)

K(k)− E(k)

]1/2

(7)

In Equation (7), k =

√
1−

(
A
B

)2
, where A and B are the semi-axes of the contact

ellipse between the sphere and the cylinder, K(k) =
∫ 1

0
dx√

(1−x2)(1−k2x2)
is the complete

elliptic integral of the first kind, and E(k) =
∫ 1

0

√
1−k2x2

1−x2 dx is the complete elliptic integral

of the second kind [103,104]. The ratio of the sphere’s to the cylinder’s radius
( rtip

R

)
equals

to the following [103,104]:

rtip

R
=

E(k)−
(
1− k2)K(k)

(1− k2)[K(k)− E(k)]
− 1 (8)
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Previous studies [103] showed that the correction factor Z can be approximated with
the following function:

Z = a
( rtip

R

)2
+ b

rtip

R
+ c (9)

In Equation (9), a, b, and c are constants that equal to a = −0.046, b = 0.223, and
c = 1.002. If the classic Hertzian equation F = 4

3
E

1−v2 r1/2
tip h3/2 is used instead of Equation (6),

the error is significant for big rtip/R ratios. For example, if
rtip
R = 1, the error regarding the

Young’s modulus calculation will be approximately 15%. Another simple approach that is
widely used in the literature is the following [99,105]:

F =
4
3

E
1− v2 r1/2

e f f .h
3/2 (10)

In Equation (10), re f f . =

√
r2

tipR
rtip+R . Equation (10) results in almost identical results as

Equation (6) [99,105].

3.4. Elastic–Plastic Contact

In the case of elastic–plastic contact, the Oliver and Pharr method is the gold stan-
dard technique for the determination of the mechanical properties of the material of
interest [11,106]. However, for the case of the interaction between a pyramidal indenter
and a nanofibril, modifications are required since the Oliver–Pharr method was initially
derived for the elastic–plastic contact of an indenter with an elastic half space [106]. The
basic steps of the method are provided as follows. Firstly, the unloading-force–indentation
data should be fitted to a power-law equation of the following form [11,106,107]:

F = K
(

h− h f

)m
(11)

In Equation (11), K and m are fitting constants, where 1 ≤ m ≤ 2 [106]. In addition,
h f is the final depth (i.e., the permanent depth of penetration after the indenter is fully
unloaded) [11,106].
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The depth at which contact is made between an indenter and an elastic half space
during indentation is contact depth and is provided below [106,107]:

hc = hmax − ε
Fmax

S
(12)

In Equation (12), hmax is the maximum indentation depth, Fmax is the maximum
applied force on the sample, S is the contact stiffness at the maximum indentation depth
(i.e., S = dF

dh

∣∣∣
hmax

), and ε is a constant that depends on the exponent m [106,107]:

ε = m

1−
2Γ
[

m
2(m−1)

]
π

1
2 Γ
[

1
2(m−1)

] (m− 1)

 (13)

In Equation (13), Γ is the gamma function. When using a pyramidal indenter, usually
an ‘equivalent conical indenter’ is considered to facilitate the analysis. The method for
the determination of the equivalent cone’s half angle is based on a cone that gives the
same depth-to-area relationship and is presented in [85,108]. In case of a Berkovich tip,
ϕ = 70.3

◦
[106]. Thus, the projected area at contact depth assuming that the material can be

approximated to an elastic half space is

A f lat = πh2
c tan(ϕ) (14)

Subsequently, the Young’s modulus is calculated using the following equation:

E f lat =

√
π

2β

(
1− v2

) S√
A f lat

(15)

In Equation (15), β is a correction factor that depends on the indenter’s geometry
(1.0226 < β < 1.085) [21]. However, when indenting a nanofiber, the elastic half space
assumption is not valid. Therefore, it is significant to also account for the cylindrical shape
of the fiber. McAllister et al. derived an equation that relates the contact depth in the case of
indenting an elastic half space (hc) with the contact depth in the case of a radial indentation
of a cylinder with radius R (h′c) [109]:

h′c
hc

= cos2 ϕ

1− R
hc

+

[(
R
hc

)2
+ 2

R
hc

tan2 ϕ− tan2 ϕ

]1/2
 (16)

When indenting a cylinder, the projected area at contact depth is an ellipse (not a
circle); therefore,

Aellipse = παca′c (17)

In Equation (17), αc is the major elliptical radius (αc = hc tan(ϕ)) and a′c is the minor
elliptical radius (a′c = h′c tan(ϕ)). Thus,

Aellipse = πhch′c tan(ϕ) (18)

By dividing Equations (14) and (18), it is concluded that

Aellipse

A f lat
=

h′c
hc

= cos2 ϕ

1− R
hc

+

[(
R
hc

)2
+ 2

R
hc

tan2 ϕ− tan2 ϕ

]1/2
 (19)

The
Aellipse
A f lat

= f
(

hc
R

)
function for the domain 0 ≤ hc

R ≤ 0.2, when using a Berkovic

indenter (i.e., ϕ = 70.3
◦
), is presented in Figure 4a.
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Figure 4. (a) The Aellipse
A f lat

= f
(

hc
R

)
function for the domain 0 ≤ hc

R ≤ 0.2 for the case of a Berkovic

indenter (ϕ = 70.3
◦
). (b) The Ereal

E f lat
= f

(
hc
R

)
function for the same domain. (c) The data was fitted to a

4th-degree polynomial curve (Equation (21)).

Thus, the equation that relates the Young’s modulus E f lat, when indenting an elas-
tic half space, to the real Young’s modulus Ereal when indenting a fiber should be the
following [109]:

Ereal
E f lat

=

(
A f lat

Aellipse

)1/2

(20)

The Ereal
E f lat

= f
(

hc
R

)
function for the domain 0 ≤ hc

R ≤ 0.2, when using a Berkovic
indenter, is presented in Figure 4b. It is important to note that for big indentation depths,
the error, if assuming the fiber as an elastic half space, can exceed 20% (as presented in
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Figure 4b). To facilitate the analysis, the Ereal
E f lat

= f
(

hc
R

)
data were fitted to a fourth-degree

polynomial curve (the R-squared coefficient was equal to 1.0000) to derive a simple equation
that relates Ereal with E f lat:

Ereal
E f lat

= c4

(
hc

R

)4
+ c3

(
hc

R

)3
+ c2

(
hc

R

)2
+ c1

hc

R
+ c0 (21)

The fitting coefficients resulted in c4 = −61.47, c3 = 32.63, c2 = −7.835, c1 = 1.931,
and c0 = 1. For example, assuming that hc

R = 0.2, Equation (21) results in Ereal
E f lat

= 1.2364.
This result indicates that the real Young’s modulus value is 23.64% bigger compared to the
one that is calculated using Equation (15). The fitted curve is presented in Figure 4c. In

addition, the
Aellipse
A f lat

= f
(

hc
R

)
data and the Ereal

E f lat
= f

(
hc
R

)
data are also presented in Figure 5

for indenters with a variety of an equivalent cone’s half angles. An interesting result is that
the error resulting from Equation (15) depends greatly on the equivalent cone’s half angle.
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(
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R
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For small angles, the error is relatively small. For example, assuming that ϕ = 15
◦

and hc
R = 0.2, the ratio Ereal

E f lat
becomes 1.0036 (the error in this case is only 0.36%). Thus, for

pyramidal indenters that can be modelled with cones with small half angles, Equation (15)
provides accurate results. In addition, for small indentation depths compared to the fiber’s
radius, Equation (15) is accurate even if the equivalent cone’s half angle is big. For example,
assuming that ϕ = 70.3

◦
and hc

R = 0.01, Ereal
E f lat

= 1.0186 (the error equals to 1.86%).



Fibers 2023, 11, 83 14 of 25

The same approach can also be performed using a spherical indenter. In this case, the
h′c
hc

ratio results in the following [109]:

h′c
hc

= 1− R
hc

+
R2 + Rrtip − Rhc − rtiphc +

h2
c

2
Rhc + rtiphc − h2

c
(22)

In Equation (22), rtip is the indenter’s radius. The contact radius assuming an indenta-
tion on an elastic half space is

ac =
√

hc
(
2rtip − hc

)
(23)

In the case of indenting a cylinder,

a′c =
√

h′c
(
2rtip − h′c

)
(24)

Then, the area correction ratio is given as follows [109]:

Aellipse

A f lat
=

a′c
ac

=

[
h′c
(
2rtip − h′c

)
hc
(
2rtip − hc

)]1/2

(25)

The correction in Young’s modulus can be performed using Equation (20). For small in-
dentation depths compared to the tip radius (h� rtip), hc = hmax/2 [110] and Equation (25)
becomes

Aellipse

A f lat
=

a′c
ac

=

(
h′c
hc

)1/2

(26)

An example is provided as follows. Assume that rtip = 5 nm, R = 10 nm, and
hmax = 1 nm. Considering that hc ≈ hmax/2, Equation (22) is written as follows:

h′c
hc

= 1− 2R
hmax

+
R2 + Rrtip − Rhmax

2 − rtiphmax
2 + h2

max
8

Rhmax
2 +

rtiphmax
2 − h2

max
4

= 0.6724 (27)

Thus, using Equation (26),
Aellipse
A f lat

= 0.82. Finally, using Equation (20), Ereal
E f lat

= 1.1043.
This result yields that there is a 10.43% error if using Equation (15). For example,
Wenger et al. [107] used Equation (15) for calculating the Young’s modulus of collagen
fibrils type I from rat tail tendons. In their case, 2 nm ≤ hmax ≤ 4 nm, rtip = 20 nm, and
25 nm ≤ R ≤ 100 nm. Assuming, for example, that hmax = 3 nm and R = 50 nm,
Equation (22) results in h′c

hc
= 0.8426. Thus, Equation (20) gives Ereal

E f lat
= 1.0894 (i.e.,

8.94% error).

3.5. Other Methods

Apart from the AFM nanoindentation method, several other approaches have also
been used in the literature for the determination of the mechanical properties of individual
fibers. Cheng and Wang determined the elastic modulus of single cellulose fibrils using the
experimental setup presented in Figure 6a (three-point bending tests) [111]. The experiment
involved suspending fibrils and utilizing an AFM cantilever tip to exert a minor force either
at the midpoint (L/2) of the fibrils’ lengths or at positions a quarter (L/4) of the distance
from one of their ends [111,112]. The silicon wafer in which the fibril is placed has a groove
with width L and depth y. Obtaining the deflection of the fibril (denoted as “δ”) is the most
important procedure in the process (Figure 6a). The sample deflection was determined
by calculating the difference in cantilever deflections between the tips loaded onto the
fibril positioned over a groove and those loaded onto the reference (like a silicon wafer
substrate) [111].
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When a force, denoted as F, is exerted at position x along the fiber axis, resulting in
deformation δ, the ratio F(x)/δ is the stiffness of the fiber at the respective position [47].
For a simply supported beam [47],

F(x)
δ

=
3L0EI

(L0 − x)2x2
(28)

In the case of a double-clamped beam [47],

F(x)
δ

=
3L3

0EI

(L0 − x)3x3
(29)

In Equations (28) and (29), L0 represents the initial length of the suspended segment,
E is the axial Young’s modulus, and I denotes the area moment of inertia. For cylindrical
fibers with a radius R, the area moment of inertia I can be calculated as I = πR4

4 . Several
applications of this method can be found in [113–116].
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In most of the cases of three-point bending studies, fibers are assumed to be double-
clamped due to sufficient fiber–substrate adhesion [117,118] or double-clamped conditions
are enforced with additional experimental measures [119,120]. When applying a force Fc at
the midpoint of the segment (x = L0/2), Equation (29) is simplified to

F
(

L0

2

)
= Fc =

192EI
L3

0
δ (30)

In addition, a recently introduced method involves evaluating the tensile modulus
of collagen fibrils [121]. In this approach, fibrils were placed onto a pre-stretched foil. Fol-
lowing this, the foil was allowed to relax while still holding the attached fibrils (Figure 6b).
The tensile modulus can be ascertained through AFM imaging by analyzing the buckling
wavelength and radius of each fibril. Specifically, the wavelength (represented as k = 2π/λ)
of the buckling pattern can be derived from two closely related equations, as outlined
below [121].

For in-plane buckling [122],

(Ebuckling I

Es

)1/4

k =


2π
[

1
1−vs
− γ− ln(kR)

]
[

3−vs
1−vs
− 2γ− 2 ln(kR)

]2


1/4

(31)

For out-of-plane buckling [123],(Ebuckling I

Es

)1/4

k =

{
2π[1− γ− ln(kR)]

[3− 2γ− 2 ln(kR)]2

}1/4

(32)

Equations (31) and (32) can be accurately used for a beam with a cylindrical shape with
radius R. Ebuckling is the beam’s tensile modulus and Es =

E
1−v2

s
is the reduced modulus

of the substrate (E and vs is the Young’s modulus and the Poisson ratio of the substrate,
respectively, I =

(
π
4
)

R4, and γ = 0.577 is the Euler’s constant).
To conclude, the application of the buckling phenomenon under a load offers a means

to deduce the tensile modulus of nanometer-scale fibrils using basic AFM topography
images.

An atomic force microscopy (AFM)-based method for tensile manipulation and sub-
sequent nanoscale structural assessment of single collagen fibrils was recently presented
by Quigley et al. [124]. The experimental setup is presented in Figure 6c. The geometric
approximation of the fibril strain as a function of elongation time (t), stage speed (v), and
segment length is presented below [124]:

ε =
L− L0

L0
=

√
1 + 4

(
vt
L0

)2
− 1 (33)

In Equation (33), L0 is the initial length of the fibril and L is the length at an arbitrary
moment t.

4. Discussion

In this review paper, the fundamental methods for accurately measuring the dimen-
sions and mechanical properties of nanofibers were presented. The tip convolution effects
are a major source of error regarding the AFM topography images. For example, consid-
ering the case that the height of the nanofiber equals to the tip radius, wexp − w ≈ 2rtip.
For example, if rtip = H = 10 nm, wexp − w ≈ 20 nm and wexp = 30 nm. On the contrary,
the diameter of the nanofiber will be approximately equal to w = 10 nm. This is a ~300%
error. These significant errors also greatly affect the mechanical properties determination.
For example, consider the case of a purely elastic contact between a spherical tip and the
nanofiber, using the magnitudes discussed above (i.e., the case in which rtip = H = 10 nm).
Also using Equation (9), and also assuming that the accurate dimensions of the nanofiber
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are known (i.e., w = 10 nm; thus, the radius of the nanofiber approximately equals to
R = 5 nm), it is concluded that

Z = a
( rtip

R

)2
+ b

rtip

R
+ c = 1.264

The Young’s modulus is then calculated by fitting the data to a simple equation of
the form

F = λh3/2 (34)

In Equation (34), λ equals to the following (see also Equation (6)):

λ =
4
3

E
1− v2 r1/2

tip h3/2 1
Z

(35)

However, due to the tip convolution effect, the measured radius of the nanofiber will
be R′ ≈ 15 nm. In this case,

Z′ = a
( rtip

R′

)2
+ b

rtip

R′
+ c = 1.13

Therefore,

λ =
4
3

E′

1− v2 r1/2
tip h3/2 1

Z′
(36)

Using Equations (35) and (36), it is concluded that

E
Z

=
E′

Z′
(37)

Thus, the error in the Young’s modulus determination will be equal to

E− E′

E
100% =

(
1− Z′

Z

)
= 10.6%

A similar analysis can be readily performed for other values of a nanofiber’s height
and tip’s radius and also for elastic–plastic contact. Consider, for example, an elastic–plastic
conical indentation on a nanofiber. Assume that hc

R = 0.1. Using Equation (21), it is
concluded that

Ereal
E f lat

= c4

(
hc

R

)4
+ c3

(
hc

R

)3
+ c2

(
hc

R

)2
+ c1

hc

R
+ c0 = 1.14 (38)

However, due to the tip convolution effect, hc
R = 0.1/3. Thus,

E′real
E f lat

= c4

(
hc

R

)4
+ c3

(
hc

R

)3
+ c2

(
hc

R

)2
+ c1

hc

R
+ c0 = 1.06 (39)

The error in this case regarding the Young’s modulus calculations is approximately
7%. It is important to also note that the accurate knowledge of a nanofiber’s radius
is mandatory, regardless of the method that is being used for the determination of the
mechanical properties as shown with Equations (28)–(32).

Another significant factor to take into consideration is the heterogeneity of nanofibers
in AFM nanoindentation experiments (i.e., the dependence of the Young’s modulus from
the indentation depth). Assume the elastic contact of a rigid spherical indenter with a
nanofiber for small indentation depths. The contact stiffness is calculated as follows [125]:

S(y) =
dF
dy

=
2E(y)rc(y)

1− v2 =
2E(y)√rtipy

1− v2
1
Z

(40)
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In Equation (40), Z is given with Equation (9) and depends on the
rtip
R ratio. In addition,

rc is the contact radius of the equivalent circular projected contact area (the projected area
at contact depth is an ellipse, as already mentioned) [125]. The force applied on the sample
can be calculated as follows [125]:

F =

h∫
0

S(y)dy =
2√rtip

Z(1− v2)

h∫
0

E(y)y1/2dy (41)

By changing variable y3/2 = u, du = 3
2 y1/2dy [125], and Equation (41) is written

as follows:

F =

h∫
0

S(y)dy =
4√rtip

3Z(1− v2)

h3/2∫
0

E
(

u2/3
)

du (42)

However, as also shown in [125], the integral of Equation (42) equals to the area under
the E

(
u2/3

)
= f (u) graph:

h3/2∫
0

E
(

u2/3
)

du = E1∆u + E2∆u + · · ·+ EN∆u (43)

In addition, the average value of the function E
(

u2/3
)

is provided below:

E
(

u2/3
)
=

E1∆u + E2∆u + · · ·+ EN∆u
N∆u

= E (44)

Therefore [125],

h3/2∫
0

E
(

u2/3
)

du = E
(

u2/3
)

N∆u = Eh3/2 (45)

By substituting Equation (45) in Equation (42), it is concluded that

F =
4√rtipE

3Z(1− v2)
h3/2 (46)

Thus, the same equation can be used in this case; however, the calculated magnitude
is the average Young’s modulus for a specific domain. It should also be noted that the
analysis presented in [125] was derived for indenting a heterogeneous half space. However,
it can be easily extended for heterogeneous cylindrical samples since the factor Z depends
only on the

rtip
R ratio (see also Equation (9)). In addition, the same analysis can also be

applied for different geometries of the indenter [126].
Also, it is important to note that apart from being heterogeneous, fibers are usually

anisotropic. Therefore, only the transverse elastic modulus (not the axial modulus) is
accessible through nanoindentation. Furthermore, in the case of adhesion between the tip
and the sample, the DMT model, which is based on the Hertz model that yet includes a
description of adhesion, should be used [127–132]. However, a sphere–plane geometry
is standard in these works, so the appropriate modifications as shown in this paper are
required to account for the cylindrical shape of the nanofiber.

The analysis presented in this review contributes to explaining the wide range of
Young’s modulus values observed in experiments on nanofibers as reported in the literature
(a characteristic example is the broad range of Young’s modulus values for collagen fibrils
type I [16–21,99,107]). As demonstrated in this review, the results are notably influenced by
various methods of data processing (such as the improper application of contact mechanics
models) and by the tip convolution effect. The force–indentation data lead to different
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Young’s modulus values depending on the assumptions made about the dimensions
and geometry of both the tip and the sample. In addition, due to the heterogeneity of
biomaterials and biological materials at the nanoscale, it is crucial to emphasize the analysis
presented with Equations (40)–(46), as the maximum indentation depth influences the
calculated Young’s modulus. Therefore, this review represents a significant stride toward
obtaining precise and reproducible results when testing collagen fibrils using AFM.

However, there are still several limitations that persist. Equations (1)–(5), which
are commonly used to address the AFM tip convolution effect, were derived under the
assumption of an object with a rectangular shape. However, the errors when assuming a
perfect cylindrical shape are small [74]. Nevertheless, the fundamental issue is that in many
cases, the nanofibers are not accurately represented with a perfect cylindrical shape. The
consideration of precise geometries demands specialized algorithms, thereby increasing
the complexity [74]. The same constraints apply to the determination of Young’s modulus.
The assumption of a perfect cylinder is not universally applicable (e.g., the case of collagen
fibrils in which the collagen molecules are packed in a quarter-staggered fashion so as to
form the D-band periodicity, which is a repeating banding pattern of about 67 nm) [99].
Nevertheless, analytical models for arbitrary non-symmetric geometries have not yet been
developed. Another limitation is associated with the heterogeneity of the nanofiber. It is
important to note that the model presented with Equations (40)–(46) is valid under the
assumption of the sample being a large sum of homogeneous slices [125]. The mechanical
properties of the slices that are in contact should be similar; however, this assumption
holds true in most cases for biological materials [125]. Lastly, with regard to the AFM
nanoindentation method, it is also important to mention the substrate effect [133,134].
According to Buckle’s rule, the maximum indentation depth cannot exceed 5–10% of
the sample’s thickness [133,134]. For cases in which the substrate affects the results, the
correction factors presented in [85,135] should also be applied.

It is also worth noting that the primary objective for future research is the accu-
rate 3D mechanical characterization of nanofibers with high mechanical heterogeneity,
anisotropy, and a non-perfect cylindrical shape (e.g., collagen). By employing this ap-
proach, the internal mechanical patterns within each nanofiber will be revealed, potentially
leading to significant findings applicable in medical processes, such as the diagnosis of
various diseases.

5. Conclusions

In this paper, we presented and discussed the methods and fundamental sources
of error when characterizing nanofibers using AFM. Concerning AFM imaging, the tip
convolution effect significantly leads to an overestimation of nanofiber diameter. However,
the real fiber diameter can be calculated using Equations (1)–(4) or (5), which were derived
using elementary geometry. Although these equations were originally derived for imaging
rectangular objects, they provide accurate results for cylindrical objects, such as fibers.

The mechanical properties of nanofibers are typically determined using AFM through
the nanoindentation method. A significant source of error in both elastic and elastic–plastic
contact cases is the assumption that the fiber behaves as an elastic half space. Hence, the
relevant equations for determining the Young’s modulus of the nanofiber are Equation (6)
for the elastic contact between a spherical indenter and a fiber, Equations (19)–(21) for
elastic–plastic conical indentations, and Equations (20), (22), and (25) for elastic–plastic
spherical indentations. It is also significant to note that even when using the equations
mentioned above, significant errors regarding the Young’s modulus calculations may also
arise due to the AFM tip convolution effect. Hence, besides achieving accurate nanofiber
imaging, it is also crucial to minimize tip convolution effects since errors in fiber radius can
affect the determination of mechanical properties. This remains valid even when employing
other methods for mechanical nanocharacterization (Equations (28)–(32)).

In addition, nanofibers are also heterogeneous; their mechanical properties depend
on the indentation depth. However, it was demonstrated that the same data processing
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analysis applies in this scenario as well (Equations (40)–(46)). In other words, the data
can be fitted to the appropriate model of contact mechanics. However, in this case, the
calculated parameter is the average Young’s modulus for a specific domain. Using this
approach, the depth-dependent mechanical properties of individual nanofibers can easily
be determined.

In conclusion, AFM provides numerous opportunities for precise nanoscale fiber
characterization. Nonetheless, errors can occur due to the AFM tip convolution effect and
the use of inappropriate contact mechanics models during data processing. In this review,
we delve into the sources of errors in the characterization of nanofibrils for biomedical
applications when utilizing AFM methods. Additionally, we present methods to overcome
limitations in AFM experimental procedures and data processing. This facilitates the precise
AFM characterization of individual nanofibers. It is worth noting that the methods used
for imaging and mechanical characterization, as well as the associated errors arising from
tip convolution effects and the misrepresentation of the sample’s shape (i.e., assuming an
elastic half space instead of a cylindrical sample), were critically evaluated, and relevant
examples were provided. These data will be of significant assistance to researchers in
the field, enabling them to quickly assess the validity of a specific approximation in both
imaging and mechanical property determination.
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