
Citation: Drouhet, Q.; Barbière, R.;

Touchard, F.; Chocinski-Arnault, L.;

Mellier, D. The Natural Growth of

CaCO3 Crystals on Hemp Yarns: A

Morphology Analysis and the

Mechanical Effects on Composites.

Fibers 2023, 11, 88. https://doi.org/

10.3390/fib11100088

Academic Editors: Urška
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Abstract: Plant fibres are promising candidates to replace synthetic fibres in polymer matrix com-
posites. However, there is still an important issue to overcome: the poor quality of adhesion at the
fibre/matrix interface. Many surface treatments of plant fibres have been developed, most of them
based on non-environmentally friendly processes. In this paper, a 100% natural treatment is proposed.
Hemp yarns are immersed in tap water until the natural growth of limestone beads attached to
their surface occurs. The morphology analysis reveals that these calcium carbonate crystals have a
nanoneedle architecture, with hemp fibres acting as nucleators for these highly ordered coral-like
structures. Tensile tests on ±45◦ woven hemp/epoxy composites show that the presence of CaCO3

beads improves the adhesion quality of the fibre/matrix interface and, therefore, increases Young’s
modulus value.

Keywords: natural fibres; fibre/matrix bond; surface treatment

1. Introduction

With increasing economic and environmental concerns, synthetic fibres tend to be
replaced in composites by reinforcements of plant origin, which have good specific proper-
ties compared to glass fibres [1–4]. The most common plant fibres used in biocomposites
are hemp, flax, sisal and jute [5]. Numerous methods have been developed for manu-
facturing bio-composites, depending on the targeted application: hand lay-up technique,
compression moulding, vacuum infusion, pultrusion, etc. [6]. Interest in biocomposites
is growing rapidly in the automotive, aerospace, marine and construction industries [7].
In the present study, continuous hemp reinforcement is used. Hemp (Cannabis sativa L.)
cultivation allows for the diversification of crop rotations and requires little herbicides
and fertiliser. Hemp is one of the oldest crops and is now considered one of the most
environmentally friendly industrial fibres [8–10]. Hemp bast fibres have long been used in
textile production because they are particularly long and contain highly crystalline cellulose
fibrils [11]. However, as for other plant fibres, the optimisation of the interfacial bonding
between the plant reinforcement and the polymer matrix is one of the most essential pro-
cedures for the optimal formulation of hemp composites. Modification of the plant fibre
surface is necessary to produce a composite with enhanced interfacial bonding and efficient
stress transfer at the interface [12]. Various methods have been explored to improve the
compatibility and adhesion between lignocellulosic molecules and hydrocarbon-based
polymers [13]. The most common chemical processes are based on permanganates, liquid
ammonia or isocyanate treatments or consist of silane coupling, esterification and graft
copolymerisation [14–16]. Enzymatic treatments have also been tested for different types of
plant fibres [17]. The physical methods commonly used are corona, heat treatment, electric
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discharge or plasma treatment [18,19]. But all these treatments are not environmentally
friendly because they require the use of chemicals and/or energy-consuming equipment.

In this paper, a 100% natural treatment is proposed. A morphology investigation of the
hemp yarn surface is performed using optical and scanning electron microscopy. Previously
unseen images of limestone beads attached to hemp fibres were obtained. Tensile tests are
then carried out on ±45◦ woven hemp/epoxy composites made with untreated or treated
hemp fabric.

2. Materials and Methods
2.1. Materials

Hemp yarns were provided by Lin et L’autre (Château d’Oléron, France). They were
made of bundles of hemp fibres twisted together with a mean twisting angle of around
11◦ and a linear density of about 83 tex, as determined in a previous study [20]. Single
yarn tensile tests were performed according to ASTM C-1557 [21]. Individual hemp yarns
were glued onto card tabs with a central window cut out to obtain a gauge length equal to
10 mm (Figure 1a).

Fibers 2023, 11, x FOR PEER REVIEW 2 of 10 
 

types of plant fibres [17]. The physical methods commonly used are corona, heat treat-

ment, electric discharge or plasma treatment [18,19]. But all these treatments are not envi-

ronmentally friendly because they require the use of chemicals and/or energy-consuming 

equipment. 

In this paper, a 100% natural treatment is proposed. A morphology investigation of 

the hemp yarn surface is performed using optical and scanning electron microscopy. Pre-

viously unseen images of limestone beads attached to hemp fibres were obtained. Tensile 

tests are then carried out on ±45° woven hemp/epoxy composites made with untreated or 

treated hemp fabric. 

2. Materials and Methods 

2.1. Materials 

Hemp yarns were provided by Lin et L’autre (Château d’Oléron, France). They were 

made of bundles of hemp fibres twisted together with a mean twisting angle of around 

11° and a linear density of about 83 tex, as determined in a previous study [20]. Single 

yarn tensile tests were performed according to ASTM C-1557 [21]. Individual hemp yarns 

were glued onto card tabs with a central window cut out to obtain a gauge length equal 

to 10 mm (Figure 1a). 

Composites were made of a single plain-woven layer of hemp fabric with an areal 

density of 290 ± 10 g/m2. Composite plates with treated or untreated hemp fabric were 

manufactured by vacuum infusion. The principle of this technique is to infuse resin into 

the laminate. The first step is to place the hemp fabric in the mould. Next, a perforated 

release film is positioned over the dry reinforcement. A vacuum is applied, and the dry 

fabric is compacted. Still under vacuum, the resin is infused into the mould to impregnate 

the hemp fabric. The resin used was the EPOLAM 2020 epoxy from Axson (Cergy, France). 

After manufacturing, composite plates were cured with the following cycle to achieve a 

cross-linkage as complete as possible: 24 h at ambient temperature, 3 h at 40 °C, 2 h at 60 

°C, 2 h at 80 °C and 4 h at 100 °C. Rectangular samples were cut from composite plates to 

obtain ±45° reinforcement orientation. Overall dimensions of samples were 140 mm in 

length, 20 mm in width and 0.65 mm in thickness (Figure 1b). 

 

Figure 1. Geometry of the samples for tensile testing (in mm). (a) Single hemp yarn samples. (b) 

Woven hemp composites. 

2.2. Surface Treatment 

A crucial issue with plant fibre composites is their durability when they are subjected 

to the presence of moisture. Indeed, plant fibres are highly hydrophilic in comparison 

Figure 1. Geometry of the samples for tensile testing (in mm). (a) Single hemp yarn samples. (b) Woven
hemp composites.

Composites were made of a single plain-woven layer of hemp fabric with an areal
density of 290 ± 10 g/m2. Composite plates with treated or untreated hemp fabric were
manufactured by vacuum infusion. The principle of this technique is to infuse resin into
the laminate. The first step is to place the hemp fabric in the mould. Next, a perforated
release film is positioned over the dry reinforcement. A vacuum is applied, and the dry
fabric is compacted. Still under vacuum, the resin is infused into the mould to impregnate
the hemp fabric. The resin used was the EPOLAM 2020 epoxy from Axson (Cergy, France).
After manufacturing, composite plates were cured with the following cycle to achieve a
cross-linkage as complete as possible: 24 h at ambient temperature, 3 h at 40 ◦C, 2 h at
60 ◦C, 2 h at 80 ◦C and 4 h at 100 ◦C. Rectangular samples were cut from composite plates
to obtain ±45◦ reinforcement orientation. Overall dimensions of samples were 140 mm in
length, 20 mm in width and 0.65 mm in thickness (Figure 1b).

2.2. Surface Treatment

A crucial issue with plant fibre composites is their durability when they are subjected
to the presence of moisture. Indeed, plant fibres are highly hydrophilic in comparison with
the polymer matrix. When a plant fibre composite is exposed to water ageing, its sensitivity
to moisture leads to a decrease in the adhesion quality at fibre/matrix interface and to
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the degradation of its mechanical properties [22–24]. As part of our work to analyse the
damage mechanisms occurring during water ageing, hemp yarns were immersed in tap
water at room temperature. The hardness of the used tap water was measured to be equal
to about 20◦f. Some of the hemp yarns were left in water during the whole summer. After
three months and the complete evaporation of water, the hemp yarns looked different, as
if they had been subjected to a surface treatment. It has thus been decided to conduct an
in-depth analysis of the consequences of this 100% natural treatment.

2.3. Differential Scanning Calorimetry

The matrix glass transition temperature (Tg) was determined by modulated differen-
tial scanning calorimetry (M-DSC) using Q20 TA Instruments (New Castle, DE, USA) device.
With conventional DSC, the glass transition can be hidden by an endothermic peak due to
the presence of water in samples [25]. By using M-DSC, it is possible to separate reversing
and non-reversing heat flows. The reversing heat flow contains thermodynamic compo-
nents such as glass transition, allowing the determination of the Tg value. Two aluminium
pans were used; the first one was empty and used as reference, while the second one was
filled with the composite sample (mass of material was between 5 mg and 10 mg). The
method used was as follows: equilibrate at 0 ◦C; modulate ± 0.796 ◦C every 30 s; ramp
10 ◦C/min to 180 ◦C. The modulation amplitude was chosen according to the modulation
period and the heating rate in order to detect the glass transition temperature more easily.

2.4. Microscopic Observations

A morphological investigation of the treated and untreated hemp yarns was carried
out using a ZEISS (White Plains, NY, USA) Axio Imager optical microscope and a JEOL
(Peabody, MA, USA) JSM-7000F field emission gun scanning electron microscope (FE-SEM).
Prior to FE-SEM observations, specimens were sputter-coated with gold.

2.5. Tensile Testing

Tensile tests on individual hemp yarns were carried out at room temperature with an
Instron (Norwood, MA, USA) 1195 machine equipped with a 500 N load cell. Tests were
performed in displacement control with a crosshead speed of 0.1 mm/min. The apparent
strain was determined from the crosshead displacement.

Tensile tests were carried out on composite samples using an Instron 5982 tensile
testing machine with a crosshead speed of 0.5 mm/min. Longitudinal strain was measured
by a 12.5 mm gauge length extensometer.

3. Results and Discussion
3.1. Morphology Analysis of CaCO3 Crystals

The morphological investigations were performed by optical microscopy and SEM
observations. Representative images of the untreated hemp yarns are presented in Figure 2.
Observations show the bundles of hemp fibres twisted together to form the yarn. Each
individual hemp fibre has a diameter of about 13 µm. It is also possible to see that hemp
fibres are bonded together with lignin and waxy substances and that there are some
impurities (Figure 2b).

After three months of water ageing, the hemp yarns became rough to the touch. Their
observations by optical microscopy revealed the presence of small beads (Figure 3). These
beads are globally spherical, spread all along the yarns and sometimes imbricated in each
other. Their diameter can vary from 100 µm to 500 µm. They are well attached to the yarns:
it is difficult to remove them with the fingers. They look like limestone particles, as the
ones obtained, for example, by Vidallon et al., who used a precipitation technique based
on bovine serum albumin and polydopamine [26]. They obtained particles dispersed in a
solution for biomedicine applications.

In order to check that the beads observed in Figure 3 are made of calcium carbonate
(CaCO3), a few drops of hydrochloric acid were poured over a piece of treated hemp yarn.
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An instantaneous chemical reaction was observed, with the formation of many bubbles,
causing the disappearance of the beads and thus confirming that the long ageing in tap
water had created limestone beads on the surface of the hemp yarn. To go further in their
morphological analysis, SEM observations were also performed (Figure 4).
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Figure 3. Treated hemp yarns observed by optical microscopy at two different magnifications: (a) ×20;
(b) ×50.

Thanks to high-magnification images, it is possible to see that the beads are, in fact,
crystals with a nanoneedle architecture (Figure 4d). The hemp fibres act as nucleators
(Figure 4c), leading to a strong connection of the beads to the hemp yarn (Figure 4b). To the
best of the authors’ knowledge, such images of CaCO3 beads fixed onto natural fibres have
never been shown before. This well-aligned architecture reminds us of a highly ordered
coral-like structure. The long ageing of hemp yarns in tap water led to biomineralisation-
like effects. Indeed, the biomineralisation process leads to the creation of self-organised
structures, such as coral, sea shells and coccoliths [27]. CaCO3 is abundant as a biomineral
in nature. Some research groups work to reproduce biomineralisation by developing con-
trolled processes, allowing for the selection of the design of the obtained biominerals. These
studies belong, in particular, to the fields of biomedicine [28–31] or papermaking [32,33].
P. Alam et al. studied the effect of a CaCO3 coating on the mechanical behaviour of flax
fibres [34–36]. They soaked the flax fibres in an acetic acid solution containing ground
calcium carbonate in order to create a thick mineralised cake enveloping the fibre surface.
They demonstrated that this exoskeleton enhances the mechanical properties of the flax
fibres. The current study utilises a completely natural method (immersion in tap water) to
achieve mineralisation, which leads to the formation of small beads of CaCO3 instead of a
dense exoskeleton.



Fibers 2023, 11, 88 5 of 9Fibers 2023, 11, x FOR PEER REVIEW 5 of 10 
 

 

Figure 4. (a–d) Treated hemp yarns observed by SEM. 

Thanks to high-magnification images, it is possible to see that the beads are, in fact, 

crystals with a nanoneedle architecture (Figure 4d). The hemp fibres act as nucleators (Fig-

ure 4c), leading to a strong connection of the beads to the hemp yarn (Figure 4b). To the 

best of the authors’ knowledge, such images of CaCO3 beads fixed onto natural fibres have 

never been shown before. This well-aligned architecture reminds us of a highly ordered 

coral-like structure. The long ageing of hemp yarns in tap water led to biomineralisation-

like effects. Indeed, the biomineralisation process leads to the creation of self-organised 

structures, such as coral, sea shells and coccoliths [27]. CaCO3 is abundant as a biomineral 

in nature. Some research groups work to reproduce biomineralisation by developing con-

trolled processes, allowing for the selection of the design of the obtained biominerals. 

These studies belong, in particular, to the fields of biomedicine [28–31] or papermaking 

[32,33]. P. Alam et al. studied the effect of a CaCO3 coating on the mechanical behaviour 

of flax fibres [34–36]. They soaked the flax fibres in an acetic acid solution containing 

ground calcium carbonate in order to create a thick mineralised cake enveloping the fibre 

surface. They demonstrated that this exoskeleton enhances the mechanical properties of 

the flax fibres. The current study utilises a completely natural method (immersion in tap 

Figure 4. (a–d) Treated hemp yarns observed by SEM.

3.2. Tensile Tests on Treated and Untreated Hemp Yarns

Tensile tests were performed on both treated and untreated hemp yarns. A single
hemp yarn sample is shown in Figure 5a. Figure 5b shows examples of curves obtained for
treated and untreated yarns.
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Due to their natural origin, hemp yarns exhibit a high variability in their mechanical
behaviour. However, these first results obtained on yarns with limestone beads seem to
indicate that the applied treatment does not alter the tensile behaviour of hemp yarns
(Figure 5b).

The presence of CaCO3 beads with a strong connection to the yarns could be a great
opportunity to improve the quality of adhesion at the fibre/matrix interface in woven
hemp/epoxy composites. With the aim of checking this possibility, the tap water ageing
conditions were reproduced on hemp fabric.

3.3. Characterisation of Composite Plates

The fibre volume fraction Vf of the composite plates was determined thanks to Equation (1):

vf = 1 − 1
ρm

(
ρm − Nfwf

hc

)
(1)

where ρm is the density of the composite matrix, Nf is the number of layers, which is
equal to 1 in our case, wf is the fabric areal density, and hc is the composite thickness. The
obtained Vf value for single-layer hemp/epoxy composites made of treated or untreated
hemp fabric was 36.9 ± 2.7%.

Glass transition temperatures of composite plates were determined using the M-DSC
technique. An example of reversing heat flow versus temperature curve obtained for a
single-layer hemp/epoxy sample is presented in Figure 6. Results produced an average Tg
value of 83 ± 1 ◦C for all the tested composite samples.
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3.4. Mechanical Comparison of Treated and Untreated Hemp Fabric/Epoxy Composites

In order to investigate the influence of the treatment on the mechanical properties
of hemp/epoxy composites, composite plates were made from one layer of untreated or
treated hemp fabric and epoxy matrix. Then, ±45◦ samples were cut from these plates
(Figure 7a). This orientation emphasises shear stresses, especially at interfaces, allowing
the testing of the quality of adhesion between hemp yarns and epoxy matrix. Three tests
were performed for each configuration. It was checked that the specimens broke in the
gauge length of the samples (Figure 7a). Figure 7b shows a comparison between examples
of tensile curves of ±45◦ hemp/epoxy samples with treated and untreated fabrics.
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sentative stress–strain curves for single-layer ±45◦ composites made of epoxy resin and untreated
and treated hemp fabrics.

Results show a decrease in ultimate stress and strain for the treated composite in
comparison with the untreated one. The average measured values are summarised in
Table 1. The ultimate stress is reduced from 45.0 ± 2.3 MPa to 37.8 ± 1.9 MPa for the
untreated composite and the treated one, respectively, representing a decrease of 16%.
Concerning the ultimate strain, the drop reaches 32%, from 2.5 ± 0.2% for the untreated
composite to 1.7 ± 0.1% for the treated one. This early failure of the treated composite is
probably due to the hemp fabric degradation during the water ageing. Results nonetheless
show an increase in Young’s modulus value. Indeed, Young’s modulus value is 14.4%
higher for the treated composite than for the untreated one (Table 1). It demonstrates that
the treated hemp fabric has a better adhesion with the composite matrix thanks to the
presence of the CaCO3 beads. However, scaling up the water ageing conditions from yarn to
fabric is complex and requires an adaptation of the treatment process. The conditions must
be optimised to achieve enhanced interfacial adhesion while avoiding premature breakage.

Table 1. Comparison of treated and untreated ±45◦ hemp/epoxy composites.

Young’s Modulus
(MPa)

Ultimate Stress
(MPa)

Ultimate Strain
(%)

Composite with
untreated hemp fabric 4240 ± 200 45.0 ± 2.3 2.5 ± 0.2

Composite with treated
hemp fabric 4850 ± 200 37.8 ± 1.9 1.7 ± 0.1

4. Conclusions

This study showed how three months of ageing in tap water can produce the natural
growth of limestone beads on the hemp yarn surface. A morphology analysis by optical and
scanning electron microscopy revealed for the first time that CaCO3 beads were very well
attached to the hemp fibres, thanks to many nanoneedles. These calcium carbonate crystals
are coral-like structures with a highly ordered architecture. Tensile tests on individual
yarns were performed, showing similar behaviours before and after treatment. Tensile tests
were then carried out on single-layer woven hemp/epoxy composites made with untreated
or treated (i.e., aged in tap water) hemp fabric. Results showed that the ageing in tap
water leads to a decrease in the ultimate stress and strain values but an increase in Young’s
modulus value by 14.4%. This is a very promising result, showing that the presence of
CaCO3 beads on hemp yarns allows for the enhancement of the quality of adhesion at the
yarn/matrix interface in woven composites. However, it is still necessary to optimise the
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scale change of the processing in order to obtain better fabric-scale properties. Furthermore,
work is underway to conduct fragmentation tests on monofilament composites with treated
hemp yarns to quantify the quality of the adherence at the yarn/matrix interface. Finally,
tests on laminates composed of multiple layers of hemp fabric are also being considered.
With only a natural and low-cost treatment, these materials could further compete with
synthetic glass fibre composites. This opens the door to the development of more efficient
biocomposites that could be of interest to industry.
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