The Current State and Prospects of Recycling Silk Industry Waste into Nonwoven Materials
Abstract
:1. Natural Silk and Silk Waste
1.1. Natural Silk
1.2. Silk Waste
- -
- Cocoon;
- -
- Cocoon unwinding;
- -
- Silk winding;
- -
- Silk spinning and weaving;
- -
- Silk dyeing and finishing.
1.3. Nonwoven Technology for Silk Waste
- -
- Forming the fibre web;
- -
- Bonding the fibre web;
- -
- Finishing of the nonwoven material.
2. Recycling Silk Wastes with Short Fibres
3. Recycling Silk Wastes with Long Fibres
3.1. Forming the Fibre Web
3.1.1. Linear Parameters of Silk Waste
3.1.2. Antistatic Properties of Silk Waste
- -
- Reducing the friction coefficient between the fibres;
- -
- Increasing the electrical conductivity of fibres;
- -
- Increasing the dielectric permittivity of the medium between the rubbing bodies;
- -
- Changing the contact potential.
3.2. Bonding the Fibre Web
4. Antibacterial Finishing of the Nonwoven Material
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kozlowski, R.M. Types, properties and factors affecting breeding and cultivation. In Handbook of Natural Fibres, 2nd ed.; Kozlowski, R., Mackiewicz-Talarczyk, M., Eds.; Woodhead Publishing: Kidlington, UK, 2020; Volume 1, pp. 385–416. [Google Scholar]
- Oduor, E.O.; Ciera, L.W.; Kamalha, E. Applications of Silk in Biomedical and Healthcare Textiles. In Textiles for Functional Applications; Kumar, B., Ed.; Intechopen: London, UK, 2021. [Google Scholar]
- Vepari, C.; Kaplan, D.L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Zhang, Y. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater. Sci. Eng. 2016, 61, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Jauzen, V.; Colomban, P. Types, structure and mechanical properties of silk. In Handbook of Tensile Properties of Textiles and Technical Fibres; Bunsell, A.R., Schwartz, P., Eds.; Woodhead Publishing: Sawston, UK, 2009; pp. 144–178. [Google Scholar]
- World-Raw Silk (Not Thrown)-Market Analysis, Forecast, Size, Trends and Insights; IndexBox: Luxembourg, 2023.
- Hardy, J.G.; Scheibel, T.R. Composite materials base on silk proteins. Prog. Polym. Sci. 2010, 35, 1093–1115. [Google Scholar] [CrossRef] [Green Version]
- Hardy, J.G.; Romer, L.M. Polymeric Materials Based on Silk Proteins. Polymer 2008, 49, 4309–4327. [Google Scholar] [CrossRef]
- Vierra, C.; Hsia, Y.; Gnesa, E.; Tang, S.; Jeffery, F. Spider Silk Composites and Applications. In Metal, Ceramic and Polymeric Composites for Various Uses; Cuppoletti, J., Ed.; Intechopen: London, UK, 2011; pp. 303–323. [Google Scholar]
- Samyong, L. Producing Method for Nonwoven Silk Fabric. Patent WO/2006/109905, 19 October 2006. [Google Scholar]
- Zhang, W.; Yang, Z.Y.; Cheng, X.W.; Tang, R.C.; Qiao, Y.F. Adsorption, Antibacterial and Antioxidant Properties of Tannic Acid on Silk Fiber. Polymers 2019, 11, 970–975. [Google Scholar] [CrossRef] [Green Version]
- Big Chemical Encyclopedia. Available online: https://www.nonwovens-industry.com/contents/view_breaking-news/2023-04-05/edana-releases-overview-of-nonwovens-production-figures/ (accessed on 15 April 2023).
- Silva, A.S.; Costa, E.C.; Reis, S.; Spencer, C.; Calhelha, R.C.; Miguel, S.P.; Ribeiro, M.P.; Barros, L.; Vaz, J.A.; Coutinho, P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers 2022, 14, 4931–4937. [Google Scholar] [CrossRef] [PubMed]
- Jaminova, Z.A.; Ishmatov, A.B.; Gorshkova, R.M. Method of Production of Sericine Powder from Silk Waste. Patent EA029384B1, 29 July 2016. [Google Scholar]
- Karpov, A.M.; Kolinko, S.I.; Voronov, V.I. Process for Producing Powder from Natural Silk. Patent RU2011697C1, 30 April 1994. [Google Scholar]
- Bexiga, N.M.; Bloise, A.C.; Moraes, M.A.; Converti, A.; Beppu, M.M.; Polakiewicz, B. Production and Characterization of Fibroin Hydrogel Using Waste Silk Fibers. Fibers Polym. 2017, 18, 57–63. [Google Scholar] [CrossRef]
- Yao, J.; Masuda, H.; Zhao, C.; Asakura, T. Artificial Spinning and Characterization of Silk Fiber from Bombyx mori Silk Fibroin in Hexafluoroacetone Hydrate. Macromolecules 2002, 35, 6–9. [Google Scholar] [CrossRef]
- Sashina, E.S.; Novoselov, N.P. Physical-chemical properties of solutions of nature polymers and their mixtures. In Chemistry of Polysaccharides; Zaikov, G.E., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 106–149. [Google Scholar]
- Phillips, D.M.; Drummy, L.F.; Naik, R.R.; De Long, H.C.; Fox, D.M.; Trulove, P.C.; Mantz, R.A. Regenerated silk fiber wet spinning from an ionic liquid solution. J. Mater. Chem. 2005, 15, 4206–4208. [Google Scholar] [CrossRef]
- Ling, S.; Qin, Z.; Li, C.; Huang, W.; Kaplan, D.L.; Buehler, M.J. About Silk Fibroin Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat. Commun. 2017, 8, 1387–1392. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Chen, Q.; Yang, Y.; Shao, Z. Effect of Various Dissolution Systems on the Molecular Weight of Regenerated Silk Fibroin. Biomacromolecules 2013, 14, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Wang, X.; Tao, S.; Xia, J.; Xu, S. Differences in regenerated silk fibroin prepared with different solvent systems: From structures to conformational changes. J. Appl. Polym. 2015, 132, 41959–41966. [Google Scholar] [CrossRef]
- Sashina, E.S.; Bochek, A.M.; Novoselov, N.P.; Kirichenko, D.A. Structure and solubility of natural silk fibroin. Russ. J. Appl. Chem. 2006, 79, 869–876. [Google Scholar] [CrossRef]
- Sashina, E.S.; Novoselov, N.P.; Vorbach, D.; Meister. F. Conformational changes in fibroin upon its disoolution in hexafluoroisopropanol. Polym. Sci. Ser. A 2005, 47, 1096–1103. [Google Scholar]
- Sashina, E.S.; Golubikhin, A.Y.; Susanin, A.I. Prospects for Producing New Biomaterials Based on Fibroin. Fibre Chem. 2015, 47, 253–259. [Google Scholar] [CrossRef]
- Susanin, A.I.; Sashina, E.S.; Maniukiewicz, W.; Zakharov, V.V.; Gumalevskaya, E.V.; Zaborski, M. Effect of Precipitant on Conformational State of Silk Fibroin in Ionic-Liquid Solutions. Fibre Chem. 2020, 52, 253–258. [Google Scholar] [CrossRef]
- Susanin, A.I.; Sashina, E.S.; Novoselov, N.P.; Zakharov, V.V. Change of Silk Fibroin Molecular Mass during Dissolution in Ionic Liquids. Fibre Chem. 2020, 52, 208–213. [Google Scholar] [CrossRef]
- Susanin, A.I.; Sashina, E.S.; Zakharov, V.V.; Zaborski, M. Structural Changes of Fibroin during Chemical Processing of Silk Wastes. Fibre Chem. 2020, 51, 412–417. [Google Scholar] [CrossRef]
- Susanin, A.I.; Sashina, E.S.; Zakharov, V.V.; Zaborski, M.; Kashirskii, D.A. Conformational Transitions of Silk Fibroin in Solutions under the Action of Ultrasound. Russ. J. Appl. Chem. 2018, 91, 1193–1197. [Google Scholar] [CrossRef]
- Susanin, A.I.; Sashina, E.S.; Ziółkowski, P.; Zakharov, V.V.; Zaborski, M.; Dziubiński, M.; Owczarz, P. A Comparative Study of Solutions of Silk Fibroin in 1-Butyl-3-methylimidazolium Chloride and Acetate. Russ. J. Appl. Chem. 2018, 91, 647–652. [Google Scholar] [CrossRef]
- Susanin, A.I.; Sashina, E.S.; Novoselov, N.P.; Zaborkskii, M. Study of the Rheological Characteristics of Solutions of Silk Fibroin in 1-Butyl-3-Methylimidazolium Acetate and Films Based on Them. Fibre Chem. 2017, 49, 88–96. [Google Scholar] [CrossRef]
- Kundu, B.; Rajkowa, R.; Kundu, S.C.; Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev. 2013, 65, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Wade, L.E. Wound Healing Cellular Mechanisms, Alternative Therapies and Clinical Outcomes; Nova Science Publishers: New York, NY, USA, 2015. [Google Scholar]
- Zhang, Q.; Yan, S.; Li, M. Porous materials based on Bombyx mori silk fibroin. J. Fiber Bioeng. Inform. 2010, 3, 1–8. [Google Scholar]
- Yas, M.W.; Bowlin, G.L.; Lemmon, C.A.; Dreau, D. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. Mater. Sci. Eng. 2016, 59, 1168–1180. [Google Scholar]
- Kundu, B.; Kurland, N.E.; Bano, S. Silk proteins for biomedical applications: Bioengineering perspectives. Prog. Polym. Sci. 2014, 39, 251–267. [Google Scholar] [CrossRef]
- Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D.L. Silk-based biomaterials. Biomaterials 2003, 24, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Shamey, R.; Swatwarakul, W. Innovative critical solutions in the dyeing of protein textile materials. Text. Prog. 2014, 46, 323–450. [Google Scholar] [CrossRef]
- Reneker, D.H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Zarkoob, S.; Reneker, D.H.; Eby, R.K.; Hudson, S.D.; Ertley, D.; Adams, W.W. Structure and morphology of nano electrospun silk fibers. Polym. PrePrints 2003, 39, 244–245. [Google Scholar]
- Zarkoob, S.; Reneker, D.H.; Ertley, D.; Eby, R.K.; Hudson, S.D. Synthetically Spun Silk Nanofibers and a Process for Making the Same. Patent US 6,110,590, 29 August 2000. [Google Scholar]
- Cappello, J.; McGrath, K.P. Silk Polymers, Materials Science and Biotechnology; ACS Symposium Series, No. 544; Kaplan, D., Adams, W.W., Farmer, B., Viney, C., Eds.; American Chemical Society: Washington, DC, USA, 1994; pp. 325–345. [Google Scholar]
- Park, Y.R.; Ju, H.W.; Lee, J.M.; Kim, D.K.; Lee, O.J. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Int. J. Biol. Macromol. 2016, 93, 1567–1574. [Google Scholar] [CrossRef]
- Kenry, Teck Lim, C. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci. 2017, 70, 1–17. [Google Scholar] [CrossRef]
- Sukigara, S.; Gandhi, M.; Ayutsede, J.; Micklus, M.; Ko, F. Regeneration of Bombyx mori silk by electrospinningart 1: Processing parameters ad geometric properties. Polymer 2003, 44, 5721–5727. [Google Scholar] [CrossRef]
- Sashina, E.S.; Golubikhin, A.Y.; Novoselov, N.P.; Tsobkallo, E.S.; Zaborskii, M.; Goralskii, Y. Study of possibility of applying the films of silk fibroin and its mixtures with synthetic polymers for creating the materials of contact lenses. Russ. J. Appl. Chem. 2009, 82, 898–904. [Google Scholar] [CrossRef]
- Zhou, J.; Cao, C.; Ma, X. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Int. J. Biol. Macromol. 2009, 45, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.S.; Dhandayuthapani, B.; Yoshina, Y.; Maekawa, T. Fabrication and characterization of nanofibrous scaffold developed by electrospinning. Mater. Res. 2011, 14, 317–325. [Google Scholar]
- Kamalha, E.; Zheng, Y.S.; Zeng, Y.C.; Mwasiagi, J.I. Effect of solvent concentration on morphology of electrospun Bombyx mori silk. Indian J. Fibre Text. Res. 2014, 39, 201–203. [Google Scholar]
- Zhou, W.; Feng, Y.; Yang, J.; Fan, J.; Lv, J. Electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) for endothelial cell growth. J. Mater. Sci. Mater. Med. 2015, 26, 56–61. [Google Scholar] [CrossRef]
- Siridamrong, P.; Swasdison, S.; Thamrongananskul, N. Preparation and characterization of polymer blends from Nang noi Srisaket 1 silk fibroin, gelatin, and chitosan nanofiber mats using formic acid solution. Key Eng. Mater. 2015, 659, 28–34. [Google Scholar] [CrossRef]
- Yuan, H.; Shi, H.; Qiu, X.; Chen, Y. Mechanical property and biological performance of electrospun silk fibroin-polycaprolactone scaffolds with aligned fibers. J. Biomater. Sci. Polym. Ed. 2016, 27, 263–275. [Google Scholar] [CrossRef]
- Singh, B.N.; Panda, N.N.; Pramanik, K. A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers. Int. J. Biol. Macromol. 2016, 87, 201–207. [Google Scholar] [CrossRef]
- Ju, H.W.; Lee, O.J.; Lee, J.M.; Moon, B.M.; Park, H.J. Wound healing effect of electrospun silk fibroin nanomatrix in burn-model. Int. J. Biol. Macromol. 2016, 85, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.N.; Zhang, Y.P.; Shao, H.L. Electrospun regenerated silk fibroin mats with enhanced mechanical properties. Int. J. Biol. Macromol. 2013, 56, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Ki, C.S.; Park, S.Y.; Kim, H.J. Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: Implications for bone regeneration. Biotechnol. Lett. 2008, 30, 405–410. [Google Scholar] [CrossRef]
- Ayutsede, J.; Gandhi, M.; Sukigara, S. Regeneration of Bombyx mori silk by electrospinning. Part 3: Characterization of electrospun nonwoven mat. Polymer 2005, 46, 1625–1634. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Ming, J.F. Preparation of Electrospun Silk Fibroin Nanofibers from Solutions Containing Native Silk Fibers. Appl. Polym. 2014, 132, 41236. [Google Scholar]
- Sukigara, S.; Gandhi, M.; Ayutsede, J.; Micklus, M.; Ko, F. Regeneration of Bombyx mori silk by electrospinning. Part 2: Process optimization and empirical modeling using response surface methodology. Polymer 2004, 45, 3701–3708. [Google Scholar] [CrossRef]
- Dobrynina, T.V. Method of Producing Fibroin Solution for Spinning Fibers by Means of Electrospinning. Patent RU 2,704,187 C1, 24 October 2019. [Google Scholar]
- Kishimoto, Y.; Morikawa, H.; Yamanaka, S.; Tamada, Y. Electrospinning of silk fibroin from all aqueous solution at low concentration. Mater. Sci. Eng. 2017, 73, 498–506. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Shao, H.; Hu, X. Electrospun ultra-fine silk fibroin fibers from aqueous solutions. J. Mater. Sci. 2005, 40, 5359–5363. [Google Scholar] [CrossRef]
- Saltik Çirkin, D.; Yuksek, M. Fibroin nanofibers production by electrospinning method. Turk. J. Chem. 2021, 45, 1279–1298. [Google Scholar] [CrossRef]
- Huiying, W.U.; Zhou, W.; Ping, Y.; Ding, M. Property of electrospinning silk fibroin nanofibers prepared by different dissolved methods. MATEC Web Conf. 2016, 67, 01011. [Google Scholar]
- Chiesa, I.; De Maria, C.; Ceccarini, M.R.; Mussolin, L.; Coletta, R.; Morabito, A.; Tonin, R.; Calamai, M.; Morrone, A.; Beccari, T.; et al. 3D Printing Silk-Based Bioresorbable Piezoelectric Self-Adhesive Holey Structures for In Vivo Monitoring on Soft Tissues. ACS Appl. Mater. Interfaces 2022, 14, 19253–19264. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Han, G.; Yan, S.; Zhang, Q. 3D Printing of Silk Fibroin for Biomedical Applications. Materials 2019, 12, 504–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Yeon, Y.K.; Lee, J.M.; Chao, J.R.; Lee, Y.J. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat. Commun. 2018, 9, 1620–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, J.B.; Silva-Correia, J.; Oliveira, J.M.; Reis, R.L. Fast setting silk fibroin bioink for bioprinting of patient-specific memory-shape implants. Adv. Health Mater. 2017, 6, 1701021. [Google Scholar] [CrossRef] [PubMed]
- Jose, R.R.; Brown, J.E.; Polido, K.E.; Omenetto, F.G.; Kaplan, D.L. Polyol-silk bioink formulations as two-part room-temperature curable materials for 3D printing. ACS Biomater. Sci. Eng. 2015, 1, 780–788. [Google Scholar] [CrossRef]
- Sommer, M.R.; Schaffner, M.; Carnelli, D.; Studart, A.R. 3D printing of hierarchical silk fibroin structures. ACS Appl. Mater. Interfaces 2016, 8, 34677–34685. [Google Scholar] [CrossRef]
- Rider, P.; Zhang, Y.; Tse, C.; Zhang, Y.; Jayawardane, D.; Stringer, J. Biocompatible silk fibroin scaffold prepared by reactive inkjet printing. J. Mater. Sci. 2016, 51, 8625–8630. [Google Scholar] [CrossRef] [Green Version]
- Jakab, K.; Norotte, C.; Damon, B.; Marga, F.; Neagu, A.; Besch-Williford, C.L.; Kachurin, A.; Church, K.H.; Park, H.; Mironov, V.; et al. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A 2008, 14, 413–421. [Google Scholar] [CrossRef]
- Norotte, C.; Marga, F.S.; Niklason, L.E.; Forgacs, G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 2009, 30, 5910–5917. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Dal Pra, I.; Freddi, G.; Minic, J.; Chiarini, A.; Armato, U. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials 2005, 26, 1987–1999. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Liu, L.; Shi, Y.; Qiu, J.; Fang, W.; Rong, M.; Guo, Z.; Gao, W. Characterization of silk fibroin/chitosan 3D porous scaffold and in vitro cytology. PLoS ONE 2015, 10, e0128658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vishwanath., V.; Pramanik, K.; Biswas, A. Optimization and evaluation of silk fibroin-chitosan freeze dried porous scaffolds for cartilage tissue engineering application. J. Biomater. Sci. Polym. Ed. 2016, 27, 657–674. [Google Scholar] [CrossRef] [PubMed]
- Lang, G.; Jokisch, S.; Scheibel, T. Air Filter Devices Including Nonwoven Meshes of Electrospun Recombinant Spider Silk Proteins. J. Vis. Exp. 2013, 75, e50492. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, D. (Ed.) Silk Polymers: Material Sciense and Biothechnology; American Chemical Society: Washington, DC, USA, 1994; 370p. [Google Scholar]
- Yakovleva, O.I.; Sashina, E.S.; Osipov, M.I.; Smirnov, G.P. Non-Woven Needle Punched Material with Silver Nanoparticles from Natural Silk Fiber Waste. Fibre Chem. 2020, 52, 263–268. [Google Scholar] [CrossRef]
- Nivedita, S.; Mishra, P.K. Novel Applications of Silk Nonwovens in Living Enclosures. In International Conference on Inter Disciplinary Research in Engineering and Technology; ASDF International: London, UK, 2016; Volume 1, pp. 1–4. [Google Scholar]
- Viju, S.; Rengasamy, R.S.; Thilagavathi, G.; Singh, C.J.; Mohamed, H.A.K. Sustainable development of needle punched nonwoven fabrics from silk worm cocoon waste for oil spill removal. J. Nat. Fibers 2021, 19, 4082–4092. [Google Scholar] [CrossRef]
- Yakovleva, O.I.; Sashina, E.S.; Nabieva, I.A. Needle punched nonwoven silk waste material with antifungal properties for air filtration. J. Nat. Fibers 2022, 19, 15367–15376. [Google Scholar] [CrossRef]
- Kudriavtseva, E.V.; Burinskaya, A.A. Environmentally Friendly Approach to Bimetallic Copper and Silver Cucore-Agshell Nanoparticles Synthesis on Fibrous Materials. Ind. Chem. 2022, 8, 1000190. [Google Scholar]
- Paszkiewicz, M.; Gołąbiewska, A.; Rajski, L.; Kowal, E.; Sajdak, A.; Zaleska-Medynska, A. The Antibacterial and Antifungal Textile Properties Functionalized by Bimetallic Nanoparticles of Ag/Cu with Different Structures. J. Nanomater. 2016, 2016, 6056980. [Google Scholar] [CrossRef] [Green Version]
- Zille, A.L.; Amorim, T.; Carneiro, N.; Esteves, M.F.; Silva, C.J. Application of nanotechnology in antimicrobial finishing of biomedical textiles. Mater. Res. Express 2014, 1, 032003. [Google Scholar] [CrossRef]
- Khramchikhin, V.A.; Yakovleva, O.I.; Sashina, E.S. Copper-containing non-woven materials from silk waste. IOP Conf. Ser. Earth Environ. Sci. 2020, 613, 012054. [Google Scholar] [CrossRef]
- Sashina, E.S.; Dubkova, O.I.; Novoselov, N.P.; Goralsky, J.J.; Szynkowska, M.I.; Lesniewska, E.; Maniukiewicz, W.; Strobin, G. Silver nanoparticles on fibers and films of Bombyx mori silk fibroin. Russ. J. Appl. Chem. 2009, 82, 974–980. [Google Scholar] [CrossRef]
- Yakovleva, O.I.; Sashina, E.S.; Vakulenko, S.A. Modeling the Process of Synthesis of Nanoparticles into Fibrous Materials by the Method of Chemical Reduction. Fibre Chem. 2020, 52, 183–190. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sashina, E.S.; Yakovleva, O.I. The Current State and Prospects of Recycling Silk Industry Waste into Nonwoven Materials. Fibers 2023, 11, 56. https://doi.org/10.3390/fib11060056
Sashina ES, Yakovleva OI. The Current State and Prospects of Recycling Silk Industry Waste into Nonwoven Materials. Fibers. 2023; 11(6):56. https://doi.org/10.3390/fib11060056
Chicago/Turabian StyleSashina, Elena S., and Olga I. Yakovleva. 2023. "The Current State and Prospects of Recycling Silk Industry Waste into Nonwoven Materials" Fibers 11, no. 6: 56. https://doi.org/10.3390/fib11060056
APA StyleSashina, E. S., & Yakovleva, O. I. (2023). The Current State and Prospects of Recycling Silk Industry Waste into Nonwoven Materials. Fibers, 11(6), 56. https://doi.org/10.3390/fib11060056