
Citation: Petrov, N.I. Dispersive

Propagation of Terahertz Pulses in a

Plasmonic Fiber. Fibers 2023, 11, 62.

https://doi.org/10.3390/fib11070062

Academic Editor: Mauricio Rico

Received: 29 May 2023

Revised: 29 June 2023

Accepted: 12 July 2023

Published: 14 July 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fibers

Brief Report

Dispersive Propagation of Terahertz Pulses in a Plasmonic Fiber
Nikolai I. Petrov

Scientific and Technological Centre of Unique Instrumentation, Russian Academy of Sciences,
117342 Moscow, Russia; petrovni@mail.ru

Abstract: The dispersion properties of surface plasmon polaritons (SPPs) during propagation on
metal wires with a dielectric coating in the terahertz frequency range were investigated theoretically.
An analytical expression was obtained for a pulsed electric field using the solution of Maxwell
equations taking into account high-order dispersion terms. The influence of the dielectric coating
on the distortion of the pulse shape was investigated. Unlike uncoated wire, the propagation of
surface plasmon pulses along a coated wire is highly dispersive. It was shown that the coating leads
to the appearance of a long-chirped signal with a propagation of only a few millimeters, i.e., when a
terahertz pulse propagates along a coated wire, it acquires a long oscillatory tail, the frequency of
which depends on time.
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1. Introduction

Efficient transmission of terahertz radiation is one of the challenges for the new
generation of terahertz systems. To transmit terahertz pulses, waveguides with low losses
and low dispersion are needed. Conventional dielectric fibers for visible light and metal
waveguides for microwave radiation are unsuitable for use in the THz range. It is well
known that SPPs in the THz frequency range are characterized by very low losses and
have low dispersion [1–4]. Therefore, metal wire waveguides are very important for use
in imaging, sensing and spectroscopy. Unlike SPPs in the visible and infrared frequency
ranges [5–8], the propagation characteristics of SPPs in the terahertz frequency range are
different [2]. It was shown in [2] that the behavior of SPPs on cylindrical metal surfaces in
the terahertz frequency range is dispersive and differs from that of surface plasmon waves
on a flat surface. It was found in [3] that a thin dielectric film on top of the metal leads to the
strong confinement of the SPP’s field to the surface. In [4], the effect of a dielectric coating
on THz surface plasmon pulse propagation along a copper wire was studied. Recent studies
show that THz surface plasmon waves can propagate not only at the boundary between a
metal and a dielectric layer, but also along line-guided metallic structures, such as grooves,
stripes, gratings, graphene metasurfaces and gaps [9–19]. Detailed reviews on terahertz
technology and SPWs in the THz regime are presented in [20–22]. Various THz optical
fiber types including solid core fibers, tube fibers, porous-core fibers, anti-resonant fibers
and metamaterial-based fibers are examined in [23,24]. In [25], the propagation of surface
plasmon polariton waves of a given frequency ω in the THz frequency range in metal wires
with a dielectric coating were studied. It has been shown that the phase velocity decreases
and the propagation length of SPWs increases if the wire is coated. However, the study
of the propagation of pulses is of practical interest. When pulses propagate, noticeable
changes occur. The fact is that the dependence of the speed and attenuation length on the
frequency leads to the dispersive propagation of the pulse.

The velocity dispersion is a significant obstacle that limits the application of waveg-
uides in terahertz communication systems and spectroscopy. The fact is that the various
frequency components of a wide spectrum of THz radiation propagate at different group
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velocities, which leads to the distortion of the pulse shape. The investigation of the disper-
sion properties of SPPs in the terahertz frequency range is of practical interest for various
applications, such as waveguides, sensors, and communications. Coated metal wires
can be used as sensitive sensors of the characteristics of dielectric materials at terahertz
frequencies.

In this paper, we investigate the dispersive propagation of surface plasmon–polariton
pulses along a coated metal wire in the terahertz frequency range. The effect of a dielectric
coating made of a non-dispersive material on the dispersion of pulses is investigated.
Analytical expressions for the electric field are obtained, which make it possible to carry
out time-saving calculations of the characteristics of the pulse propagating along a coated
wire. The origin of the experimentally observed long-chirped tail in a signal propagating
along a coated metal wire is clarified.

2. Problem Formulation

Dielectric fibers are widely used to transmit electromagnetic beams in optical regimes
through dielectric fibers [26,27]. Even though dielectric fibers for visible light cannot be
used to transmit terahertz electromagnetic waves, the methods used to solve Maxwell’s
equations in the optical range can also be applied to consider terahertz radiation.

Below, we consider a cylindrical metal wire (Figure 1) of radius r0, covered with a
dielectric layer of radius R f � r0.
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Figure 1. Cross section (a) and a side view (b) of a coated metal wire.

The propagation of surface electromagnetic waves along a conducting wire has long
been well studied [28].

The guided modes of a coated cylindrical wire can be determined from the solution of
the Helmholtz equations [29]:[

∇2
⊥ +

(
k2

0εm − β2
)]

Ez = 0, 0 < r < r0

[
∇2
⊥ +

(
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0εd − β2
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Ez = 0, r > r0 (1)

where ∇2
⊥ = 1

r
∂
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(
r ∂

∂r

)
+ 1

r2
∂2

∂ϕ2 , k0 = ω
c is the wavenumber in free space, β is the

longitudinal component of the wavenumber, Ez is the longitudinal field component, r0 is
the metal wire radius, εm = ε′ + i σ

ωε0
is the complex dielectric constant, σ = 1

Rl πr2
0

is the

conductivity of the wire, Rl is the resistance per unit length, εd is the dielectric constant of
dielectric cover and ε0 is the dielectric constant of free space.
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Solutions of Equation (1) are expressed as:

Ez(z) =

{
A1 I0(ηr), r ≤ r0

A2K0(η0r), r ≥ r0

}
eiβz (2)

where I0 and K0 are the modified Bessel functions of the first and second kind, A1 and A2

are the amplitude coefficients and η2 =
(

ω2

c2

)
εp − β2, η2

0 =
(

ω2

c2

)
εd − β2.

The propagation characteristics of the surface electromagnetic waves are determined
via the dispersion equation:

εp

ηa
I′0(ηa)
I0(ηa)

=
1

η0a
K′0(η0a)
K0(η0a)

(3)

where I0 and K0 are the modified Bessel functions of the first and second kind, and accord-
ingly, I′0 and K′0 are the derivatives of the Bessel functions.

The spatial distribution of a surface wave of a given frequency is preserved during
propagation. However, when pulses propagate, noticeable changes occur due to the
dependence of speed on frequency. This leads to the dispersive propagation of the pulse.

Consider an input pulse in the form:

E(z = 0, t) = A0E(r)exp(− t2

τ2
0
+ iω0t

)
= A0E(r

)
eiω0t

∫
F
(∼
Ω)ei

∼
Ωtd

∼
Ω (4)

where F(
∼
Ω) is the spectrum of the incident pulse and

∼
Ω = ω−ω0 is the detuning from

the carrier frequency of the pulse ω0.
The frequency spectrum of the pulse is determined by

F(ω−ω0) =
1√
2π

∫ ∞

−∞
f (t)e−iωtdt =

τ√
2π

exp
[
−(ω−ω0)

2τ2/2
]

(5)

The spatial distribution of the field at r ≥ r0 can be expressed as an expansion in terms
of plane waves

E(r, z, ω−ω0) = A2

∫ η0max

0
η0K0

(
η0r
)

F(ω−ω0)eiβ(ω)zdη0 (6)

The inverse Fourier transform of (6) gives an expression for the electric field in the
time domain:

E(r, z, t) =
1

2π

∫ ∞

−∞
E(r, z, ω−ω0)exp[−i(ω−ω0)t]dω (7)

Expand β(ω) in a Taylor series in the neighborhood of ω0:

β(ω) = ∑m = 0
(ω−ω0)

m

m!
γm = γ0 + (ω−ω0)γ1 +

(ω−ω0)
2

2!
γ2 +

(ω−ω0)
3

3!
γ3 . . .

(8)
where γm = dm

dωm β(ω)|ω = ω0
= ω0, γ1 = dβ

dω |ω = ω0
.

Substituting (6) into (7), for the electric field, we obtain:

E(r, z, t) =
τ√
2π

∫ η0max

0
η0K0(η0r)eiγ0z f (t, z, τ)dη0 (9)

where f (t, z, τ) =
√

2π
τ2−izγ2

exp
[
− (t−zγ1)

2

2(τ2−izγ2)

]
.
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Here, the second-order dispersion term γ2 is considered.
Considering the higher-order dispersion term γ3 (third-order correction from (8)), we

have

f (t, z, τ) =
2π

3
√

γ3z/2
exp

[
1

γ3z
(γ1z− t)

(
τ2 − iγ2z

)
+

1

3(γ3z)2

(
τ2 − iγ2z

)3
]

Ai(x) (10)

where Ai(x) = 1
2π

∫ ∞
−∞ exp

(
it3

3 + ixt
)

dt is the Airy function,

x =
i

3
√

γ3z/2
(γ1z− t) +

1

4(γ3z/2)4/3

(
τ2 − iγ2z

)2

The dispersion determined by the value of γ2 leads to an increase in the pulse duration.
A higher-order dispersion determined by the contribution of the γ3 leads to a distortion of
the pulse shape. The values of γ1, γ2 and γ3 are defined by the propagation constant β(ω),
which, in turn, is determined from the solution of the dispersion equation in Equation (3).
The pulse acquires an asymmetric shape and has an oscillatory structure on the tail. Indeed,
expression (10) for the electric field includes the Airy function, which is characterized by
oscillatory behavior.

Note that the higher-order dispersion effects become significant if the dispersion length
L3 = τ3/|γ3| is less than the dispersion length L2 = τ2/|γ2|, i.e., when τ|γ2/γ3| <
1. Usually, the contribution of the dispersion term γ3 is small in comparison with the
dispersion term γ2. However, for the picosecond pulses in the terahertz range, the effect of
the term γ3 can be significant.

3. Pulse Velocity and Dispersion

The phase and group velocities of the SPWs can be determined from the dispersion
equation in Equation (3). The phase velocity Vph = ω

β′ of the wave is defined by the real

part of the propagation constant β′, and the group velocity is determined by Vg = dω
dβ′ . The

imaginary part β′′ defines the attenuation length z0 = 1
β′′ of the surface wave propagating

along the wire.
Figure 2 shows the velocity and attenuation length depending on the frequency.

The velocity increases and the propagation length decreases with increasing frequency.
This indicates that propagation losses increase with increasing frequency, as in periodic
structures [15–19].

It is seen that the speed increases and the propagation length decreases with increasing
frequency. The velocity of propagation along a bare wire approaches the speed of light in
free space. In a coated wire, the maximum speed is limited by the value vp = c/

√
εd. The

simulation shows that the propagation distance in a coated metal wire is longer than along
a bare wire. An increase in the propagation length in the presence of a dielectric coating
was also experimentally shown in [30].

The conductivity of metal wires can be determined from a Drude formula. For cop-
per [31], the dielectric constant εm = −6.3× 105 + i2.77× 106 for the frequency of 0.5 THz.
The conductivity of copper wire is σ = 1.23× 107Ω−1m−1. Slightly higher conductivity
levels correspond to silver and gold wires.

3.1. Propagation along a Bare Wire

In Figure 3, the pulse intensities I(z, t, τ) = |E(z, t, τ)|2 for different lengths of bare
wires are presented in an offset time scale t + T0, where T0 = z/vp − 8τ, z is the distance at
which the pulse is recorded. The values of γ1, γ2 and γ3 are determined by the propagation
constant β(ω), the real and imaginary parts of which determine the phase velocity and
attenuation length of SPPs, respectively (Figure 2).
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Figure 2. Phase velocity (a,c) and attenuation length (b,d) as function of frequency. r0 = 10 µm.
σ = 1.23× 107Ω−1m−1. εd = 1.0 (a,b); εd = 2.56 (c,d).
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Figure 3. Intensity profiles of pulses at different lengths of bare wires. z = 0.5 cm (a), 1.0 cm (b), 1.5 
cm (c) and 2.0 cm (d). 𝑟𝑟0 = 100 µm. 𝜔𝜔0 = 0.8 THz, 𝜏𝜏 = 2.3 ps, 𝜀𝜀𝑑𝑑 = 1.0, 𝑇𝑇0 = 𝑧𝑧 𝑣𝑣𝑝𝑝 − 8𝜏𝜏⁄ . Figure 3. Intensity profiles of pulses at different lengths of bare wires. z = 0.5 cm (a), 1.0 cm (b),

1.5 cm (c) and 2.0 cm (d). r0 = 100 µm. ω0 = 0.8 THz, τ = 2.3ps, εd = 1.0, T0 = z/vp − 8τ.



Fibers 2023, 11, 62 6 of 10

It can be seen that the shape of the pulse changes with distance, acquiring an asymmet-
ric distribution. With increasing distance, the pulse amplitude decreases, while acquiring a
long tail.

3.2. Effect of a Dielectric Coating

The dielectric coating affects the speed and length of the attenuation of surface waves.
Glass and polymer materials were considered for use in the terahertz range [23,24,32].
Below, we use a constant refractive index n = 1.6 + 0.03i in the calculations. This refractive
index corresponds to the value for polyurethane given in [33] for the terahertz frequency
range.

In Figure 4, the pulse intensity profiles at various distances for a given pulse duration
and carrier frequency are presented.
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Unlike a bare wire (Figure 3), propagation along a coated wire is highly dispersive
(Figure 4). The coating leads to the appearance of a long-chirped signal with a propagation
of only a few millimeters. The pulse amplitude decreases significantly with increasing
distance. The appearance of the oscillatory tail in the pulse is caused by the third-order
term γ3 in (8). When only the second-order term γ2 is considered, the pulse shape remains
Gaussian. Note that such oscillatory behavior was also observed experimentally during
the propagation of a terahertz pulse along a coated copper wire in [4].
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3.3. Effect of a Pulse Duration

Consider the effect of the pulse duration on the shape of the pulse propagating along
the coated wire. Figure 5 shows the pulse shapes for different durations of the incident
pulse at a propagation distance of z = 0.5 cm.
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Figure 5. Intensity profiles of pulses for different incident pulse durations at z = 0.5 cm. τ = 7.0 ps (a),
τ = 5.0 ps (b), τ = 3.5 ps (c), τ = 2.3 ps (d). r0 = 100 µm, ω0 = 0.9 THz, εd = 2.56, T0 = z/vp − 3τ.

It follows from the simulation that the chirped output signal is observed when the
pulse duration decreases, i.e., when the pulse width τ·c becomes less than the carrier
wavelength λ0 = 2πc/ω0. For the pulse duration τ = 3 ps, the pulse width is equal
to lp = 0.9 mm. The carrier frequency of 0.9 THz corresponds to the carrier wavelength
λ0 = 2.1 mm. The oscillation depth increases as the pulse duration decreases. This indicates
that the contribution of the dispersion term of the third order becomes significant with
a decrease in the pulse duration. For a wide pulse, the third-order dispersion effect is
negligible, and the oscillating tail disappears (Figure 5a).

4. Discussion

Thus, the effect of a dielectric coating on the dispersion of pulses propagating along a
metal wire is investigated. The nondispersive coating material leads to highly dispersive
propagation along the wire, which is expressed in the appearance of a chirped output
signal. The results obtained are consistent with the experimental data presented in [4],
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where the chirped signal was observed on the propagation of terahertz pulses over copper
wire with a polyurethane coating.

The physical origin of the long-chirped tail is associated with a third-order dispersion
term in the propagation constant (8). The oscillations at the tail of the pulse weaken
with an increase in the incident pulse duration. This is due to the fact that as the pulse
duration increases, the contribution of the dispersion term γ2 becomes greater than that
of the dispersion term γ3. There is no oscillatory tail if the third-order dispersion term is
neglected during modeling.

Note that the change in the shape of the pulse during propagation can be obtained
from the time-consuming numerical solution of Maxwell’s equations. Here, we used an
analytical approach that allowed us to consider the effects of high-order dispersion leading
to the appearance of a chirped signal observed in the experiments [4].

Losses in the dielectric coating are the main limitations to the transmission of a THz
signal over long distances. Currently, porous-core photonic crystal fibers with a very low
level of material loss were proposed for pulse propagation [34–37]. In [36], a photonic
crystal structure with an average power loss of 0.02 cm−1 was designed and manufactured
for THz radiation transmission.

Future research can be related to the consideration of pulse propagation taking into
account higher-order dispersion terms and vortex modes of SPPs. Considering higher-
order dispersion terms will allow us to analyze the propagation of very short pulses. The
consideration of structured vortex beams with orbital angular momentum [33,38–40] and
the effects of the Goos–Hanchen shift [41–43] is of great interest. Tunable resonance Goos–
Hanchen and Imbert–Fedorov shifts for THz beams reflected from graphene plasmonic
metasurfaces were investigated in [41]. It is expected that considering new additional
parameters will allow us to detect new effects that are important for a new generation of
terahertz systems.

5. Conclusions

In conclusion, the propagation characteristics of SPP pulses in the THz frequency range
in cylindrical metal wires with a dielectric coating were studied through the analytical
solution of Maxwell’s equations. The expression was obtained for a pulsed electric field,
taking into account high-order dispersion terms. This allowed for time-saving calculations
of pulse propagation along a coated wire to be made.

It is shown that significant distortions of the terahertz pulse occur because of the
dispersive propagation of SPPs along the coated wire. The coating results in a long-chirped
signal for short-incident pulses. The depth of the oscillations strongly depends on the pulse
duration, and the intensity can drop to zero between adjacent periods.

It follows from the study that coated metal wires can be used as sensitive sensors of
the characteristics of dielectric materials at terahertz frequencies.

The results obtained can be applied in the field of THz spectroscopy and imaging,
communications and plasmon fibers and in the development of various sensors.
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