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Abstract: The identification and quantitative determination of wool and fine animal fibers are of great
interest in the textile field because of the significant price differences between them and common
impurities in raw and processed textiles. Since animal fibers have remarkable similarities in their
chemical and physical characteristics, specific identification methods have been studied and proposed
following advances in analytical technologies. The identification methods of wool and fine animal
fibers are reviewed in this paper, and the results of relevant studies are listed and summarized,
starting from classical microscopy methods, which are still used today not only in small to medium
enterprises but also in large industries, research studies and quality control laboratories. Particular
attention has been paid to image analysis, Nir spectroscopy and proteomics, which constitute the
most promising technologies of quality control in the manufacturing and trading of luxury textiles
and can find application in forensic science and archeology.
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1. Introduction

Fine animal fibers, also known as specialty or luxury fibers or hair, derive from animal
species other than sheep and have been selected according to their characteristics and
performances and their possibility of being spun with traditional systems. These fibers are
generally employed to obtain valuable and luxury textile items due to their characteristics
of finesses, softness, gloss, luster, color, wear comfort properties and even rarity. The limited
production quantities and sometimes the difficulties of supply make their price relatively
high compared to wool [1]. The relatively non-damaging production of animal fibers
in comparison with synthetic fibers and their biodegradability instead of microplastics
pollution production make them a partial replacement for synthetic fibers, even if in small
amounts in terms of quantity [2]. Moreover, the production and commercialization of some
animal fibers like cashmere, alpaca, camel and cashgora have a great impact on the rural
economy, preventing migration to cities and protecting mountain areas in remote pastoral
regions [3,4]

Labeling textiles to show their composition necessitates the use of analytical control
methods not only for the finished product but also for the raw materials and the material
throughout all stages of production. Aside from the legal labeling problems, the price
difference between the constituents of many popular fiber blends is a primary motivator
for developing precise analytical processes.

Other fields of interest are forensic science, textile care and laundry services, archeology
and other investigative sectors [5–9].

Following Annex I (list of the textile fibers names) of EU Regulation No 1007/2011
of 27 September 2011 and the consolidated version of 15 February 2018, fine animal hair
is classified in the number 2 category as alpaca, llama, camel, cashmere, mohair, angora,
vicuña, yak, guanaco, cashgora, beaver and otter, followed or not by the word ‘wool’
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or ‘hair’. Additions must be made to this list to identify some species that must be
killed to obtain their fine hair, such as shatoosh, which was identified as an endangered
species and was categorized as a category I animal under state protection and whose hair
commercialization is forbidden [10].

Wool is a fiber derived from the fleeces of sheep or lambs (Ovis aries). The most
used wool in the textile field is produced by the Merinos breed from Australia, selected
for the production of fine, high quality and quantity wool (about 4–5 kg of raw wool per
year per sheep) [11]. Fine animal hair comes from goats (cashmere goat (Capra hircus
laniger), mohair or angora goat (Capra hircus aegagrus), and angora goats are crossed
with feral Australian or New Zealand goats to produce cashgora), camels (camel (Camelus
bactrianus) and South American camelids, lama (Lama glama), alpaca (Vicugna pacos),
vicuña (Vicugna vicugna), guanaco (Lama guanicoe), bovines (yak (Bos grunniens)), and
rabbit (Angora rabbit (Oryctolagus cuniculus)) (see Figure 1).

Fibers 2023, 11, x FOR PEER REVIEW  2  of  27 
 

vicuña, yak, guanaco, cashgora, beaver and otter, followed or not by the word ‘wool’ or 

‘hair’. Additions must be made to this list to identify some species that must be killed to 

obtain their fine hair, such as shatoosh, which was identified as an endangered species 

and was categorized as a category I animal under state protection and whose hair com-

mercialization is forbidden [10]. 

Wool is a fiber derived from the fleeces of sheep or lambs (Ovis aries). The most used 

wool in the textile field is produced by the Merinos breed from Australia, selected for the 

production of fine, high quality and quantity wool (about 4–5 kg of raw wool per year per 

sheep) [11]. Fine animal hair comes from goats (cashmere goat (Capra hircus laniger), mo-

hair or angora goat (Capra hircus aegagrus), and angora goats are crossed with feral Aus-

tralian or New Zealand goats to produce cashgora), camels (camel (Camelus bactrianus) 

and South American camelids, lama (Lama glama), alpaca (Vicugna pacos), vicuña (Vi-

cugna vicugna), guanaco (Lama guanicoe), bovines (yak (Bos grunniens)), and rabbit (An-

gora rabbit (Oryctolagus cuniculus)) (see Figure 1). 

 

Figure 1. Fine animal fibers. 

The main animal breeding countries and principal characteristics of fine animal fibers 

are shown in Table 1. The fibers can originate from the whole fleeces or, in general, the 

finest ones, from the smooth and soft undercoat of animals bred at high altitudes, while 

the long and coarse hair from the upper coat had to be removed with a process named 

dehairing  [12].  Colors  are  due  to  the  presence  of  melanin  pigments,  divided  into 

eumelanin, responsible for brown and black colors, and pheomelanin, for yellow and red-

dish colors [13]. 

   

Figure 1. Fine animal fibers.

The main animal breeding countries and principal characteristics of fine animal fibers
are shown in Table 1. The fibers can originate from the whole fleeces or, in general, the finest
ones, from the smooth and soft undercoat of animals bred at high altitudes, while the long
and coarse hair from the upper coat had to be removed with a process named dehairing [12].
Colors are due to the presence of melanin pigments, divided into eumelanin, responsible
for brown and black colors, and pheomelanin, for yellow and reddish colors [13].
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Table 1. Fine animal fibers: main breeding countries or areas and characteristics.

Fiber Main Breeding Countries Coat or
Undercoat Fineness Natural Color Reference

cashmere China, Mongolia,
Afghanistan and Iran undercoat 15–19 µm white, gray and brown [14]

mohair South Africa and the U.S.A. coat 25–55 µm white and glossy [15]
cashgora Australia and New Zealand coat 18 to 23 µm white [16]

camel
China, Mongolia, Iran,

Afghanistan, Russia, New
Zealand and Australia

undercoat 5–20 µm golden tan [14]

lama South America coat 10–44 µm various colors,
sometimes brown [17–19]

alpaca South America coat 20–40 µm Grey, fawn white,
black, café, etc. [17–19]

vicuña Perù, Bolivia and Argentina undercoat 13–14 µm from golden to
cinnamon [17,18]

guanaco South America undercoat 16.5–24 µm light brown [17,18]

yak China, Afghanistan, Nepal,
and other Asian countries undercoat 15–20 µm dark brown [20]

angora China coat 14–16 µm white [21]

Wool and fine animal fibers have similar chemical, physical and histological character-
istics, which is why their mixtures cannot be mechanically or chemically separated through
solubility in selective solvents. They are composed of the protein keratin, which has a high
sulfur content and strong disulfide bonds that render it insoluble in water and resistant to
a variety of chemical agents [22].

From a morphological perspective, the cuticle, the cortex, and the cell membrane
complex are the three main structural components of wool and other animal fibers. A thin
layer of flat, overlapping “cuticle cells” that surrounds the cortex makes up the cystine-rich
cuticle, and it is strongly cross-linked. The cortex is made up of extended “cortical cells”
that are parallel to the fiber axis and include micro-fibrils of α-helix crystalline proteins with
low sulfur contained within an amorphous matrix of high sulfur and glycine/tyrosine-rich
proteins. The cell membrane complex serves to bind cortical and cuticle cells together and
is also known as intercellular cement [23]. In the fibers with larger diameters, or in some
fine animal fibers (e.g., angora rabbit), an inner channel named medulla, both continuous
or interrupted or fragmental, can be present [24].

In this review, the results of relevant research from morphological, chemical and
biotechnological methods of wool and animal fibers identification and quantification are
shown and discussed (Figure 2).

Each group of methods moved from general or subjective analysis to modern tech-
niques following technological innovations and targeted approaches as technology and
animal fiber studies have progressed. Regarding the morphological analysis of the fibers,
many studies are now focusing on image analysis to try to overcome the problems related to
subjective and time-consuming classic techniques of recognition of the fibers using optical
or electron microscopy performed by expert operators. As far as chemical techniques
are concerned, analysis moved from the more dated techniques related to the chemical
components of the fibers, i.e., amino acids and internal lipids, to much faster spectroscopic
analyses, which take advantage of modern chemometric techniques of spectra evaluation.
Finally, biotechnological techniques have passed from simple one- or two-dimensional
electrophoresis to DNA analysis and finally to proteomics as proteins with attributes like
persistence, quantity and DNA derivation make up the majority of animal fibers. Among
the different fibers, the majority of examined papers concern the distinction between wool
and cashmere, with cashmere being the most produced and marketed animal fiber in the
world. The global market for cashmere clothing was estimated to be worth USD 3015.98
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million in 2021 and is anticipated to grow to USD 4105.41 million by 2029, showing a CAGR
of 3.93% from 2022 to 2029 [25].
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Figure 2. Analytical methods for wool and fine animal fibers identification.

2. Analytical Methods
2.1. Morphological Methods to Identify Wool and Fine Animal Fibers

The identification of fine animal fibers is an essential task in many activities ranging
from research studies and quality control laboratories to large industries and small to
medium enterprises (SMEs). Classical and extensively used methods for the identification
of wool and fine animal fibers are morphological methods using Light- (LM) and Scanning
Electron Microscopies (SEM). Although new instrumental identification techniques that
originated with technical advancements are now available, these traditional methods are
prevalent in small industries as they are the most affordable alternative.

2.1.1. Light- and Scanning Electron Microscopy

LM and SEM are the old and classical methods to identify wool and fine animal
fibers. Using LM, fiber snippets of fixed length are cut and dispersed in a mounting
medium with an appropriate refractive index, e.g., glycerine. Morphological characteristics
that allow distinguishing wool and different fine animal fibers using LM are based on
cuticular cell morphology, pigment distribution and fiber medulla, as described in great
detail by Wildman [15] and specified in the ISO 17751-1:2016 standard [26], providing
in-depth information about the sampling and statistics to be used. The simplicity of
sample preparation and the ability to see both surface and internal fiber morphology,
including medulla and pigment distribution, are benefits of LM as a method for animal
fiber identification. The limitations are due to the poor resolution of the instrumentation
and the interference with dark dyes and pigments.
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Using SEM analysis, fibers are cut in snippets of determined length, made to adhere
to specimen stub and coated to a thin layer of gold prior to SEM observation, following the
ISO 17751-2:2016 standard [27].

Compared to LM, the advantages of SEM are related to high magnification and
resolution, which allow for measuring the thickness of cuticular cells greater than 0.6 µm
for wool and less than 0.5 µm for fine animal fibers (Figure 3).
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The main disadvantage consists of the possibility of examining only the surface
characteristics of the fibers without investigating the medulla and pigment distribution [28].

Figures 4 and 5 show the images of wool and fine animal fibers obtained by LM and
SEM, respectively, and principal morphological characteristics useful for wool and fine
animal fibers identification are summarized in Table 2.
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Figure 4. LM pictures (200×) of wool and fine animal fibers: (a) wool; (b) cashmere; (c) pigmented
cashmere; (d) mohair; (e) cashgora; (f) camel; (g) vicuña; (h) guanaco; (i) lama; (l) alpaca; (m) yak;
(n) angora rabbit.
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Figure 5. SEM pictures (1000×) of wool and fine animal fibers: (a) wool; (b) cashmere; (c) pigmented
cashmere; (d) mohair; (e) cashgora; (f) camel; (g) vicuña; (h) guanaco; (i) lama; (l) alpaca; (m) yak;
(n) angora rabbit.

Table 2. Wool and fine animal fibers morphological characteristics.

Fiber Cuticular Cells
Thickness Cuticular Cells Morphology Medulla Pigments Reference

wool ≥0.6 µm cuticular cells quite close along the fiber axis absent in fine wool usually absent [29–31]

cashmere ≤0.5 µm distant and smooth cuticular cells margins usually absent sparsely distributed
when present [13,28,32]

mohair ≤0.5 µm distant cuticular cells margins absent absent [31]
cashgora ≤0.5 µm distant cuticular cells margins absent absent [33]

camel ≤0.5 µm high cuticular cell margins slope usually absent present [15]
lama ≤0.5 µm smooth cuticular cells margins fragmental medulla present [15]

alpaca ≤0.5 µm smooth cuticular cells margins fragmental medulla present [15]
vicuña ≤0.5 µm smooth cuticular cells margins fragmental medulla present [15]

guanaco ≤0.5 µm smooth cuticular cells margins fragmental medulla present [15]
yak ≤0.5 µm distant and smooth cuticular cells margins usually absent distributed in string [33]

angora ≤0.5 µm chevron cuticular cells patterns Ladder type of medulla absent [15]

The identification methods based on LM or SEM were often criticized because they
lack objectivity and require operators with a high level of expertise and skill, mainly for
LM [34]. An additional problem arises from superficial treatments hiding the fiber’s surface
(e.g., antifelting treatments) [35].

However, LM and SEM are still primarily employed in many laboratories, SMEs and
bigger companies for animal fibers identification and quality control. Moreover, LM and
SEM are the classic identification methods to quantify animal fibers and compare obtained
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amounts with quantities obtained with new analytical methods, where the exact amounts
of fibers in samples like yarns or fabrics are not available [36,37].

Different morphological approaches for fiber identification were tried to overcome the
lack of objectivity of LM and SEM methods. McGregor et al. measured the cuticular and
cortical cell dimensions of different fine animal fibers, including cashmere, alpaca, vicuña
and mohair, but this study has not led to any sure conclusions being these measurements not
enough standardized and affected by fiber diameters and animal age and productivity [38].
Similarly, the investigation carried out by Tian et al. [39] on yak, cashmere and wool fibers
led to the detection of differences in cuticular cell scale thickness and frequencies between
these fibers, but a standardized application of measured parameters in fiber identification
was not obtained.

On the contrary, many studies using image analysis are obtaining excellent results.

2.1.2. Image Processing

In recent years, image processing has been developing rapidly. For more accurate
wool and fine animal fiber (mainly cashmere) recognition, several researchers apply related
algorithms to examine the texture or morphological characteristics of it. Improvements
include automation and batch fiber identification, which significantly increase work effi-
ciency. Accurate fiber identification is also improved, avoiding subjective identification.
Many studies have been carried out on image processing for animal fiber identification,
and many of them have been in the last few years, as shown in Table 3.

Table 3. The literature overview for animal fibers identification and quantification by imag-
ing analysis. Abbreviations: SVM = Support Vector Machine, CNN = Convolutional Neural
Network, GLCM = Gray-Level Co-Occurrence Matrix, HOG = Histogram of Oriented Gradient,
SURF = Speeded-Up Robust Features, MLP = Multi-Layer Perceptron, RPS = Region Proposal Strat-
egy, KRR = Kernel Ridge Regression, RQA = Recurrence Quantification Analysis, DGD = Direct Geo-
metrical Description, DWT = Discrete Wavelet Transform, BP = Back Propagation, GA = Genetic Al-
gorithm, LVQ = Learning Vector Quantization, ANN = Artificial Neural Network, 2DDTCWT = Two-
Dimensional Dual-Tree Complex Wavelet Transform.

Animal Fibers Accuracy (%)
Fiber

Processing
Stage

Imaging Type Techniques References Year

wool, cashmere 94.39 fiber SEM Local binary pattern, gray level
co-occurrence matrix algorithm [40] 2023

wool, cashmere 98.95 fiber SEM Improved Xception network [41] 2022

wool, cashmere up to 91 fiber SEM and LM Local binary pattern, Sparse
dictionary learning [42] 2022

wool, cashmere 95.2 fiber SEM
Feature fusion method, multi-scale
decomposition of wavelet analysis,

maximum inter-class variance, SVM
[43] 2022

wool, cashmere 96.67 fiber LM
Texture feature selection method-local

binary pattern, the gray level
co-occurrence matrix algorithm; SVM

[44] 2022

wool, cashmere,
yellow wool,

goat hair
99.15 fiber LM CCN and deep learning-AlexNet,

VGG-16, VGG-19, GoogLeNet [45] 2022

wool, cashmere 90 fiber SEM
Gray-gradient co-occurrence matrix
model; feature selection algorithm;

random forest model
[46] 2021

wool, cashmere 98.7 fiber LM Multi-focus image fusion and CNN [47] 2021
wool, cashmere 97.1 fiber SEM GLCM, HOG [48] 2021

wool, cashmere up to 90 fiber LM
LC-KSVD algorithm—A

label-consistent clustering singular
value decomposition

[49] 2021

wool, cashmere 97.1 fiber LM CNN [50] 2021
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Table 3. Cont.

Animal Fibers Accuracy (%)
Fiber

Processing
Stage

Imaging Type Techniques References Year

wool, cashmere 93.33 fiber SEM GLCM and Gabor wavelet transform [51] 2021

wool, cashmere 94.2 fiber LM
Image processing: Hessian matrix,

Frangi filter edge detection; Bayesian
classification model

[52] 2020

wool, mohair 99.8 fiber LM Image processing: feature extraction
process; CNN [53] 2020

wool, cashmere
and wool

cashmere blends

recognition
highter
than 93

fiber SEM

Image processing: original image,
image binarization, dilation, filling

margin, removing noise and removing
background; SURF feature extraction

[54] 2019

wool, cashmere 94.29 fiber LM
Image processing: GLCM algorithm,
interactive measurement algorithm
and k-means clustering algorithm

[55] 2019

wool, cashmere 90.07 fiber LM

Image processing: morphological
processing algorithm, contrast

stretching algorithm, Otsu algorithm;
Analysis: wavelet multi-scale analysis,

texture feature extraction, SVM

[56] 2019

wool, cashmere 95.25 fiber LM

Image processing: co-occurrence
matrix algorithm, central axis

algorithm; multidimentional and
clustering analysis:
K-means algorithm

[57] 2019

wool, cashmere 92.5 fiber LM image processing: HOG
descriptor; SVM [58] 2019

wool, cashmere 96 fiber SEM Image processing: Hough Transform
and Feature Extraction; MLP [59] 2019

wool, cashmere
and wool

cashmere blends
around 90 fiber LM CNN method with RPS [60] 2019

wool, cashmere
and wool

cashmere blends
97.47 fiber LM

Image preprocessing: contrast
stretching algorithm, digital analysis

methods: fractal algorithm,
parallel-line algorithm and K-means

clustering algorithm

[61] 2019

wool, cashmere
and wool

cashmere blends
more than 90 fiber from top LM

Image preprocessing: highpass
filtering, contrast stretching,

binarizing, removing small connected
components, filling margin,

segmenting from the background; bag
of word model; SVM

[62] 2018

wool,
cashmereand

wool cashmere
blends

up to 95.2 fiber LM CNN and fine-grained method [63] 2018

wool, cashmere 90 fiber LM
Image analysis: pairwise rotation

Invariant co-occurrence local binary
patterns; SVM

[64] 2018

wool cashmere
blends around 90 fiber from top LM

Image processing: projection curve;
neural network with MLP, SVM, and
KRR/classification; data training and

testing, RQA, DGD, and DWT

[65] 2017

wool, cashmere 81.17 fiber LM Image processing: Tamura texture
feature method; BP neural network [66] 2015

wool, cashmere 87.35 fiber LM Digital image, SVM [67] 2014

wool, cashmere above 83 fiber SEM

Extraction scale density, SVM and
image processing using filtering

method and high frequency
emphasized filter

[68] 2012

wool, cashmere over 92 fiber xxxxxxx GA- SVM [69] 2011

wool, cashmere higher than
93 fiber LM Image processing and LVQ

model, ANN [70] 2011

wool, cashmere
and stretch wool,

cashmere
99 and 81.06 fiber xxxxxxx

Digital image processing: character
parameter extract using

sub-measurement to measure the
diameter set up the Bayesian model

[71] 2010
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Table 3. Cont.

Animal Fibers Accuracy (%)
Fiber

Processing
Stage

Imaging Type Techniques References Year

wool, cashmere xxxxxxx fiber SEM Image analysis: 2DDTCWT
texture analysis [72] 2010

wool, cashmere
blends xxxxxxx yarn LM Image processing: SVM [73] 2010

wool, cashmere until 98.75 fiber LM
Image processing and LVQ model
neural network classifier based on

scale pattern
[74] 2008

wool, mohair xxxxxxx fiber LM

Image processing: Model I: feature
extraction with image processing,

Model II: feature extraction with MLP
and unsupervised ANN

[75] 2002

wool, mohair 88 fiber LM

Image processing: filtering, contrast
stretching, thresholding, interactive

operations, rotating, and
morphological operations. ANN

[76] 2001

wool, cashmere until 97.5 fiber SEM

Image analysis, scale pattern data:
automatic image scanning by means of

a boundary tracking algorithm;
transforming the image data from the

spatial domain to the frequency
domain and analyzing the resultant

power spectral image

[77] 2000

wool, cashmere xxxxxxx fiber SEM Semi-automated imaging techniques
for characteristic scale pattern data [78] 1997

As shown in Table 3, the proposed methods related to the extraction of features from
images are utilized for training supervised classification algorithms, which either follow
deep learning [45,53,63] or, more often, a machine learning approach.

In the literature, both features extracted from scale patterns [52,74–76,78] and height [77]
and texture features [61,65] have been employed with success. For the classification, different
algorithms such as linear discriminant analysis [78], Multi-Layer Perceptron [75,79] and
Support Vector Machine [54,58,62,64] have been employed.

From Table 3, it can be seen that most of the studies focus on the distinction between
wool and cashmere, sharing these fibers the majority of the market [80], and only a few
papers deal with the distinction between other fibers like wool and mohair [53,75,76]; in
this case, optimal discrimination was obtained.

Imaging types are, in most cases, obtained by LM as the easiest and cheapest way to
obtain images from fibers. This partially contradicts many works demonstrating that man-
ual identification of wool and cashmere is mainly carried out by measuring the thickness
of cuticular cells, which can only be determined by means of SEM [31]. However, in most
cases, good accuracies have been obtained, often exceeding 90% and even much higher up
to 98–99% [41,45,47,53], with the highest accuracies being obtained in more recent studies.

Undoubtedly, image analysis is one of the most promising techniques for the identifi-
cation of wool and fine animal fibers, but some problems are still open.

Firstly, even if the fibers to be recognized for commercial purposes are 11 (10 fine
animal fibers and wool), research typically focuses on binary classification with the excep-
tion of a few works. Indeed, Xing et al. [45] reported a unique deep learning and transfer
learning-based fiber identification approach for distinguishing between four types of fiber
images: goat hair, yellow wool, sheep wool, and cashmere. Rippel et al. [81] used SEM
images of four animal fiber types (wool, cashmere, yak, and silk) from ten different sources
by applying out-of-distribution-detection techniques to assess the efficacy of natural fiber
identification algorithms under the open set condition. Moreover, in the reviewed literature,
with few exceptions [73], images originate from raw fibers or combed slivers; therefore, in
general, they are from unprocessed fibers, not from real samples on the market or fibers at
different processing stages. As an example, problems for the identifications can arise from
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treatments that mask the surface morphology of the fibers, such as widespread treatment
to impart felt resistance, which includes chlorination and polymer adhesion [35]. Finally,
some problems in fiber identification can occur from marketed recycled wool and cashmere
textiles derived from post-industrial and post-consumer waste, currently produced in
the frame of a green economy. Although it is not possible to use completely regenerated
cashmere yarns due to poor mechanical characteristics, the presence of damaged fibers
with classic brush breaking can prevent their recognition [82]. In a similar way, problems in
fiber identification can be found in archaeological textiles where the recognizable structural
information of hair has not survived [83].

2.2. Chemical Methods
2.2.1. Amino Acids and Internal Lipids Analysis

Wool and fine animal fibers consist mainly of protein and a small amount of internal
lipids. The first chemical attempts to identify wool and fine animal fibers focused on their
main composition, i.e., protein and their main components, amino acids. Wool and fine
animal fibers are made up of eighteen amino acids and characterized by the abundance
of the amino acids cysteine, which forms disulfur intra and inter-molecular chain bonds
that confer the protein named keratin, a high chemical resistance. Cystine can be oxidized
by the cleavage of disulfur bonds until the production of cysteic acid by the effect of solar
light on the fleece [84]. It was found that lama, vicuña, alpaca and guanaco have much
higher cystine levels than yak, cashmere, cashgora and wool [85]. Moreover, the cysteic acid
levels of lama, vicuña, yak and camel were higher than cashmere, cashgora and wool [86];
however, in this case, samples of South American camelids are the results of more than
one year of fiber growth, and hence they are subjected to great photodegradation. Despite
these differences, amino acid composition depends on animal species and environmental
conditions, such as the changes in diet and textile processing conditions in yarns and
fabrics, so the amino acid composition can not be considered a strong enough discriminant
between different animal fibers.

Internal lipids, one of the components of the cell membrane complex in the fibers,
were also investigated to discriminate between wool and different animal fibers. They
consist mainly of ceramides, sterols, and free fatty acids for a percentage of about 1.5% of
fiber weight [87]. Some authors concluded that it is possible to use sterol analysis of fiber
extracts and Gas Chromatography (GC) fatty acids analysis as an addition to conventional
procedures to aid in fiber identification [88,89]. However, it was found that lipid analysis
as a criterion for fine animal fiber discrimination should be confined to untreated samples
because the textile process can affect the fibers’ internal lipids fatty acids composition [90].
In any case, no fiber quantification was tried using internal lipid analysis.

2.2.2. Thermal Analysis

Different attempts were made to identify fine animal fibers using modern analytical
techniques such as Differential Scanning Calorimetry (DSC), which was studied as an
alternative qualitative method to identify different textile animal hair fibers. DSC has well-
known applications for studying the thermal properties of materials, including melting,
glass transition, crystallization, evaporation, thermal decomposition, denaturation, specific
heat capacity and thermal history. The thermograms in Figure 6 show DSC traces of wool
and different animal fibers consisting of a first endothermic peak due to water evaporation
and a second peak around 230 ◦C due to denaturation of the α- helix keratin crystallites of
cortical cells [91].
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Figure 6. DSC traces of wool, cashmere, mohair and vicuña fibers (left) a detail from DSC
traces (right).

Wortmann et al. [92] found that denaturation temperature is positively correlated with
cystine content in keratin. The double-peak found in wool and other fine animal fiber ther-
mograms originates from ortho and para cortical cells, whose difference in sulfur amount
is sufficient to allow endotherm separation. In the mohair fibers, a single endothermic peak
appears because they consist of ortho-cortical cells only (see Figure 6).

Vineis et al. [33] used DSC traces to distinguish between animal fibers from domestic
livestock (merino wool, yak, alpaca, mohair, cashmere, camel, angora) and wild and hybrid
livestock (yangir, cashgora, vicuña, shatoosh) based on different DSC traces of crystalline
proteins in the ortho and para cortex.

They stated that hair tends to develop a higher amount of cysteine-rich paracortex
when animals are exposed to thermal and nutritional stresses. However, changes in
DSC traces due to the cortical cell transition from α-helix to the β-sheet conformation or
rearrangements in the matrix can be caused by industrial treatments such as stretching or
steaming [93]. In conclusion, DSC can be used on various animal fibers without previous
long classification studies, but it remains a fast method of qualitative analysis to confirm
animal fiber origin or study thermal modification in different fiber processing stages.

2.2.3. Spectroscopy

Spectroscopies in the near-infrared field (NIR), in the mid-infrared field (IR) and
Raman have been proposed by many authors as a tool to identify fine animal hair and for
quantitatively determining wool and cashmere in a blend (See Table 4).

Table 4. The literature overview for animal fibers identification and quantification by spectro-
scopies. Abbreviations: PET: polyethylene terephthalate, PLA: polylactic acid; PP: polypropylene; PA:
polyamide, PU: polyurethane, RMSEP: root mean standard error of prediction; SEP: standard error
of prediction.

Fibers Analytical
Method

Identification or
Quantification Accuracy Fiber

Processing Stage References Year

wool, mohair

Raman
spectroscopy

and ratiometric
analysis

identification xxxxxxx fiber [94] 2022

shahtoosh, cashmere,
angora rabbit

FTIR and
chemometry identification 100% xxxxxxx [6] 2022

wool, cashmere,
wool/cashmere blend NIR spectroscopy identification

93.33% for cashmere
and 96.60 for

cashmere wool blend

textiles from
market [95] 2019

cotton, Tencel, wool,
cashmere, PET, PLA, PP NIR spectroscopy identification 100% identification fiber sliver by

carding [96] 2019

wool, cashmere,
rabbit, camel NIR spectroscopy identification 100% sensitivity and

100% specificity fiber [97] 2019
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Table 4. Cont.

Fibers Analytical
Method

Identification or
Quantification Accuracy Fiber

Processing Stage References Year

wool, cashmere, qiviut,
bison, vicuña FTIR identification xxxxxxx fiber [98] 2018

wool cashmere blends NIR spectroscopy quantification SEP of cashmere
content 0.5% fiber [99] 2017

wool/cotton,
wool/mohair,

wool/spandex, wool/silk
and wool/cashmere

blends

NIR spectroscopy blend identification from 100% to 85% fabric [100] 2016

wool cashmere blend NIR spectroscopy quantification RMSEP: 2.8% fiber [101] 2014

wool, cashmere, yak,
angora rabbit and

wool–cashmere blends
NIR spectroscopy identification and

quantification

percentages of
recognition and

rejection of 98–100%.
SEP: 13.10 for

wool/cashmere blend

combed sliver [102] 2013

wool, cashmere, PET, PA,
PU, silk,

flax, linen, cotton, viscose,
cotton-flax blending,

PET-cotton blending, and
wool–cashmere blending

NIR spectroscopy identification
100% discrimination
between wool and

cashmere
fiber, yarn, fabric [103] 2010

wool, cashmere and
wool/cashmere blend NIR spectroscopy identification and

quantification SEP: 1.2061 fiber [104] 2010

Among them, NIR spectroscopy is the most studied and the most promising one.
Absorption in the NIR field is associated with overtone and combinations of vibrations of
the chemical bonds, mainly R-H, and physical characteristics of a material, such as sample
size and surface scattering [105]. In Figure 7, NIR spectra of wool and some fine animal
hair are shown in the wavenumber range from 10,000 to 3700 cm−1.

Spectra differ from each other mainly for the tail in the range 10,000–7300 cm−1 due
to absorptions of eumelanin pigments present in pigmented fibers and correlated with
eumelanin amount in the sample [106]. Moreover, spectra absorption intensity at different
wavenumbers is another difference, and it is imputable to a different scattering of the NIR
radiation with is correlated with physico-morphological characteristics of samples such as
the fiber diameter, the presence or absence of medulla, and the shape and distribution of
cuticular cells [102].
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Figure 7. NIR spectra of fibers from (a) angora rabbit, (b) white cashmere, (c) wool, (d) pigmented
cashmere, and (e) pigmented yak.

NIR spectroscopy has the advantage of being a fast and non-destructive technique,
able to be employed directly on the production line or using portable instruments. The
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main disadvantage is the time-consuming calibration of the methods. Acquired spectra are
then evaluated using modern chemometric methods [107].

From Table 4, we can see that identification of fibers is not restricted to wool and
cashmere but includes angora rabbit, camel, yak, [97,102], and different natural and man-
made fibers like cotton, tencel, PET, PLA, PP [96] and PET, PA, PU, silk, flax, cotton,
viscose and their blends [103], or a wool blend with cotton, mohair, silk, cashmere and
spandex [100]. For quantitative analysis, wool/cashmere blends have usually been tested.
In general, fibers are in raw state or as combed slivers, but yarn, fabrics and textiles
from markets have also been tested, obtaining good discrimination accuracy [103]. The
most popular statistics used for identification purposes was SIMCA (Soft Independent
Modelling by Class Analogy) [97,102,103] and for quantitative analysis algorithms such as
PCR (Principal Component Regression) [102], Partial Least Squares regression (PLS) [101]
and Multiple Linear Regression (MLR) [99,104] were applied. In qualitative studies for the
identification of textile materials, where the accuracy achieved is often 100%, even when
the distinction occurs between chemically different fibers and similar fibers (wool and
cashmere), more specific algorithms were used for wool cashmere discrimination [96].

Quantitative tests to assess the amount of wool and cashmere in a blend gave discor-
dant results with standard error of prediction (SEP) ranging from 13.10 [102] to 1.2061 [104]
and 0.5 [99], depending on the sampling and algorithm used for calibration. Good re-
sults were also obtained by Sun et al. [95], who tested NIR on real samples in the market
and achieved an accuracy of 93.33% for cashmere textiles and 96.60% for cashmere–wool
blended textiles using a portable NIR-based textile analyzer.

Even more in detail, NIR spectroscopy was proposed to discriminate among vari-
eties of cashmere material [108] and to distinguish between virgin and recycled cashmere
fibers [109]. In conclusion, NIR spectroscopy is a fast and non-destructive analysis that
needs long and accurate calibration work, and it is valuable to sectors where a large num-
ber of textile samples must be tested, such as quality control in large enterprises and in
import/export business.

Alternative methods of fiber identification using spectroscopies, such as Fourier Trans-
form Infrared Spectroscopy (FTIR), sensible to amino acids variation correlated with animal
species, and Raman spectroscopy, were investigated. Although some works have not
produced satisfactory results [94,98], positive results were obtained when FTIR analy-
sis was coupled with chemometric tools. Indeed, in recent work as a proof-of-concept
study, illustrating the potential of ATR FT-IR spectroscopy in animal fibers identifica-
tion, Sharma et al. [6] obtained a complete differentiation between cashmere, angora and
shahtoosh using FT-IR spectroscopy coupled with Partial Least Squares Discriminant
Analysis (PLS DA).

2.3. Biotechnological Methods
2.3.1. Electrophoresis

Keratin synthesis is under genetic control and is species-specific for this reason. The
first attempt to distinguish between wool and different animal fibers focused on protein
separation by one- or two-dimensional polyacrylamide gel electrophoresis analysis. In
one-dimensional gel electrophoresis, the proteins extracted from fibers by reducing the
disulfide bonds are separated according to their molecular mass, while in two-dimensional
gel electrophoresis, proteins are separated according to their isoelectric point and in the
other dimension according to their molecular mass [83]. In Figure 8, one-dimensional
electrophoresis patterns of wool and different animal fibers are shown. We can see two
bands at about 50 kDa corresponding to the low sulfur proteins from intermediate filaments
in cortical cells, different bands in the range 28–11 kDa corresponding to high sulfur proteins
extracted from cuticular cells, and bands at molecular weight below 10 kDa corresponding
to high glycine and tyrosine proteins from the matrix from cortical and cuticular cells and
embedding cortical cells [22].
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Marshal et al. [110] demonstrated that by using two-dimensional electrophoresis, it
is possible to distinguish between wool, mohair, camel and alpaca, mainly according to
differences in high sulfur protein separation patterns. Tucker et al. [111] applied two-
dimensional electrophoresis using either acidic or alkaline gels to distinguish among
cashmere, mohair, cashgora and wool, concluding that this technique is able to differentiate
between goat and sheep fibers but not unequivocally between cashmere, mohair and
cashgora. The relatively simple method of one-dimensional electrophoresis was applied
by Wortmann et al. [32] to distinguish between yak and cashmere and between lama and
mohair fibers, as well as between their blends. Despite the positive judgment of the gel
electrophoresis to differentiate between fine animal fibers, the main problems arise from the
low protein extraction yields of many hair samples following industrial textile processes or
extreme weathering, which seriously affect their quantitative determination.

2.3.2. DNA Analysis

In the late 1980s, it was demonstrated that DNA (deoxyribonucleic acid), the molecule
that carries hereditary and genetic information, can be extracted from the hair shafts and
not only from the hair roots, opening new paths for the identification of animal fibers.
For the first time, Kalbé et al. [112] isolated DNA from whole fiber and cuticular cells
of animal hair (i.e., alpaca, angora rabbit, cashmere, cashgora, mohair, merino wool and
yak). The extracted DNA was then hybridized with selected DNA fragments appositely
prepared from rabbit, bovine livers and sheep. The results from dot blot hybridization
showed that yak and angora were recognized by bovine and rabbit DNA probes, but goat
and sheep may be distinguished only gradually using these probes. However, these first
results allowed new possibilities to identify animal fibers employing analytical methods
from molecular biology.

Some years later, Hamlyn et al. [113] described the advantages and limits of DNA
analysis used to distinguish between wool, cashmere and yak. DNA hybridization analysis
using a classical dot blot technique is usually carried out on fibers in their raw state,
while in processed materials and finished textile products, the amount of DNA present in
the fibers is so reduced that DNA must be amplified in vitro with an analytical method
known as polymerase chain reaction (PCR) before the quantitative determination. The
authors affirmed that even if the DNA analysis with PCR amplification is able to detect
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fraudulent substitution of small amounts of fibers, the analysis is not quantitative. A major
challenge could be identifying DNA in situ directly on the fiber shafts, but this technology
was not developed yet because DNA is encapsulated in a waterproof environment of
the keratinized cells of the fibers. Kerkhoff et al. [114] studied a DNA analytical method
with PCR amplification to identify cashmere/cashgora, fine wool, yak and camel hair in
untreated and treated (washed, bleached, dyed) fibers samples (Table 5). The authors
concluded that by using this method, it is possible to differentiate between fine wool–
cashmere and cashmere–yak hair, which are the most difficult fibers to distinguish by
SEM methods. However, the main problems arise from the differentiation between breeds
or varieties of the same species (cashmere, cashgora and mohair) and from obtaining
quantitative results.

Table 5. The literature overview for animal fibers identification and quantification by DNA analysis.

Animal Fiber Identification or
Quantification Accuracy Fiber Processing

Stage References Year

wool/cashmere blend quantification
results of DNA analysis and

LM in fabrics were quite
close

fiber, yarn, dyed
and finished

fabrics
[36] 2015

rabbit, wool, cashmere,
yak, alpaca, duck

down
identification of rabbit good accuracy fiber [115] 2015

wool/cashmere blend identification
minimum amount of wool

detectable in
cashmere 9.09%

fiber [116] 2015

wool, cashmere identification
minimum amount of wool

detectable in
cashmere 11.1%

fiber [117] 2015

wool, cashmere quantification in blend xxxxxxx fiber and fabric [118] 2014

shahtoosh, cashmere identification
minimum amount of

shahtoosh detectable in
cashmere: 1%

fiber and
processed product [119] 2014

wool, cashmere and
wool/cashmere blend

identification and
quantification in blend

more precise and accurate
than traditional microscopic

examination
fabric [120] 2013

wool, cashmere identification and
quantification in blend

minimum amount of wool
detectable in cashmere and

vice versa: 11.1%
fiber [121] 2012

wool, cashmere and
wool/cashmere blend

identification and
quantification in blend

minimum amount of wool
detectable in cashmere: 1% fiber [122] 2011

cashmere/cashgora,
fine wool, yak and

camel

identification and
quantification in blend

detection limit of about 3%
for fine wool/cashmere and

yak/cashmere blend

untreated and
treated (dyed,

bleached) samples
[114] 2009

wool and goat
(cashmere,

cashgora, mohair)

distinguishing
between sheep and

goat fiber
xxxxxxxx fiber [123] 1992

In general, even if many studies are focused on the distinction between wool and
cashmere and on identifying the presence of wool in cashmere-labeled products, the studies
concern different fibers ranging from shatoosh to alpaca, yak, camel and rabbit. Particular
attention was paid to the distinction between yak and cashmere, which are two fibers
that are particularly difficult to distinguish under microscopy, while DNA analysis makes
identification easier as they belong to genetically distant species [114]. Some problems
have been found in distinguishing between genetically similar species, such as mohair,
cashgora and cashmere goat [123], while no literature was found about the distinction
between fibers of South American camelids. The studies were carried out both on raw
fibers [116,117] and on finished products on the market [119], with particular attention to
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dyed products [36,118], as dyeing has been demonstrated to be the main process damaging
the DNA present in the fibers.

DNA analysis is basically a qualitative analysis, able to identify fibers very similar
in the microscopic analysis, while the quantitative analysis presents some problems. The
quantitative result generally consists in determining the minimum amount of foreign fiber
that can be detected in a sample, and this ranges from about 10% [116,117] to 1% [119,122].

Although DNA analysis to identify animal fibers is currently still used in some labora-
tories following the ISO 18074 standard [124], there have been no studies in the recent liter-
ature on DNA analysis, probably because they have been replaced by proteomics studies.

The main problem of DNA analysis is its low and probably uneven amount in animal
fibers. In contrast, keratins and keratin-associated proteins in animal fibers are abun-
dant, persistent and derived from DNA, making them an ideal target for distinguishing
animal fibers.

2.3.3. Proteomic Analysis

Proteomic methods are able to distinguish one species from another by MS (Mass
Spectrometry) approaches applied in protein or peptide identification. Usually, the “bottom-
up” or “shotgun” proteomic approach is employed, consisting in detecting only peptides
and identifying the unique peptides to confirm the presence of proteins in the sample.
Proteins are extracted from animal fibers using a buffer solution containing a reducing
agent, usually dithiothreitol [7,125,126], able to cleave the disulfide bonds between cys-
teine’s side chains. In some cases, mercaptoethanol [127,128] has been used instead of
DTT. Extracted proteins are usually digested by trypsin, a proteolytic enzyme able to
cleave proteins at the C-terminal side of arginine and lysine, obtaining short peptide
fragments of up to 20–30 residues [37,129]. In one case, double digestion was carried
out with trypsin–chymotrypsin (sensitive to Asp/Glu) or trypsin–Glu-C (sensitive to
Phe/Tyr/Trp/Leu) [130] in order to improve the identification of the species-specific pep-
tide in similar species.

Digestion can be performed either in solution or after protein separation by gel elec-
trophoresis from the bands (one dimension—SDS Page) [131] or spots (two dimensions)
formed on the gels. Peptides are then analyzed in MS mode, where they are identified
by their mass, or MS/MS mode, where the amino acid sequence of the peptide can be
obtained and then compared with protein sequences in databases. To be detected in MS
mode, peptides are ionized or by matrix-assisted laser desorption ionization (MALDI) or
electrospray ionization (ESI). The first is often coupled with a time-of-flight mass spec-
trometer (TOF-MS), where the ions are accelerated through a fixed electric field, and their
time of flight to reach the detector determines their mass-to-charge ratio; the second is
the interface between a separation system where the sample is injected (high-performance
liquid chromatography (HPLC), ultra-performance liquid chromatography (UPLC)) and
the MS detector.

As shown in Table 6, common approaches used are UPLC/ESI-MS [126]; UPLC/ESI-
MS/MS [37] in order to identify peptidic species-specific markers able to differentiate be-
tween wool, cashmere and yak fibers; MALDI-TOF MS [128]; and MALDI TOF MS/MS [132].

Table 6. The literature overview for animal fibers identification and quantification by proteomic
analysis. Abbreviations: RMSE: root mean squared error.

Animal Fibers Protein
Extraction

Peptide
Production

Analytical
Method

Identification or
Quantification Accuracy Fiber Processing

Stage References Year

cashmere,
shahtoosh DTT sds page and

trypsin Maldi TOF-MS quantification

minimum amount
of shahtoosh
detectable in
cashmere: 5%

raw fiber and fabric [10] 2022

vicuña, alpaca,
guanaco, lama DTT trypsin

UHPLC
MS/MS and
chemometry

Identification of
guanaco,

vicuña, alpaca

100%
discrimination

guanaco,
vicuña, alpaca

fiber and
ancient textiles [125] 2021
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Table 6. Cont.

Animal Fibers Protein
Extraction

Peptide
Production

Analytical
Method

Identification or
Quantification Accuracy Fiber Processing

Stage References Year

wool, goat,
cattle, camel,
human hair

DTT trypsin UHPLC-MS
ESI-Q-TOF

species-specific
marker list

improvement
xxxxxxx ancient raw fibers

and ancient textiles [7] 2019

wool,
cashmere DTT

trypsin,
trypsin–

chymotrypsin,
trypsin-
GLU-C

NanoLC
MS/MS

selection of species
unique peptides xxxxxxx

raw fibers and
commercial textiles

(for verification)
[130] 2018

wool,
cashmere, yak DTT trypsin UPLC/ESI-MS quantification

average errors
from −3%/−6% to
3%/7% depending

on the fiber

fiber, sliver,
yarn, fabric [126] 2017

wool,
cashmere DTT trypsin MALDI-TOF

MS
marker

identification xxxxxxx fiber [133] 2016

wool,
cashmere, yak DTT trypsin

nanoLC
MS/MS

triple TOF

marker
identification, fiber
identification and

quantification

cashmere
percentages are in
good agreement
with LM results

fiber and fabric [129] 2016

wool,
cashmere, yak DTT sds page and

trypsin
MALDI

TOF/MS MS
quantification

in blend

very good linearity
between the

compositionand
the peak area ratio

fiber and textile [132] 2014

cashmere,
wool, mohair,

yak, camel,
angora, alpaca

DTT trypsin
MALDI-TOF

MS and
chemometric

identification
RMSE 0.365 for
pure fiberRMSE
0.471 for blend

untreated and
treated fibers and

50/50 blend
[134] 2013

cashmere, yak mercaptoethanol trypsin MALDI TOF
MS identification xxxxxxx fiber and fabric [127] 2013

wool,
cashmere, yak DTT trypsin

UPLC/ESI
MSUPLC/ESI

MS MS

identification and
quantification

in blend

limit of detection:
5%

raw, bleached,
depigmented,

dyed fiber
[37] 2013

wool,
cashmere, yak DTT sds page and

trypsin
MALDI-TOF

MS

specific marker
identification for

keratin I
xxxxxxx fiber [131] 2012

wool, yak,
human, rabbit,
dog, mohair,

mink, fox

mercaptoethanol trypsin MALDI-TOF
MS

identification and
quantification xxxxxxx raw, dyed,

bleached fibers [128] 2002

In Table 6, the main literature about fine animal fiber identification using proteomic
analyses is summarized.

Studies on the identification of animal fibers using proteomic methods concern, in
many cases, wool, cashmere and yak, with the latter often being the last one used for the
adulteration of cashmere products, and it is difficult to distinguish yak from cashmere
using microscopic methods [37,131]. Moreover, some studies cover a wide range of fibers
ranging from cashmere, wool, mohair, yak, camel, angora, alpaca, lama, mink, fox and
dog [128,134]. The recognition of South American camelids (SACs) fibers has also been
investigated on ancient textiles found in archeological sites [125], and the presence of
shahtoosh fibers on cashmere fabrics has been investigated for fraud control to detect
the illegal trade of shahtoosh [10]. Samples investigated range from raw fibers to yarn
and fabrics and historical textiles. In most cases, raw fibers were used for species-specific
marker screening and commercial textile fibers for marker verification [130]. Accuracy,
when reported, is good, ranging from −3%/−6% to +3%/+7% [126], and the limit of
detection is around 5% [10]; even if it is less sensitive than that PCR-based DNA analysis
method where the limitation of detection is 1% [119], in this case, the advantage lies in the
fact that no false positives are detected.

Some studies focus on analysis for commercial purposes [126], while others focus on
the identification of specific species markers to implement the existing databases [7,125] and
allow the recognition of treated or damaged samples also in the field of palaeoproteomics
and in the case where the surface fibers morphology does not allow fibers recognition.

In some cases, analyses are particularly challenging due to the extensive hybridization
between the species, e.g., domestics SACs lama and alpaca identification [125]. In conclu-
sion, the proteomic approach is a long and complex process, useful for the discrimination
among fibers or materials difficult to distinguish with other methods. It is also important in



Fibers 2023, 11, 67 18 of 24

revealing information about relationships between close species or sub-species, evaluating
morphological characteristics in fibers related to the expression and quantitation of proteins
(e.g., fineness of wool), and studying the degradation of proteins following industrial
processes in commercial fabrics or aging, in historical textiles.

3. Comparison between the Principal Analytical Methods

The most employed and promising analytical methods are compared in Table 7. These
methods are image analysis, NIR spectroscopy and proteomic methods, alongside the
well-consolidated microscopical methods using both LM and SEM.

Table 7. Comparison between analytical methods.

Methods
Instrument

Depreciation
Cost

Chemicals and
Consumables

Cost
Analysis Times Pros Cons

LM and SEM not high for LM,
high for SEM not high long consolidated analysis

lack objectivity;
need of operators with a
high degree of skill and

experience;
problems with fibers
morphologically very
similar or damaged

Image processing not high not high
short after an initial

time-consuming
calibration

high accuracy of fiber
identification

most of the studies are
limited to wool–cashmere

classification and raw fibers;
calibration using damaged
fibers or fibers with very

similar morphology

NIR
spectroscopy not high not high

short after an initial
time-consuming

calibration

non-destructive analysis;
availability of portable

instruments;
possibility to take

measurements directly on
the production line

discordant results in blend
quantification

Proteomic
analysis high high long

results not influenced by
very similar or altered

surface fiber morphology

problems with fiber
identification in very close

or expensively
hybridized species

Instrument, chemicals and consumables costs and analysis times are determining
factors for the use of one technique rather than another, especially in SMEs and quality
control laboratories. In this case, LM, NIR and image analysis have relatively low costs
compared to SEM and proteomic techniques, which show high instrument and management
costs. SEM, with higher amortization costs than LM, has the advantage of being a less
subjective technique as the high resolution allows for measuring the thickness of the
cuticular cells, which is greater than 0.6 µm in wool and less than 0.5 µm in fine animal
fibers. As far as the analysis times are concerned, these are very long in the microscopical
methods, which envisage the recognition of every single fiber (1050 fibers according to the
ISO 17751-2:2016 standard) by an expert operator, while for image analysis and NIR analysis,
time is definitely short after a time-consuming initial calibration. Proteomic techniques
require long times for calibration, while analysis times depend on the automation of the
method, but given the numerous analysis steps, they cannot be significantly reduced.

The pros and cons of the different techniques are shown in Table 7. In summary,
it can be stated that the image analysis technique shows a high accuracy but has so far
been focused only on wool and cashmere fibers in a raw state. It could be assumed
that it will have to be refined in the identification of morphologically very similar fibers
(cashmere and yak), and the identification of damaged, surface-treated or recycled fibers
will be a problematic issue, as has already happened for LM and SEM. In these cases,
valid alternative methods can be proteomic techniques, which are time-consuming and
expensive, but the morphology of the fiber does not influence them. Finally, the NIR
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technique has many advantages: it is a fast, non-destructive analysis with the possibility
of being carried out directly on the production line, but its main problem is related to the
accuracy of quantitative analysis.

4. Recommendations and Future Research Directions

The most promising recent identification methods of wool and fine animal fibers are
image processing, NIR spectroscopy combined with chemometric analysis, and proteomic
analysis, which have been developed following the evolution of technologies employed in
different fields. These methods were tailored to the niche sector of animal fiber identification.

In the development of these methods, it is important to have an interdisciplinary
approach involving experts in the respective analytical technique and experts in the textile
field who know how to direct innovation towards the real needs of the sector without
becoming lost in merely theoretical studies. This consideration is especially true for studies
concerning image processing.

The future research direction will be largely influenced by the evolution of analytical
methods taking into consideration the need to identify fibers on real samples, which may
have undergone chemical or mechanical treatments or may derive from recycled fibers.
Other issues to be considered are the identification of more than one fiber in a blend and
the time and cost of routine analysis required in quality control and textile labeling.

New research directions consist of the investigation of new analytical techniques to
be applied for the identification of wool and animal fibers that could also result from the
coupling of techniques that are already applied in animal fiber identification, such as the
example the hyperspectral imaging working in the NIR field [135].

5. Conclusions

The identification and quantitative determination of wool and animal fibers is a major
challenge mainly for textile fraud control but also in fashion, forensics and archeological
fields. Old methods, i.e., optical and electron microscopies, which are often criticized
because they cause subjective results, still dominate in fiber identification and are the
cheaper and more affordable ones and provide a range of information barely possible
with other methods. However, many different methods are now available for techniques
of identification and classification of fibers, which have evolved following advances in
new technologies, especially in image processing and NIR spectroscopy coupled with
chemometrics and proteomics. The prospects for expanding the use of these techniques
depend on the application fields and on overcoming some critical issues. The automated
analysis by means of image analysis techniques, as an obvious alternative to the expert-
based analysis of fiber morphology, is one of the most promising techniques able to correctly
identify animal fiber types, and ever-increasing classification performance is reported in
many works. However, some gaps remain to be filled with regard to the enlargement
from the wool–cashmere binary classification to different animal fibers and from raw
fibers to commercial yarn and fabrics. NIR spectroscopy, as a fast and non-destructive
technique, is valuable to areas where large numbers of samples have to be evaluated,
while the proteomic approach is a long and complex analysis, useful for the discrimination
among fibers or materials difficult to distinguish with other methods (e.g., cashmere– yak,
cashmere–shahtoosh) for commercial purposes or fraud control. Additionally, it allows for
the recognition of treated or damaged samples in the field of archeological textiles and in
the case where the surface fibers morphology does not allow fibers recognition.
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