Recycled Tire Fibers Used as Reinforcement for Recycled Polyethylene Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tire Fibers Separation
2.3. Polyethylene Foam Recycling
2.4. Composite Production
2.5. Characterizations
2.5.1. Scanning Electron Microscopy (SEM)
2.5.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.3. Thermogravimetric Analysis (TGA)
2.6. Mechanical Properties
2.6.1. Tensile Testing
2.6.2. Hardness
2.6.3. Flexural Testing
3. Results and Discussion
3.1. Characterization of Recycled Materials
3.2. Morphology
3.3. Mechanical Properties
4. Conclusions
- This study presented a straightforward approach to effectively clean and separate recycled tire fibers (RTFs) from rubber particles to be used as a reinforcement for recycled polyethylene.
- The resulting materials, namely clean fiber (CF) and residual ground rubber (GR), underwent characterization using FTIR, SEM, EDAX, and TGA, providing evidence that the separation process effectively reduced the substantial initial rubber content.
- The findings demonstrated that the incorporation of 30 wt.% of CF into rLDPE (using a combination of extrusion and injection molding) led to a notable improvement in mechanical properties. In particular, a 15% increase in tensile strength with substantial improvements in tensile modulus (192%) and flexural modulus (142%) were achieved.
- Conversely, the addition of GR to rLDPE resulted in a decrease in both tensile strength and flexural modulus by 15%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zainal, S.M.I.S.; Mattius, D.; Baba, Z.; Rizalman, A.N.; Hejazi, F. Improving the Performance of Lightweight Crumb Rubber Mortar Using Synthetic, Natural, and Hybrid Fiber Reinforcements. Fibers 2023, 11, 9. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Sustainable Reuse of Waste Tire Textile Fibers (WTTF) as Reinforcements. Polymers 2022, 14, 3933. [Google Scholar] [CrossRef]
- United States Tire Manufacturers Association. US Scrap Tire Management Summary; United States Tire Manufacturers Association: Washington, DC, USA, 2021. [Google Scholar]
- Anthony, W.S. Separation of Crumb and Fiber in Tire Recycling Operations. In ASAE Annual International Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2005. [Google Scholar]
- Kazemi, H.; Mighri, F.; Rodrigue, D. A Review of Rubber Biocomposites Reinforced with Lignocellulosic Fillers. J. Compos. Sci. 2022, 6, 183. [Google Scholar] [CrossRef]
- Landi, D.; Gigli, S.; Germani, M.; Marconi, M. Investigating the Feasibility of a Reuse Scenario for Textile Fibres Recovered from End-of-Life Tyres. Waste Manag. 2018, 75, 187–204. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Banthia, N. Durability Performance of Polymeric Scrap Tire Fibers and Its Reinforced Cement Mortar. Mater. Struct. Constr. 2017, 50, 1–10. [Google Scholar] [CrossRef]
- Abbaspour, M.; Narani, S.S.; Aflaki, E.; Nejad, F.M. Dynamic Characteristics of a Sandy Subgrade Reinforced by Waste Tire Textile Fibres. Int. J. Pavement Eng. 2022, 23, 2293–2308. [Google Scholar] [CrossRef]
- Abbaspour, M.; Narani, S.S.; Aflaki, E.; Nejad, F.M. Behavior of a Subgrade Soil Reinforced by Waste Tire Textile Fibers under Static and Cyclic Loading. J. Mater. Civ. Eng. 2020, 32, 4020208. [Google Scholar] [CrossRef]
- Reza Tabakouei, A.; Narani, S.S.; Abbaspour, M.; Aflaki, E.; Siddiqua, S. Coupled Specimen and Fiber Dimensions Influence Measurement on the Properties of Fiber-Reinforced Soil. Meas. J. Int. Meas. Confed. 2022, 188, 110556. [Google Scholar] [CrossRef]
- Valipour, M.; Shourijeh, P.T.; Mohammadinia, A. Application of Recycled Tire Polymer Fibers and Glass Fibers for Clay Reinforcement. Transp. Geotech. 2021, 27, 100474. [Google Scholar] [CrossRef]
- Abbaspour, M.; Aflaki, E.; Moghadas Nejad, F. Reuse of Waste Tire Textile Fibers as Soil Reinforcement. J. Clean. Prod. 2019, 207, 1059–1071. [Google Scholar] [CrossRef]
- Gil, L.; Bernat-Masó, E.; Cañavate, F.J. Changes in Properties of Cement and Lime Mortars When Incorporating Fibers from End-of-Life Tires. Fibers 2016, 4, 7. [Google Scholar] [CrossRef]
- Chen, M.; Zhong, H.; Chen, L.; Zhang, Y.; Zhang, M. Engineering Properties and Sustainability Assessment of Recycled Fibre Reinforced Rubberised Cementitious Composite. J. Clean. Prod. 2021, 278, 123996. [Google Scholar] [CrossRef]
- Serdar, M.; Baričević, A.; Jelčić Rukavina, M.; Pezer, M.; Bjegović, D.; Štirmer, N. Shrinkage Behaviour of Fibre Reinforced Concrete with Recycled Tyre Polymer Fibres. Int. J. Polym. Sci. 2015, 2015, 145918. [Google Scholar] [CrossRef]
- Baričević, A.; Jelčić Rukavina, M.; Pezer, M.; Štirmer, N. Influence of Recycled Tire Polymer Fibers on Concrete Properties. Cem. Concr. Compos. 2018, 91, 29–41. [Google Scholar] [CrossRef]
- Bocci, E.; Prosperi, E. Recycling of Reclaimed Fibers from End-of-Life Tires in Hot Mix Asphalt. J. Traffic Transp. Eng. 2020, 7, 678–687. [Google Scholar] [CrossRef]
- Landi, D.; Marconi, M.; Bocci, E.; Germani, M. Comparative Life Cycle Assessment of Standard, Cellulose-Reinforced and End of Life Tires Fiber-Reinforced Hot Mix Asphalt Mixtures. J. Clean. Prod. 2020, 248, 119295. [Google Scholar] [CrossRef]
- Jin, D.; Ge, D.; Zhou, X.; You, Z. Asphalt Mixture with Scrap Tire Rubber and Nylon Fiber from Waste Tires: Laboratory Performance and Preliminary M-E Design Analysis. Buildings 2022, 12, 160. [Google Scholar] [CrossRef]
- Pais, J.C.; Santos, C.R.G.; Lo Presti, D. Application of Textile Fibres from Tire Recycling in Asphalt Mixtures. Road Mater. Pavement Des. 2022, 23, 2353–2374. [Google Scholar] [CrossRef]
- Thai, Q.B.; Chong, R.O.; Nguyen, P.T.T.; Le, D.K.; Le, P.K.; Phan-Thien, N.; Duong, H.M. Recycling of Waste Tire Fibers into Advanced Aerogels for Thermal Insulation and Sound Absorption Applications. J. Environ. Chem. Eng. 2020, 8, 104279. [Google Scholar] [CrossRef]
- Ba Thai, Q.; Ee Siang, T.; Khac Le, D.; Shah, W.A.; Phan-Thien, N.; Duong, H.M. Advanced Fabrication and Multi-Properties of Rubber Aerogels from Car Tire Waste. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 577, 702–708. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Phase Morphology, Mechanical, and Thermal Properties of Fiber-Reinforced Thermoplastic Elastomer: Effects of Blend Composition and Compatibilization. J. Reinf. Plast. Compos. 2022, 41, 267–283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Lu, C.H.; Liang, M. Preparation of Rubber Composites from Ground Tire Rubber Reinforced with Waste-Tire Fiber through Mechanical Milling. J. Appl. Polym. Sci. 2007, 103, 4087–4094. [Google Scholar] [CrossRef]
- Moghaddamzadeh, S.; Rodrigue, D. The Effect of Polyester Recycled Tire Fibers Mixed with Ground Tire Rubber on Polyethylene Composites. Part I: Morphological Analysis. Prog. Rubber Plast. Recycl. Technol. 2018, 34, 200–220. [Google Scholar] [CrossRef]
- Moghaddamzadeh, S.; Rodrigue, D. The Effect of Polyester Recycled Tire Fibers Mixed with Ground Tire Rubber on Polyethylene Composites. Part II: Physico-Mechanical Analysis. Prog. Rubber Plast. Recycl. Technol. 2018, 34, 128–142. [Google Scholar] [CrossRef]
- Doğan, Ö.; Karadagli, I. Pyrolysis of Low and High Density Polyethylene. Part II: Analysis of Liquid Products Using FTIR and NMR Spectroscopy. Energy Sources Part A-Recovery Util. Environ. Eff. 2008, 30, 392–400. [Google Scholar] [CrossRef]
- Zedler, Ł.; Kowalkowska-Zedler, D.; Colom, X.; Cañavate, J.; Saeb, M.R.; Formela, K. Reactive Sintering of Ground Tire Rubber (GTR) Modified by a Trans-Polyoctenamer Rubber and Curing Additives. Polymers 2020, 12, 3018. [Google Scholar] [CrossRef]
- Kang, E.; Kim, M.; Oh, J.S.; Park, D.W.; Shim, S.E. Electrospun BMIMPF 6/Nylon 6,6 Nanofiber Chemiresistors as Organic Vapour Sensors. Macromol. Res. 2012, 20, 372–378. [Google Scholar] [CrossRef]
- Pérez-Fonseca, A.A.; Martín Del Campo, A.S.; Robledo-Ortíz, J.R.; González-López, M.E. Compatibilization Strategies for PLA Biocomposites: A Comparative Study between Extrusion-Injection and Dry Blending-Compression Molding. Compos. Interfaces 2022, 29, 274–292. [Google Scholar] [CrossRef]
- Scoponi, G.; Francini, N.; Athanassiou, A. Production of Green Star/Linear PLA Blends by Extrusion and Injection Molding: Tailoring Rheological and Mechanical Performances of Conventional PLA. Macromol. Mater. Eng. 2021, 306, 2000805. [Google Scholar] [CrossRef]
- Xie, M.; Chen, J.; Li, H. Morphology and Mechanical Properties of Injection-Molded Ultrahigh Molecular Weight Polyethylene/polypropylene Blends and Comparison with Compression Molding. J. Appl. Polym. Sci. 2009, 111, 890–898. [Google Scholar] [CrossRef]
- Yang, H.; Yilmaz, G.; Jiang, J.; Langstraat, T.; Chu, R.; van Es, M.; Garg, P.; Turng, L.S. Thermal, Rheological, and Mechanical Characterization of Compression and Injection Molded Ultra-High Molecular Weight Polyethylene, High Density Polyethylene, and Their Blends. J. Appl. Polym. Sci. 2023, 140, e53484. [Google Scholar] [CrossRef]
- Mejia, E.; Cherupurakal, N.; Mourad, A.H.I.; Al Hassanieh, S.; Rabia, M. Effect of Processing Techniques on the Microstructure and Mechanical Performance of High-density Polyethylene. Polymers 2021, 13, 3346. [Google Scholar] [CrossRef] [PubMed]
- Kiss, L.; Simon, D.Á.; Petrény, R.; Kocsis, D.; Bárány, T.; Mészáros, L. Ground Tire Rubber Filled Low-Density Polyethylene: The Effect of Particle Size. Adv. Ind. Eng. Polym. Res. 2022, 5, 12–17. [Google Scholar] [CrossRef]
- Colom, X.; Cañavate, J.; Carrillo, F.; Suñol, J.J. Effect of the Particle Size and Acid Pretreatments on Compatibility and Properties of Recycled HOPE Plastic Bottles Filled with Ground Tyre Powder. J. Appl. Polym. Sci. 2009, 112, 1882–1890. [Google Scholar] [CrossRef]
Sample Code | rLDPE (wt.%) | CF (wt.%) | GR (wt.%) | Molding Method |
---|---|---|---|---|
rLDPE-INJ | 100 | - | - | Injection |
rLDPE-COM | 100 | - | - | Compression |
10CF-INJ | 90 | 10 | - | Injection |
10CF-COM | 90 | 10 | - | Compression |
20CF-INJ | 80 | 20 | - | Injection |
20CF-COM | 80 | 20 | - | Compression |
30CF-INJ | 70 | 30 | - | Injection |
30CF-COM | 70 | 30 | - | Compression |
10GR-INJ | 90 | - | 10 | Injection |
10GR-COM | 90 | - | 10 | Compression |
20GR-INJ | 80 | - | 20 | Injection |
20GR-COM | 80 | - | 20 | Compression |
30GR-INJ | 70 | - | 30 | Injection |
30GR-COM | 70 | - | 30 | Compression |
Element | CF | GR | ||
---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | |
C | 63.26 | 71.52 | 83.46 | 92.46 |
O | 32.41 | 27.51 | 5.11 | 4.24 |
Si | 0.14 | 0.07 | 2.05 | 0.97 |
S | 0.09 | 0.04 | 1.87 | 0.78 |
Cu | 2.50 | 0.54 | 2.15 | 0.45 |
Zn | 1.59 | 0.33 | 5.33 | 1.08 |
Sample | Rubber Content (wt.%) |
---|---|
Ground tire fiber | 66 ± 2 |
CF | 29 ± 1 |
GR | 74 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazemi, H.; Fazli, A.; Ira, J.P.; Rodrigue, D. Recycled Tire Fibers Used as Reinforcement for Recycled Polyethylene Composites. Fibers 2023, 11, 74. https://doi.org/10.3390/fib11090074
Kazemi H, Fazli A, Ira JP, Rodrigue D. Recycled Tire Fibers Used as Reinforcement for Recycled Polyethylene Composites. Fibers. 2023; 11(9):74. https://doi.org/10.3390/fib11090074
Chicago/Turabian StyleKazemi, Hossein, Ali Fazli, Jean Philippe Ira, and Denis Rodrigue. 2023. "Recycled Tire Fibers Used as Reinforcement for Recycled Polyethylene Composites" Fibers 11, no. 9: 74. https://doi.org/10.3390/fib11090074
APA StyleKazemi, H., Fazli, A., Ira, J. P., & Rodrigue, D. (2023). Recycled Tire Fibers Used as Reinforcement for Recycled Polyethylene Composites. Fibers, 11(9), 74. https://doi.org/10.3390/fib11090074