Next Issue
Volume 12, June
Previous Issue
Volume 12, April
 
 

Fibers, Volume 12, Issue 5 (May 2024) – 8 articles

Cover Story (view full-size image): The present construction cost for housing in remote areas is too high to maintain the level of housing required for the Australian population in these areas. As this includes mostly First Nations communities, more culturally appropriate housing materials and construction methods are being considered. Mudbricks provide a locally made building material and are formed from laterite soil reinforced by spinifex fibre, both available in abundance in remote communities. This material is more acceptable as it is more sustainable, and the construction methods are more suited for First Nations employment. Results suggest that spinifex can significantly improve compressive strength and reduce erosion effects over time. The results satisfy the minimum strength and erosion resistance requirements for construction. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
29 pages, 13239 KiB  
Article
Advanced Image Analysis and Machine Learning Models for Accurate Cover Factor and Porosity Prediction in Knitted Fabrics: Tailored Applications in Sportswear, Swimwear, and Casual Wear
by Tomislav Rolich, Daniel Domović, Goran Čubrić and Ivana Salopek Čubrić
Fibers 2024, 12(5), 45; https://doi.org/10.3390/fib12050045 - 20 May 2024
Cited by 1 | Viewed by 1249
Abstract
This paper presents a study focused on developing robust algorithms for cover factor and porosity calculation through digital image analysis. Computational models based on machine learning for efficient cover factor prediction based on fabric parameters have also been developed. Five algorithms were devised [...] Read more.
This paper presents a study focused on developing robust algorithms for cover factor and porosity calculation through digital image analysis. Computational models based on machine learning for efficient cover factor prediction based on fabric parameters have also been developed. Five algorithms were devised and implemented in MATLAB: the single threshold algorithm (ST); multiple linear threshold algorithms, ML-1 and ML-2; and algorithms with multiple thresholds obtained by the Otzu method, MT-1 and MT-2. These algorithms were applied to knitted fabrics used for football, swimming, and leisure. Algorithms ML-1 and MT-1, employing multiple thresholds, outperformed the single threshold algorithm. The ML-1 variant yielded the highest average porosity value at 95.24%, indicating the importance of adaptable thresholding in image analysis. Comparative analysis revealed that algorithm variants ML-2 and MT-2 obtain lower cover factors compared to ML-1 and MT-1 but can detect potential void areas in fabrics with higher reliability. Algorithm MT-1 proved to be the most sensitive when it came to distinguishing between different fabric samples. Computational models that were developed based on random tree, random forest, and SMOreg machine learning algorithms predicted cover factor based on fabric parameters with up to 95% accuracy. Full article
Show Figures

Graphical abstract

17 pages, 2813 KiB  
Article
Optimizing Synergistic Silica–Zinc Oxide Coating for Enhanced Flammability Resistance in Cotton Protective Clothing
by Sidra Saleemi, Hafiz Abdul Mannan, Tabinda Riaz, Abdul Moqeet Hai, Hassan Zeb and Amber Khalil Khan
Fibers 2024, 12(5), 44; https://doi.org/10.3390/fib12050044 - 17 May 2024
Viewed by 1036
Abstract
This study reports process optimization studies of silica and zinc oxide-based flame-retardant (FR) coatings on cotton fabric for protective clothing and enhanced flammability properties. The experiments were designed by central composite design (CCD) using response surface methodology (RSM) to assess the synergistic protective [...] Read more.
This study reports process optimization studies of silica and zinc oxide-based flame-retardant (FR) coatings on cotton fabric for protective clothing and enhanced flammability properties. The experiments were designed by central composite design (CCD) using response surface methodology (RSM) to assess the synergistic protective effects of silica and zinc oxide FR coating. These prepared sols were coated on cotton fabrics by a simple dip dry cure process. The resulting FR-finished fabrics were characterized by SEM, mechanical properties, flame retardancy, and air permeability. SEM results confirmed the homogenous spreading of particles on cotton fabrics. From TGA results, it was noticed that the incorporation of silica and ZnO in the prepared nano-sols results in improved thermal stability of the FR-finished fabrics. These sol–gel-treated FR cotton fabrics showed excellent comfort properties, which shows their suitability for fire-retardant protective clothing. RSM analysis proved that the predicted values are in good agreement with the experimental values since R2 values for time to ignite, flame spread time, and air permeability were greater than 0.90. The optimized concentration of silica and ZnO in FR-finished fabrics was found to be 0.302% and 0.353%, respectively, which was further confirmed by confirmatory experiments. The optimization analysis successfully optimized the process for synergistic coating of silica and zinc oxide nanoparticles for enhanced flammability properties of FR cotton fabric for protective clothing. Full article
Show Figures

Graphical abstract

14 pages, 3011 KiB  
Article
Influence of Precursor Mixtures on the Laser Chemical Vapor Deposition of TiC Fibers
by Kendall J. Mitchell and Gregory B. Thompson
Fibers 2024, 12(5), 43; https://doi.org/10.3390/fib12050043 - 13 May 2024
Viewed by 1123
Abstract
In this study, the hyperbaric (2 bar) laser chemical vapor deposition of TiC fibers grown under various percent pressures of hydrogen and ratios of ethylene and titanium tetrachloride (2:1 or 1:1) are reported. In the hydrogen-rich (85%) condition, sequential fiber depositions became stunted [...] Read more.
In this study, the hyperbaric (2 bar) laser chemical vapor deposition of TiC fibers grown under various percent pressures of hydrogen and ratios of ethylene and titanium tetrachloride (2:1 or 1:1) are reported. In the hydrogen-rich (85%) condition, sequential fiber depositions became stunted as a result of a loss of hydrogen, which served as a reducing agent for the metal halide as hydrogen evolved with the hydrocarbon gas in the reaction zone because of the Le Chatelier principle. For the hydrogen-lean (25%) condition, the intrinsic fiber growth rate was invariant, but gas phase nucleation resulted in the hydrocarbon forming carbon soot in the chamber which subsequently deposited and coated on the fibers. In the hydrogen-balanced composition (50%), the 2:1 precursor ratio resulted in inconsistent intrinsic growth rates which ranged from approximately 30 μm/s to 44 μm/s. However, for the hydrogen-balanced (50%) 1:1 condition, the intrinsic growth rate variation was reduced to approximately 12 μm/s. The differences in fiber uniformity, composition, and structure under these process conditions are discussed in terms of hydrogen’s ability to serve as a reducing agent, a fluid to transport heat from the deposition zone, and alter the structure of the fiber through thermophoresis. Full article
(This article belongs to the Collection Feature Papers in Fibers)
Show Figures

Figure 1

16 pages, 641 KiB  
Systematic Review
The Use of Nanofibers in Regenerative Endodontic Therapy—A Systematic Review
by Sebastian Candrea, Alexandrina Muntean, Anida-Maria Băbțan, Antonia Boca, Claudia Nicoleta Feurdean, Ioana Roxana Bordea, Adina Bianca Boșca and Aranka Ilea
Fibers 2024, 12(5), 42; https://doi.org/10.3390/fib12050042 - 13 May 2024
Cited by 1 | Viewed by 1239
Abstract
Pulpal pathology in young permanent teeth, caused by dental caries or trauma, can lead to disruption of root formation, leaving the tooth with an uncertain prognosis. Current therapies for such cases present a number of limitations; thus, the aim of this article is [...] Read more.
Pulpal pathology in young permanent teeth, caused by dental caries or trauma, can lead to disruption of root formation, leaving the tooth with an uncertain prognosis. Current therapies for such cases present a number of limitations; thus, the aim of this article is to provide an overview on the use of nanofibers in endodontics. The search was conducted on two databases and eight articles met the inclusion criteria for this systematic review. Data on nanofiber production and fiber characteristics were extracted and systematized in tables. Moreover, the ability of novel scaffolds to deliver either drugs or different therapeutic agents without interfering with the products’ characteristics is analyzed from the in vitro and in vivo data. The potential for nanofiber-based scaffolds to induce cellular differentiation and overcome the limitations of classic regenerative endodontic treatment is also discussed. Full article
(This article belongs to the Special Issue Nanofibers: Biomedical Applications)
Show Figures

Graphical abstract

16 pages, 6922 KiB  
Article
Contacting of Bicomponent TPU-Fibers with a Conductive Core: A Method for Data Acquisition and Analysis of the Electrical Properties
by Jeanette Ortega, Felix Krooß, Yuwei Stefan Li and Thomas Gries
Fibers 2024, 12(5), 41; https://doi.org/10.3390/fib12050041 - 8 May 2024
Viewed by 1252
Abstract
With the megatrend of digitalization, the demand for sensors in previously difficult-to-access scenarios is increasing. Filament-shaped sensors (FSS) are ideal for this demand, especially in applications in which the monitoring of textile structures is the focus. Electrically conductive bicomponent filaments based on thermoplastic [...] Read more.
With the megatrend of digitalization, the demand for sensors in previously difficult-to-access scenarios is increasing. Filament-shaped sensors (FSS) are ideal for this demand, especially in applications in which the monitoring of textile structures is the focus. Electrically conductive bicomponent filaments based on thermoplastic polyurethane (TPU) and doped with carbon nanotubes (CNTs) offer great potential due to their flexible mechanical properties. Through the core-conducting, bicomponent structure, the sensing material is protected from environmental factors such as surrounding conductive materials and external moisture. The insulating material, however, simultaneously complicates the contacting method in order to measure sensing changes in the conductive core. In this work, laser cutting is employed as a technology in order to expose the conductive core of the filaments. The filament is then coated with silver and mechanically crimped, providing both a conductive interface for the data acquisition device as well as a protective layer. Laser parameters (power 20–100 W and speed 5–50 mm/s) are investigated to identify the parameters with the best cutting properties for which the filaments are analyzed visually and electrically. This work provides a robust and reproducible method for contacting core-conducting TPU filaments for strain-sensing applications. This study shows that while the choice of laser parameter influences the morphology of the cut surface, its impact on the resulting linear resistivity is negligible. Full article
(This article belongs to the Special Issue Fibers 10th Anniversary: Past, Present, and Future)
Show Figures

Figure 1

15 pages, 3127 KiB  
Article
Acid Resistance of Metakaolin-Based Geopolymers and Geopolymeric Mortars Reinforced with Coconut Fibers
by Marco Lezzerini, Andrea Aquino and Stefano Pagnotta
Fibers 2024, 12(5), 40; https://doi.org/10.3390/fib12050040 - 1 May 2024
Viewed by 1730
Abstract
This paper investigates the durability of geopolymers and geopolymeric mortars made with metakaolin and alkaline activators, with and without a coconut fiber addition, after immersion for seven days into solutions of citric acid (1%, 2.5%, 5%, and 10%); hydrochloric acid (1%, 2.5%, 5%, [...] Read more.
This paper investigates the durability of geopolymers and geopolymeric mortars made with metakaolin and alkaline activators, with and without a coconut fiber addition, after immersion for seven days into solutions of citric acid (1%, 2.5%, 5%, and 10%); hydrochloric acid (1%, 2.5%, 5%, and 10%); and sulfuric acid (1%, 2.5%, 5%, and 10%). The study focuses on mass changes, uniaxial compressive strength, flexural strength, and ultrasound pulse velocity measurements. X-ray diffraction and scanning electron microscopy are used to analyze the degradation products and microstructural changes. The aim is to assess the effect of acid exposure on the strength and stability of geopolymer materials and identify any protective effects of coconut fiber reinforcement. The samples are immersed in acid solutions of varying concentrations, and their mechanical properties are measured. The presence of coconut fibers slightly modifies the physical properties and the compressive strength, improving the mechanical flexural strength. Geopolymer and geopolymeric mortar materials experienced a weak decrease in strength when exposed to solutions of citric acid and a significant one when exposed to solutions of hydrochloric and sulfuric acids, attributed to depolymerization of the aluminosilicate binders. Brick waste geopolymeric mortars reinforced with coconut fibers showed the best performance in acid solutions with respect to geopolymers and quartz-rich sand geopolymeric mortars, suggesting a more stable cross-linked aluminosilicate geopolymer structure in this material. Full article
Show Figures

Figure 1

15 pages, 6530 KiB  
Article
Strength and Erosion Resistance of Spinifex Fibre Reinforced Mudbrick
by Dongxiu Guo, Ali Rajabipour, Milad Bazli, Cat Kutay, Varuna Sumanasena and Truong Nhat Phuong Pham
Fibers 2024, 12(5), 39; https://doi.org/10.3390/fib12050039 - 26 Apr 2024
Viewed by 1566
Abstract
This study assesses the usability of natural materials available in Australia’s remote communities for making fibre-reinforced mudbricks. The present construction cost for housing in remote areas is too high to maintain the level of housing required for the remote Australian population. As this [...] Read more.
This study assesses the usability of natural materials available in Australia’s remote communities for making fibre-reinforced mudbricks. The present construction cost for housing in remote areas is too high to maintain the level of housing required for the remote Australian population. As this includes mostly First Nations communities, more culturally appropriate housing materials and construction methods are being considered. This study looks at mudbricks made from laterite soil reinforced by spinifex fibre, both available in abundance in remote communities. Hence, this material is more acceptable to communities as it is more sustainable, and the construction methods are more suited for First Nations engagement. Various mixes were tested for compressive strength and erosion resistance. Results suggest that spinifex can significantly improve compressive strength and reduce erosion effects; however, spinifex showed adverse effects at the early stage of the spray test. The results satisfy the minimum strength and erosion resistance requirements for construction and suggest that spinifex-reinforced mudbricks could potentially be considered as an alternative material in remote housing. Full article
(This article belongs to the Collection Feature Papers in Fibers)
Show Figures

Figure 1

17 pages, 11404 KiB  
Article
In-Plane Mechanical Characterization of a Kevlar® Composite
by Rene Alejandro Canceco de la Cruz, Caleb Carreño Gallardo, Alberto Diaz Diaz, Luis Adrian Zuñiga Aviles, Gabriel Plascencia Barrera and Jose Martin Herrera Ramirez
Fibers 2024, 12(5), 38; https://doi.org/10.3390/fib12050038 - 25 Apr 2024
Viewed by 1279
Abstract
Polymer-based composites are widely used in the automotive, security, aeronautical and space industries, to mention a few. This is because of their good mechanical properties, which are similar to those of metals but with the attraction of being lightweight. Kevlar® is extensively [...] Read more.
Polymer-based composites are widely used in the automotive, security, aeronautical and space industries, to mention a few. This is because of their good mechanical properties, which are similar to those of metals but with the attraction of being lightweight. Kevlar® is extensively used as a reinforcement in the security industry owing to its good ballistic properties. This investigation presents a mechanical characterization based on in-plane quasi-static tensile testing of Kevlar® 29/phenolic resin with a polyvinyl butyral composite using a universal testing system. The methodology developed for the preparation of the coupons is based on pressure, temperature and time. As a result of this work, elastic moduli (EL and ET), Poisson’s ratio (νLT), shear modulus (GLT) and strengths (XT, YT, S) were obtained. It is worth mentioning that there is scarce or no characterization of this material in the literature, and those studies that do characterize it do not present the coupons’ thermoforming conditions or the reasons for the coupons’ dimensions (width, length and thickness). Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop