Carbon Fibers Based on Cellulose–Lignin Hybrid Filaments: Role of Dehydration Catalyst, Temperature, and Tension during Continuous Stabilization and Carbonization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cellulose–Lignin Precursor Filaments
2.3. Preliminary Stabilization Trials
2.4. Continuous Trials
2.5. Thermal, Structural, and Mechanical Characterization
3. Results
3.1. Preliminary Trials—Evaluation of Stabilization Conditions
3.2. Continuous Preparation of Carbon Fibers
3.2.1. Effect of Temperature
3.2.2. Effect of Tension during Carbonization
4. Conclusions
- Pretreatment with dehydration catalysts DAS or DAHP allows doubling of the yield compared to carbonization of neat cellulose/lignin precursor filaments.
- Impregnation with a DAS solution and thermal treatment at 250 °C were found as optimum stabilization conditions. DAS leads to higher mass loss during stabilization and a more stable LT carbonization process compared to DAHP as dehydration catalyst.
- With increasing processing temperature, improved modulus values were obtained, accompanied by decreasing fiber diameters and d-spacing of the (002) peak.
- Subsequent heating to 1950 °C without tension leads to huge improvements of the tensile modulus with slight reductions in the tensile strength.
- Tension during LT carbonization had a clear impact. Higher tension led to a significantly higher tensile modulus and smaller fiber diameters.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peijs, T.; Kirschbaum, R.; Lemstra, P.J. Chapter 5: A critical review of carbon fiber and related products from an industrial perspective. Adv. Ind. Eng. Polym. Res. 2022, 5, 90–106. [Google Scholar] [CrossRef]
- Swan, J.W. Electric Lamp. US233445A, 19 October 1880. [Google Scholar]
- Edison, T.A. Electric Lamp. US223898A, 27 January 1880. [Google Scholar]
- Röder, T.; Moosbauer, J.; Kliba, G.; Schlader, S.; Zuckerstätter, G.; Sixta, H. Comparative characterisation of man-made regenerated cellulose fibres. Lenzing. Berichte 2009, 87, 98–105. [Google Scholar]
- Edie, D.D. The effect of processing on the structure and properties of carbon fibers. Carbon 1998, 36, 345–362. [Google Scholar] [CrossRef]
- Goldhalm, G. Tencel carbon precursor. Lenzing. Berichte 2012, 90, 58–63. [Google Scholar]
- Frank, E.; Steudle, L.M.; Ingildeev, D.; Spörl, J.M.; Buchmeiser, M.R. Carbon fibers: Precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed. 2014, 53, 5262–5298. [Google Scholar] [CrossRef] [PubMed]
- Prosen, S.P. Carbon resin composites. Fibre Sci. Technol. 1970, 3, 81–104. [Google Scholar] [CrossRef]
- Morgan, P. Carbon Fibers and Their Composites; CRC press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Röder, T.; Moosbauer, J.; Wöss, K.; Schlader, S.; Kraft, G. Man-made cellulose fibres—A comparison based on morphology and mechanical properties. Lenzing. Berichte 2013, 91, 7–12. [Google Scholar]
- Gindl-Altmutter, W.; Czabany, I.; Unterweger, C.; Gierlinger, N.; Xiao, N.; Bodner, S.C.; Keckes, J. Structure and electrical resistivity of individual carbonised natural and man-made cellulose fibres. J. Mater. Sci. 2020, 55, 10271–10280. [Google Scholar] [CrossRef]
- Brunner, P.H.; Roberts, P.V. The significance of heating rate on char yield and char properties in the pyrolysis of cellulose. Carbon 1980, 18, 217–224. [Google Scholar] [CrossRef]
- Vocht, M.P.; Ota, A.; Frank, E.; Hermanutz, F.; Buchmeiser, M.R. Preparation of Cellulose-Derived Carbon Fibers Using a New Reduced-Pressure Stabilization Method. Ind. Eng. Chem. Res. 2022, 61, 5191–5201. [Google Scholar] [CrossRef]
- Kandola, B.K.; Horrocks, A.R.; Price, D.; Coleman, G.V. Flame-Retardant Treatments of Cellulose and Their Influence on the Mechanism of Cellulose Pyrolysis. J. Macromol. Sci. Part C 1996, 36, 721–794. [Google Scholar] [CrossRef]
- Wu, Q.; Pan, N.; Deng, K.; Pan, D. Thermogravimetry–mass spectrometry on the pyrolysis process of Lyocell fibers with and without catalyst. Carbohydr. Polym. 2008, 72, 222–228. [Google Scholar] [CrossRef]
- Jang, M.; Choi, D.; Kim, Y.; Kil, H.-S.; Kim, S.-K.; Jo, S.M.; Lee, S.; Kim, S.-S. Role of sulfuric acid in thermostabilization and carbonization of lyocell fibers. Cellulose 2023, 30, 7633–7652. [Google Scholar] [CrossRef]
- Byrne, N.; Chen, J.; Fox, B. Enhancing the carbon yield of cellulose based carbon fibres with ionic liquid impregnates. J. Mater. Chem. A 2014, 2, 15758–15762. [Google Scholar] [CrossRef]
- Luo, J.; Genco, J.; Cole, B.; Fort, R. Lignin recovered from the near-neutral hemicellulose extraction process as a precursor for carbon fiber. BioResources 2011, 6, 4566–4593. [Google Scholar] [CrossRef]
- Balakshin, M.Y.; Capanema, E.A. Comprehensive structural analysis of biorefinery lignins with a quantitative 13C NMR approach. RSC Adv. 2015, 5, 87187–87199. [Google Scholar] [CrossRef]
- Fagerstedt, K.V.; Saranpää, P.; Tapanila, T.; Immanen, J.; Serra, J.A.A.; Nieminen, K. Determining the Composition of Lignins in Different Tissues of Silver Birch. Plants 2015, 4, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Kadla, J.F.; Kubo, S.; Venditti, R.A.; Gilbert, R.D.; Compere, A.L.; Griffith, W. Lignin-based carbon fibers for composite fiber applications. Carbon 2002, 40, 2913–2920. [Google Scholar] [CrossRef]
- Kubo, S.; Kadla, J.F. Lignin-based Carbon Fibers: Effect of Synthetic Polymer Blending on Fiber Properties. J. Polym. Environ. 2005, 13, 97–105. [Google Scholar] [CrossRef]
- Saito, T.; Brown, R.H.; Hunt, M.A.; Pickel, D.L.; Pickel, J.M.; Messman, J.M.; Baker, F.S.; Keller, M.; Naskar, A.K. Turning renewable resources into value-added polymer: Development of lignin-based thermoplastic. Green Chem. 2012, 14, 3295–3303. [Google Scholar] [CrossRef]
- Enengl, C.; Lumetzberger, A.; Duchoslav, J.; Mardare, C.C.; Ploszczanski, L.; Rennhofer, H.; Unterweger, C.; Stifter, D.; Fürst, C. Influence of the carbonization temperature on the properties of carbon fibers based on technical softwood kraft lignin blends. Carbon Trends 2021, 5, 100094. [Google Scholar] [CrossRef]
- Steudle, L.M.; Frank, E.; Ota, A.; Hageroth, U.; Henzler, S.; Schuler, W.; Neupert, R.; Buchmeiser, M.R. Carbon Fibers Prepared from Melt Spun Peracylated Softwood Lignin: An Integrated Approach. Macromol. Mater. Eng. 2017, 302, 1600441. [Google Scholar] [CrossRef]
- Norberg, I.; Nordström, Y.; Drougge, R.; Gellerstedt, G.; Sjöholm, E. A new method for stabilizing softwood kraft lignin fibers for carbon fiber production. J. Appl. Polym. Sci. 2013, 128, 3824–3830. [Google Scholar] [CrossRef]
- Zhang, M.; Ogale, A.A. Carbon fibers from dry-spinning of acetylated softwood kraft lignin. Carbon 2014, 69, 626–629. [Google Scholar] [CrossRef]
- Jin, J.; Ding, J.; Klett, A.; Thies, M.C.; Ogale, A.A. Carbon Fibers Derived from Fractionated–Solvated Lignin Precursors for Enhanced Mechanical Performance. ACS Sustain. Chem. Eng. 2018, 6, 14135–14142. [Google Scholar] [CrossRef]
- Pinkert, A.; Marsh, K.N.; Pang, S.; Staiger, M.P. Ionic Liquids and Their Interaction with Cellulose. Chem. Rev. 2009, 109, 6712–6728. [Google Scholar] [CrossRef] [PubMed]
- Mäki-Arvela, P.; Anugwom, I.; Virtanen, P.; Sjöholm, R.; Mikkola, J.P. Dissolution of lignocellulosic materials and its constituents using ionic liquids—A review. Ind. Crops Prod. 2010, 32, 175–201. [Google Scholar] [CrossRef]
- Szabó, L.; Milotskyi, R.; Sharma, G.; Takahashi, K. Cellulose processing in ionic liquids from a materials science perspective: Turning a versatile biopolymer into the cornerstone of our sustainable future. Green Chem. 2023, 25, 5338–5389. [Google Scholar] [CrossRef]
- Elsayed, S.; Hummel, M.; Sawada, D.; Guizani, C.; Rissanen, M.; Sixta, H. Superbase-based protic ionic liquids for cellulose filament spinning. Cellulose 2021, 28, 533–547. [Google Scholar] [CrossRef]
- Hummel, M.; Michud, A.; Tanttu, M.; Asaadi, S.; Ma, Y.; Hauru, L.J.; Parviainen, A.; King, A.T.; Kilpeläinen, I.; Sixta, H. Ionic Liquids for the Production of Man-Made Cellulosic Fibers: Opportunities and Challenges. Adv. Polym. Sci. 2015, 271, 133–168. [Google Scholar]
- Byrne, N.; Setty, M.; Blight, S.; Tadros, R.; Ma, Y.; Sixta, H.; Hummel, M. Cellulose-Derived Carbon Fibers Produced via a Continuous Carbonization Process: Investigating Precursor Choice and Carbonization Conditions. Macromol. Chem. Phys. 2016, 217, 2517–2524. [Google Scholar] [CrossRef]
- Byrne, N.; De Silva, R.; Ma, Y.; Sixta, H.; Hummel, M. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose 2018, 25, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, J.; Jedvert, K.; Hedlund, A.; Köhnke, T.; Theliander, H. Mass transport and yield during spinning of lignin-cellulose carbon fiber precursors. Holzforschung 2019, 73, 509–516. [Google Scholar] [CrossRef]
- Bengtsson, J.; Jedvert, K.; Köhnke, T.; Theliander, H. Identifying breach mechanism during air-gap spinning of lignin–cellulose ionic-liquid solutions. J. Appl. Polym. Sci. 2019, 136, 47800. [Google Scholar] [CrossRef]
- Bengtsson, J.; Jedvert, K.; Köhnke, T.; Theliander, H. The challenge of predicting spinnability: Investigating benefits of adding lignin to cellulose solutions in air-gap spinning. J. Appl. Polym. Sci. 2021, 138, 50629. [Google Scholar] [CrossRef]
- Bengtsson, A.; Bengtsson, J.; Sedin, M.; Sjöholm, E. Carbon Fibers from Lignin-Cellulose Precursors: Effect of Stabilization Conditions. ACS Sustain. Chem. Eng. 2019, 7, 8440–8448. [Google Scholar] [CrossRef]
- Trogen, M.; Le, N.-D.; Sawada, D.; Guizani, C.; Lourençon, T.V.; Pitkänen, L.; Sixta, H.; Shah, R.; O’Neill, H.; Balakshin, M.; et al. Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1–Manufacturing and properties of precursor fibres. Carbohydr. Polym. 2021, 252, 117133. [Google Scholar] [CrossRef] [PubMed]
- Le, N.-D.; Trogen, M.; Ma, Y.; Varley, R.J.; Hummel, M.; Byrne, N. Cellulose-lignin composite fibers as precursors for carbon fibers: Part 2–The impact of precursor properties on carbon fibers. Carbohydr. Polym. 2020, 250, 116918. [Google Scholar] [CrossRef]
- Le, N.-D.; Trogen, M.; Varley, R.J.; Hummel, M.; Byrne, N. Effect of boric acid on the stabilisation of cellulose-lignin filaments as precursors for carbon fibres. Cellulose 2021, 28, 729–739. [Google Scholar] [CrossRef]
- Scholz, R.; Herbig, F.; Beck, D.; Spörl, J.; Hermanutz, F.; Unterweger, C.; Piana, F. Improvements in the carbonisation of viscose fibres. Reinf. Plast. 2019, 63, 146–150. [Google Scholar] [CrossRef]
- May, R.A.; Stevenson, K.J. Software Review of Origin 8. J. Am. Chem. Soc. 2009, 131, 872. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Nam, S.; French, A.D.; Condon, B.D.; Concha, M. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 2016, 135, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.-S.; Lee, S.-M.; Lee, S.-H.; Roh, J.-S. X-ray diffraction analysis of the crystallinity of phenolic resin-derived carbon as a function of the heating rate during the carbonization process. Carbon Lett. 2018, 27, 108–111. [Google Scholar] [CrossRef]
- ISO 11566; Carbon Fibre-Determination of The Tensile Properties of Single-Filament Specimens. ISO Standardization International: Geneva, Switzerland, 1996.
- Lipska, A.E.; Parker, W.J. Kinetics of the pyrolysis of cellulose in the temperature range 250–300 °C. J. Appl. Polym. Sci. 1966, 10, 1439–1453. [Google Scholar] [CrossRef]
- Arseneau, D.F. Competitive Reactions in the Thermal Decomposition of Cellulose. Can. J. Chem. 1971, 49, 632–638. [Google Scholar] [CrossRef]
- Broido, A.; Javier-Son, A.C.; Ouano, A.C.; Barrall II, E.M. Molecular weight decrease in the early pyrolysis of crystalline and amorphous cellulose. J. Appl. Polym. Sci. 1973, 17, 3627–3635. [Google Scholar] [CrossRef]
- Broido, A.; Nelson, M.A. Char yield on pyrolysis of cellulose. Combust. Flame 1975, 24, 263–268. [Google Scholar] [CrossRef]
- Bradbury, A.G.W.; Sakai, Y.; Shafizadeh, F. A kinetic model for pyrolysis of cellulose. J. Appl. Polym. Sci. 1979, 23, 3271–3280. [Google Scholar] [CrossRef]
- Fliri, L.; Guizani, C.; Miranda-Valdez, I.Y.; Pitkänen, L.; Hummel, M. Reinvestigating the concurring reactions in early-stage cellulose pyrolysis by solution state NMR spectroscopy. J. Anal. Appl. Pyrolysis 2023, 175, 106153. [Google Scholar] [CrossRef]
- Dobele, G.; Rossinskaja, G.; Telysheva, G.; Meier, D.; Faix, O. Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. J. Anal. Appl. Pyrolysis 1999, 49, 307–317. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Nishiyama, Y.; Wada, M.; Kuga, S. High-yield Carbonization of Cellulose by Sulfuric Acid Impregnation. Cellulose 2001, 8, 29–33. [Google Scholar] [CrossRef]
- Long, Y.; Yu, Y.; Chua, Y.W.; Wu, H. Acid-catalysed cellulose pyrolysis at low temperatures. Fuel 2017, 193, 460–466. [Google Scholar] [CrossRef]
- Spörl, J.M.; Beyer, R.; Abels, F.; Cwik, T.; Müller, A.; Hermanutz, F.; Buchmeiser, M.R. Cellulose-Derived Carbon Fibers with Improved Carbon Yield and Mechanical Properties. Macromol. Mater. Eng. 2017, 302, 1700195. [Google Scholar] [CrossRef]
- Zeng, F.; Pan, D.; Pan, N. Choosing the Impregnants by Thermogravimetric Analysis for Preparing Rayon-Based Carbon Fibers. J. Inorg. Organomet. Polym. Mater. 2005, 15, 261–267. [Google Scholar] [CrossRef]
- Breitenbach, S.; Lumetzberger, A.; Hobisch, M.A.; Unterweger, C.; Spirk, S.; Stifter, D.; Fürst, C.; Hassel, A.W. Supercapacitor Electrodes from Viscose-Based Activated Carbon Fibers: Significant Yield and Performance Improvement Using Diammonium Hydrogen Phosphate as Impregnating Agent. C 2020, 6, 17. [Google Scholar] [CrossRef]
- Jang, M.; Fliri, L.; Trogen, M.; Choi, D.; Han, J.-H.; Kim, J.; Kim, S.-K.; Lee, S.; Kim, S.-S.; Hummel, M. Accelerated thermostabilization through electron-beam irradiation for the preparation of cellulose-derived carbon fibers. Carbon 2024, 218, 118759. [Google Scholar] [CrossRef]
- Bengtsson, A.; Bengtsson, J.; Jedvert, K.; Kakkonen, M.; Tanhuanpää, O.; Brännvall, E.; Sedin, M. Continuous Stabilization and Carbonization of a Lignin–Cellulose Precursor to Carbon Fiber. ACS Omega 2022, 7, 16793–16802. [Google Scholar] [CrossRef]
- Bengtsson, A.; Bengtsson, J.; Olsson, C.; Sedin, M.; Jedvert, K.; Theliander, H.; Sjöholm, E. Improved yield of carbon fibres from cellulose and kraft lignin. Holzforschung 2018, 72, 1007–1016. [Google Scholar] [CrossRef]
- Bengtsson, A.; Hecht, P.; Sommertune, J.; Ek, M.; Sedin, M.; Sjöholm, E. Carbon Fibers from Lignin–Cellulose Precursors: Effect of Carbonization Conditions. ACS Sustain. Chem. Eng. 2020, 8, 6826–6833. [Google Scholar] [CrossRef]
Sample (Impr_T stab.) | Δm stab. | Δm carb. | yield tot. | TS stab. | TM stab. | EB stab. | TS carb. | TM carb. | EB carb. |
---|---|---|---|---|---|---|---|---|---|
[g/g] | [g/g] | [g/g] | [MPa] | [GPa] | [m/m] | [MPa] | [GPa] | [m/m] | |
H2O_X * | X | −83.3% | 16.7% | X | X | X | – ** | – | – |
H2O_210 | −8.2% | −81.6% | 16.7% | 312 ± 31 | 17.1 ± 0.7 | 7.4 ± 1.1% | – | – | – |
H2O_230 | −7.6% | −79.3% | 19.2% | 294 ± 32 | 22.9 ± 0.9 | 4.4 ± 1.1% | 323 ± 86 | 29.2 ± 4.9 | 1.0 ± 0.4% |
H2O_250 | −10.6% | −79.3% | 18.3% | 272 ± 20 | 24.1 ± 1.4 | 3.2 ± 0.5% | – | – | – |
DAHP_X | X | −61.2% | 38.8% | X | X | X | – | – | – |
DAHP_210 | −10.8% | −57.9% | 37.3% | 153 ± 6 | 16.0 ± 0.8 | 1.9 ± 0.4% | 459 ± 32 | 30.7 ± 1.6 | 1.4 ± 0.2% |
DAHP_230 | −16.6% | −52.1% | 39.8% | 199 ± 12 | 16.4 ± 0.9 | 2.8 ± 0.6% | 540 ± 89 | 33.5 ± 2.1 | 1.6 ± 0.3% |
DAHP_250 | −28.1% | −47.0% | 38.5% | 135 ± 13 | 6.4 ± 1.1 | 6.8 ± 1.7% | 533 ± 88 | 33.4 ± 2.0 | 2.2 ± 0.7% |
DAS_X | X | −64.8% | 35.2% | X | X | X | 457 ± 114 | 32.6 ± 1.8 | 3.5 ± 1.3% |
DAS_210 | −24.7% | −54.8% | 33.9% | 77 ± 12 | 8.4 ± 0.3 | 0.7 ± 0.2% | 501 ± 53 | 30.8 ± 1.5 | 1.5 ± 0.2% |
DAS_230 | −34.9% | −48.1% | 34.0% | 112 ± 4 | 4.3 ± 0.2 | 3.1 ± 0.4% | 559 ± 80 | 31.6 ± 1.9 | 1.8 ± 0.3% |
DAS_250 | −38.2% | −39.4% | 37.0% | 122 ± 10 | 4.2 ± 0.3 | 5.7 ± 1.3% | 593 ± 83 | 32.0 ± 2.1 | 1.8 ± 0.2% |
Sample | Last Process | Description | TS [MPa] | TM [GPa] | EB [m/m] | D [µm] | CI [−] | Lc (002) [Å] | d (002) [Å] |
---|---|---|---|---|---|---|---|---|---|
Precursor | - | No processing | 412 ± 26 | 17.0 ± 1.3 | 11.5 ± 0.8% | 14.8 ± 0.4 | |||
DAS_250 | Stab. | 3.2% strain | 150 ± 9 | 4.6 ± 0.4 | 7.8 ± 1.9% | 12.4 ± 0.5 | 58.06 ± 0.29 | 5.84 ± 0.30 | 4.64 ± 0.06 |
DAS_250_lt | LT | 3.2% shrinkage | 801 ± 59 | 44.8 ± 1.3 | 1.8 ± 0.2% | 9.4 ± 0.2 | 25.64 ± 0.39 | 9.52 ± 0.70 | 3.92 ± 0.04 |
DAS_250_lt_ht | HT | 18 g @HT | 660 ± 52 | 59.2 ± 1.7 | 1.1 ± 0.1% | 8.5 ± 0.2 | 43.43 ± 0.24 | 10.06 ± 0.11 | 3.83 ± 0.00 |
DAS_250_lt_HT | HT | 32 g @HT | 695 ± 84 | 60.5 ± 3.2 | 1.1 ± 0.1% | 8.8 ± 0.2 | 42.79 ± 0.55 | 9.61 ± 0.12 | 3.85 ± 0.00 |
DAS_250_lt_ht_1950 | 1950 °C | no tension | 430 ± 72 | 83.9 ± 5.4 | 0.6 ± 0.1% | 8.5 ± 0.3 | 87.64 ± 0.12 | 26.08 ± 0.60 | 3.45 ± 0.00 |
DAS_250_lt_HT_1950 | 1950 °C | no tension | 558 ± 87 | 86.9 ± 6.7 | 0.7 ± 0.1% | 8.4 ± 0.3 | 88.76 ± 0.30 | 28.60 ± 0.34 | 3.45 ± 0.00 |
DAS_250 * | Stab. | 3.2% strain | 152 ± 6 | 4.5 ± 0.3 | 12.5 ± 4.1% | 12.5 ± 0.5 | 57.76 ± 0.46 | 5.74 ± 0.11 | 4.68 ± 0.01 |
DAS_250_LT | LT | 0% shrinkage | 834 ± 122 | 55.6 ± 1.7 | 1.5 ± 0.2% | 8.8 ± 0.2 | 25.58 ± 0.41 | 9.31 ± 0.53 | 3.93 ± 0.00 |
DAS_250_LT_ht | HT | 18 g @HT | 703 ± 81 | 67.7 ± 2.8 | 1.0 ± 0.1% | 8.2 ± 0.3 | 44.91 ± 0.21 | 9.79 ± 0.11 | 3.79 ± 0.01 |
DAS_250_LT_HT | HT | 32 g @HT | 722 ± 75 | 66.5 ± 2.9 | 1.0 ± 0.1% | 8.3 ± 0.3 | 46.17 ± 0.53 | 9.74 ± 0.31 | 3.78 ± 0.01 |
DAS_250_LT_ht_1950 | 1950 °C | no tension | 493 ± 68 | 99.5 ± 6.8 | 0.6 ± 0.1% | 8.1 ± 0.2 | 89.50 ± 0.60 | 31.57 ± 0.32 | 3.47 ± 0.00 |
DAS_250_LT_HT_1950 | 1950 °C | no tension | 611 ± 84 | 113.6 ± 9.2 | 0.6 ± 0.1% | 7.7 ± 0.2 | 89.24 ± 0.22 | 28.99 ± 0.17 | 3.45 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unterweger, C.; Schlapp-Hackl, I.; Fürst, C.; Robertson, D.; Cho, M.; Hummel, M. Carbon Fibers Based on Cellulose–Lignin Hybrid Filaments: Role of Dehydration Catalyst, Temperature, and Tension during Continuous Stabilization and Carbonization. Fibers 2024, 12, 55. https://doi.org/10.3390/fib12070055
Unterweger C, Schlapp-Hackl I, Fürst C, Robertson D, Cho M, Hummel M. Carbon Fibers Based on Cellulose–Lignin Hybrid Filaments: Role of Dehydration Catalyst, Temperature, and Tension during Continuous Stabilization and Carbonization. Fibers. 2024; 12(7):55. https://doi.org/10.3390/fib12070055
Chicago/Turabian StyleUnterweger, Christoph, Inge Schlapp-Hackl, Christian Fürst, Daria Robertson, MiJung Cho, and Michael Hummel. 2024. "Carbon Fibers Based on Cellulose–Lignin Hybrid Filaments: Role of Dehydration Catalyst, Temperature, and Tension during Continuous Stabilization and Carbonization" Fibers 12, no. 7: 55. https://doi.org/10.3390/fib12070055
APA StyleUnterweger, C., Schlapp-Hackl, I., Fürst, C., Robertson, D., Cho, M., & Hummel, M. (2024). Carbon Fibers Based on Cellulose–Lignin Hybrid Filaments: Role of Dehydration Catalyst, Temperature, and Tension during Continuous Stabilization and Carbonization. Fibers, 12(7), 55. https://doi.org/10.3390/fib12070055