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Abstract: This study aims to investigate the behaviour of reinforced concrete (RC) beams strengthened
by Carbon Fibre-Reinforced Polymer (CFRP) under static and impact loads. A series of RC beams
were tested and categorized into four groups, namely, unstrengthened RC beams (B1), RC beams
strengthened with a CFRP longitudinal strip in the tension zone (B2), RC beams wrapped with CFRP
fabric (B3), and RC beams strengthened with a combination of both CFRP longitudinal strips and
wraps (B4). The results show that the average load–displacement capacity of RC beam group (B4)
was improved by 84.88% as compared with the unstrengthened beam (B1) under static loads. The
dynamic test results demonstrated an increase in the deflection resistance of RC beam group (B4)
by −57.89% as compared with unstrengthened RC beam group (B1) under identical drop weights
of 1 m. In addition, a collapse failure mode was noticed in the unstrengthened beams, while minor
damage was recorded mainly in the case of RC beam group (B4). Furthermore, the numerical analysis
conducted using LS-DYNA software (V 971 R6.0.0) proved that the adopted numerical models can
efficiently predict the behaviour of RC beams under dynamic loads, with maximum differences
reaching up to −12.5% compared with the experimental test results.

Keywords: RC beams; CFRP strengthening; impact test; experimental and numerical study

1. Introduction

Nowadays, the design of structural elements in buildings against blast loads has
become essential due to the increase in terrorist threats, missile attacks, and accidental
explosions [1–4]. Several studies have been carried out to investigate the behaviour of
reinforced concrete beams under impact loads [5–10]. Localized damage to RC beams
under impact loading, including penetration, scabbing, spalling, perforation, and punching
shear, was the main finding identified by various scholars [11–15].

Cotsovos et al. [8,10] showed discontinuity in the deflected shape of the beam un-
der impact loads as compared with static loads and stated that this response could be
attributed to the inertia forces developed internally, which affected the member behaviour
considerably. Similar crack failure mode patterns were observed for the RC beams tested in
other studies [5–7,16]. Kishi et al. [5] observed that vertical flexural cracks developed near
the mid-span of the beam at low-impact velocity, and the width of these cracks from the
loading point to the support points significantly increased with the increase in the impact
velocity, with severe damage seen in the main reinforcement bars up to the point when the
RC beam split. Other researchers stated that shear mechanisms play an essential role in
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the overall impact response of RC structures [6,7,9,17,18]. Saatci and Vecchio [7] indicated
that specimens with higher shear capacity are able to withstand impacts and absorb more
energy as compared with other samples that had a smaller shear capacity; these suffered
extensive damage under equal or smaller impact loads.

Today, scholars have studied the ability of bonding Fiber-Reinforced Polymers (FRPs)
to the tension zones of beams to strengthen their shear and flexural resistance capacity
under impact loads [19,20]. Three approaches have been utilized to strengthen the beams,
namely, bonding the FRPs directly to the concrete, near-surface-mounted (NSM) FRP
reinforcement, and spraying FRPs onto the concrete.

Numerous studies aimed to use drop weight tests to evaluate the response of RC
beams to impulse loads [21–24]. Tang and Saadatmanesh [25] conducted a test series to
study the behaviour of RC beams with dimensions of 203 × 95 mm wrapped by FRPs
(carbon or Kevlar) on two sides of the beams using a drop weight machine through up
to 30 drops. The results indicated that stiffer FRPs could increase the resistance of RC
beams subjected to impact loading. Furthermore, no cracks were observed in the interface
between the FRPs and the concrete, and the debonding strain of FRPs was about 4000 µε,
with the strain rate of the FRPs at about 1.4 s−1.

White et al. [26] experimentally tested nine RC beams with lengths of 3 m under
approximately quasi-static loads, with strain rates reaching up to 6.9 × 10−3 s−1. The
results indicated that the beams strengthened by FRPs failed as the FRPs debonded under
a strain of 6200 µε. Pham and Hao [27] suggested a new technique to strengthen the RC
beams by modifying the beam section to have a curved soffit before bonding with FRP. This
technique was tested by using a drop weight machine with a weight of 203.5 kg and a drop
height of 2 m. The results indicated that the U-wrap FRPs could significantly delay the
debonding of the longitudinal strips, which caused a great increase in the impact resistance
of beams by eliminating the stress concentration and providing confining pressure on these
strips. Moreover, the outcomes revealed that the local FRP strengthening of beams at the
expected impact area prevented the shear failure, even though the shear-resistance capacity
was about four times the flexural capacity.

Pham and Hao [28] tested RC beams with no stirrups to properly evaluate the effects of
FRP strengthening on the shear-resistance capacity by using a drop-weight apparatus. The
results proved that FRP strengthening was able to considerably enhance the shear capacity
of RC beams under impact loads. Furthermore, the beams wrapped by inclined FRPs had a
higher impact capacity compared with vertical FRP wraps. Soleimani et al. [29] evaluated
the shear capacity of RC beams with dimensions of 150 × 150 mm strengthened with
sprayed glass fibre-reinforced polymer (GFRPs) by using a drop weight test under impact
velocity reaching up to 3.96 m/s. The outcomes proved that the sprayed GFRPs did not
fracture, and the increase in the thickness of GFRPs, particularly for the three-sided samples,
could significantly improve the shear capacity when compared with two-sided samples.

The bonding of FRPs and concrete under impact loads varied considerably more
than under static conditions. Most prior studies reported that beams failed due to FRP
debonding [22,23,27,29]. In the same context, the ACI 440.2R-08 [30] mentioned that FRP
debonding can happen if the force on FRPs cannot be sustained by the substrate. Several
studies illustrated that shear stress recorded high values at the interface between concrete
and FRPs at or near the end of the FRPs [31]. Hamed and Rabinovitch [32] stated that
cracking stress occurred at the edges of FRPs, which agrees with the behaviour exhibited
during the static loads, while the shear stress occurred at different positions along the beam
under impact loads. In addition, the peak axial force and bending moment occurred at
different locations along the beam at various times.

According to the above studies, knowledge about using FRP-strengthening for RC
beams under impact loads at high strain rates is still limited. This study aimed to evaluate
the behaviour of RC beam-strengthening with CFRPs by using drop-weight impact tests
with a hemispherical-headed projectile. Furthermore, static bending tests were performed
by applying a concentrated load to the mid-span using a Baldwin Compression Machine.
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Besides the experimental tests, numerical models were created using LS-DYNA [33] to
model the dynamic behaviour and damage to RC beams both with and without CFRP
strengthening under impact loads. The strain rate effects of concrete and steel reinforcement
are considered in the numerical simulations [34–38].

2. Methods and Materials
2.1. Preparation of RC Beam Samples and Reinforcement Details

Four groups of RC beams with dimensions of 600 × 100 × 100 mm were tested to
evaluate the failure behaviour of the RC beams with and without CFRP strengthening
under impact dynamic loads, as presented in Table 1.

Table 1. Description of RC beam-strengthening schemes.

Group Code Description

B1 Control: No strengthening

B2 RC beam strengthened with one layer of CFRP (Sika Wrap-230C,
Sika, Baar, Switzerland) wrap of 0.13 mm thickness

B3

RC beam strengthened with one layer of 50 mm width and 500 mm
long CFRP (Sika CarboDur S512, Sika, Baar, Switzerland) strip of
1.2 mm thickness provided by SIKA Australia PTY LTD, Wetherill
Park, Australia, to the tension side of the beam

B4 RC beam strengthened with the CFRP strip and then wrapped as
described above

All the beams were reinforced with two longitudinal bars 2N6 at the top and bottom,
with shear links of R5 at 100 mm centre to centre, as presented in Figure 1. Three samples
from each group were cast and tested; however, for the unstrengthened (B1) group, nine
beams were cast, where three of them were tested under static conditions, and the rest
were subjected to impact loads within different drop heights and denoted as (B1a and
B1b) to determine the suitable drop height. The beams of group (B2) were wrapped with
one layer of CFRP (Sika Wrap-230C, Sika, Baar, Switzerland) sheet to improve the shear
strength of the beam and concrete confinement. On the other hand, the beams of group
(B3) were strengthened with one layer of CFRP strip (Sika CarboDur S512, Sika, Baar,
Switzerland) with a thickness of 1.2 mm, width of 50 mm, and length of 500 mm on the
tension zone to increase flexural resistance of the beam. Lastly, the RC beams of group
(B4) were strengthened with both CFRP wrap and strip. Bars class AS4671 N with a
cross-sectional area of 28 mm2 and a nominal diameter of 6 mm were used as longitudinal
reinforcement, while bars class R with a cross-sectional area of 19.6 mm2 and a diameter of
5 mm were utilized as a close stirrup.
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Figure 1. Reinforcement and wrapping details of tested RC beams: (a) B1, (b) B2, (c) B3, (d) B4.

2.2. Material Properties

The specimens were cast into two batches, where the beams of group (B1) were cast
in the first batch, while the other groups were cast in the second batch with a target
compressive strength of 35 MPa. Table 2 shows the results of cylindrical compressive
strength and modulus of rupture for the tested samples. The CFRP (Sika CarboDur fabric)
was used with a thickness of 0.13 mm to wrap the beam, and it was sticking on the beam
concrete surface via epoxy type Sikadur-330, which consists of thixotropic epoxy-based
impregnating resin and adhesive. The CFRP-type (Sika CarboDur S512) sheets were used
as a longitudinal strip and stuck to the beam surface by using epoxy type Sikadur-30, which
consists of epoxy resins with a special filler that might be used at temperature range of 8 ◦C
to 35 ◦C. The details of the adopted materials are shown in Table 2.

Table 2. Material properties of concrete, steel, CFRP, and epoxy.

Concrete Average Compressive Strength f’c (MPa) Modulus of Rupture FRP (MPa)

B1, B1a, B1b 37.78 5.97
B2, B3, B4 35.42 5.59

Steel Yield stress fy (MPa) Young’s modulus Es (GPa)

Longitudinal steel 506 200
Shear stirrup 305 200

CFRP [39] Tensile strength ft (MPa) Young’s modulus E f (GPa)

Sika CarboDur S512 2800 165
Sika Wrap-230C 3500 230

Epoxy [39] Tensile strength ft (MPa) Young’s modulus Ee (GPa)

Sikadur-30 31 11.2
Sikadur-330 30 4.5
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2.3. Bonding Procedure of CFRP

Initially, the surface of all the beam samples was roughened via chisel and cutter to
make it uneven and increase the adhesive strength between CFRP sheets and the beams.
The dust particles were carefully cleaned and removed after the above procedure to avoid
trapped dust in the epoxy layer.

After that, the epoxy layer was applied to the RC beams and strengthened with CFRP
sheets. In the case of RC beam group (B2), a thin layer of epoxy-type Sikadur-330 with
a thickness of about 2 mm was applied evenly across all the beam faces, and then the
CFRP sheets were wrapped in the transverse direction of the beam. The main reason for
beam wrapping was to evaluate its effects on the shear resistance of the RC beams and
concrete confinement.

In the case of RC beam group (B3), the CFRP strips were stuck in the longitudinal
direction of the beam to investigate its effects on the flexural resistance of the beam by
using a thin layer of epoxy-type Sikadur-30 with a thickness of 2 mm. A small force was
subjected to the CFRP strip to ensure that it was properly adhered to the beam surface.
Finally, the RC beams of group (B4) were strengthened via both CFRP strips and wrap
using the above procedures for groups B2 and B3.

2.4. Static Bending Test

The Baldwin Compression Machine was used during the static test, whereas the beam
with a free span length of 500 mm was initially fixed on both sides of a metal frame of the
compressive plates. The metal bar was placed on the beam centre-line to simulate a point
load, as described in Figure 2. The top compressing metal plate of the Baldwin Compression
Machine was pulled down to be in contact with the metal roller. A sensor linear variable
differential transformer (LVDT) was utilized to measure the beam displacement at the
mid-span. The test was performed via a gradual increment in the compressive force and
stopped at the beam failure.
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2.5. Drop Weight Test

The impact test was carried out by dropping a solid steel hemispherical-headed
projectile weighing 92 kg on the concrete surface of the beam, as shown in Figure 3. The
projectile dropped through a tunnel located above the tested sample. Similar to the static
test, the sample with a free span of 500 mm was fixed to the steel frame on both sides
to avoid the uplift of the sample during the impact. Furthermore, the pressures induced
inside the guided tunnel during the impact were relieved and minimized by drilling holes
around the tube tunnel section that could reduce the effects of these pressures on the drop
speed of the projectile.
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Figure 3. Setup of impact test: (a) RC beam fixed to the steel frame support, (b) hemispherical headed
projectile, and (c) guided cylindrical tube.

During the impact test, a high-speed data system with a maximum frequency of
2000 kHz and Ampere gain rate of 100–500 was used to record the laser LVDT measured
displacement time history of the beam, as presented in Figure 4. The impact velocity
during the test was measured by using a high-speed camera model MotionBLITZ® Cube
1.3 (SVS-Vistek, Gilching, Germany), up to 1000 frames per second with a recording time of
3.3 s at a full resolution of 640 × 512 pixels and a maximum speed at a reduced resolution
reaching up to 32,000 frames per second.
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3. Experimental Test Results
3.1. Results of Static Test
3.1.1. Failure Modes and Crack Pattern

The static test was performed by a Baldwin Compression Machine via gradual sub-
jecting of the point load at the RC beam mid-span. A laser sensor (LVDT) recorded the
maximum deflection at the mid-span during the test. In the case of unstrengthened RC
beams group (B1), flexural cracks with a maximum width of 3 mm are observed at the beam
mid-span, and these cracks gradually extend towards the supports, as shown in Figure 5a.
The flexural cracks are also noted in the case of the RC beams of group (B2) at the beam
mid-span with CFRP rupture, and these cracks spread upwards until beam failure with a
maximum crack width of 3 mm at the middle of the beam, as observed in Figure 5b.
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Figure 5c indicates that the CFRP strip of the RC beams of group (B3) deboned and
caused beam failure. The deboning of CFRP sheets occurred at one side of the beam; there-
fore, the cracks initially observed at the locations of CFRP deboning and their propagation
pattern are different than RC beams B1 and B2.

The cracks with a maximum depth of 2 mm are spread diagonally to the beam centre,
and there was no obvious crack at the mid-span zone that reflected the role of the CFRP
strip, which significantly developed the flexural resistance of the beam. In the case of the
RC beams of group (B4), the flexural cracks were noted near the support at the locations of
CFRP strip deboning signs. However, the CFRP wrap caused extra bonding and prevented
premature debonding of the CFRP strip, as described in Figure 5d. Moreover, no cracks at
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the beam mid-span were observed, which again demonstrated the significant role of CFRP
strengthening in enhancing the response of RC beams under impact loads.

3.1.2. Load–Displacement Curves

The load–displacement curves of the tested beam samples were determined, as pre-
sented in Figure 6 and Table 3. The results revealed linear behaviour within the elastic
zone until the yield point for all the tested beams. In the case of RC beam group (B1),
the maximum average load recorded was approximately 33.07 kN, with an average mid-
span deflection of 8 mm. On the other hand, the RC beams of group (B2) recorded a
maximum average ultimate static load of 36.92 kN and an average deflection of 8.77 mm.
The load–displacement curve of RC beam group (B2) showed a sharp section that might
be attributed to the cracking of hardened epoxy. Generally, a slight improvement in the
ultimate load capacity can be noted in the case of RC beam group (B2) compared to the
unstrengthened beams (B1), which might attributed to the wrapping of the CFRP sheets on
the beam surface.
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Figure 6. The load–displacement curve at the static test for RC beams of groups B1, B2, B3, and B4.

Table 3. Comparison of the static test results between RC beams groups B1, B2, B2, and B4.

Specimens Maximum Load
(kN) Deflection (mm) Flexural

Strength (MPa)
Improvement in

Strength (%)

B1 33.07 8.00 29.76 N/A
B2 36.92 8.77 33.22 11.64
B3 41.27 8.24 37.15 24.80
B4 61.14 10.29 55.03 84.88

The CFRP strengthened in the RC beam of the group (B3) increased the average
ultimate load-carrying capacity of the beam by 24.80%, compared with the unstrengthened
beams of the group (B1). A decrease in the load at a few locations can noted because
the CFRP strips are de-bonding from the beam surface during the impact test. The beam
recorded an average ultimate load of 41.27 kN with a maximum deflection of 8.24 mm, as
shown in Table 3. The results proved a significant improvement in the flexural strength of
the RC beam group (B4) by 84.88% compared with the RC beam of the group (B1), with
a recorded maximum load of 61.14 kN and a deflection of 10.29 mm. The above results
emphasized that the proper bonding of CFRP could considerably enhance the behaviour of
RC beams under impact loads.
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3.2. Results of the Impact Test

Figure 3 presents the drop weight testing system used to investigate the effect of using
three different CFRP-strengthening schemes on the dynamic response of the RC beam
under impact loads. The impact velocity during the test was determined via a high-speed
camera model MotionBLITZ® Cube 1.3, while the sensor laser LVDT recorded the beam
displacement at the mid-span. The RC beams of group (B1) were tested at different drop
heights of 0.6 m and 1 m, respectively, to select the proper drop height that could cause
significant beam damage. The results indicated minor damage with cracks at the mid-span
with maximum and residual average displacements of 11.0 mm and 5.0 mm, respectively,
for RC beam group (B1) at a drop height of 0.6 m, as described in Figure 7. A collapse
in the RC beams of group (B1) was observed at a drop height of 1 m within an average
crack width of 19 mm at the mid-span, which spread vertically upwards from the bottom
of the beams. According to the above results, the drop height of 1 m was utilized in the
subsequent tests to investigate the response of the RC beam with CFRP strengthening
under impact loads.
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Figure 8a indicates that the RC beams of group (B2) suffered significant damage
at a drop height of 1 m, with an average crack width of 10 mm at the beam mid-span
with CFRP rupturing along the fibre direction. Compared with the beams of group (B1),
diagonal shear failure was not noted near the supports, which reflected the significant
role of CFRP wrapping in enhancing the shear resistance of the RC beam under impact
loads. In the case of RC beam group (B3), the CFRP strips were debonded at several
locations, causing extensive flexural cracks at these locations only instead of the beam
mid-span. Furthermore, shear failure occurred near the beam support. The above results
proved that beam strengthening with CFRP strip is more effective than beam wrapping,
especially in load capacity and deflection terms, which could significantly enhance the
flexural beam strength.
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The final impact test was performed on the RC beams of group (B4), as described in
Figure 8c. The beams remained intact after the test, with only a slight residual deflection
compared with other tests. A minor tearing in the CFRP wrap was observed at various lo-
cations, mainly near the supports, without CFRP rupture and flexural cracks or debonding.
The results revealed the use of the CFRP strip and wrap efficiency to increase the strength
of the beam under impact loading resistance.

Furthermore, the average deflection of the RC beams group (B4) showed a lower value
than other beams tested at the same drop height and recorded at 8 mm, as shown in Table 4.
Once again, these results indicated that using CFRP wrap combined with the strip is more
effective in reducing the influences of impact loads than the other wrapping procedures
tested above.
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Table 4. Average deflection of tested RC beam groups under impact loads.

Tested Beam Drop Height (m) Average
Deflection (mm)

Average Residual
Deflection (mm)

Maximum
Deflection

Reduction (%)

Residual
Deflection (%)

B1
0.6 7 4.5 - -

1 19 15 - -

B2 1 16 11 −15.79 −26.67

B3 1 13 7 −31.58 −53.33

B4 1 8 4 −57.89 −73.33

4. Finite Element Modelling
4.1. Geometry and Meshing

The finite element modelling was conducted by using LS-DYNA software to inves-
tigate the dynamic behaviour of RC beams under different loading conditions [33]. An
eight-node element (SOLID 164) was adopted to simulate the concrete beam, hemispherical-
headed projectile, and steel support, as shown in Figure 9. A default option (constant
stress solid elements (ELFORM = 1)) was adopted, which utilized a reduced (one point)
integration plus viscous hourglass control for faster element formulation.

Fibers 2024, 12, x FOR PEER REVIEW 12 of 21 
 

Table 4. Average deflection of tested RC beam groups under impact loads. 

Tested 

Beam 

Drop Height 

(m) 

Average Deflection 

(mm) 

Average Residual De-

flection (mm) 

Maximum Deflection Re-

duction (%) 

Residual Deflec-

tion (%) 

B1 
0.6 7 4.5 - - 

1 19 15 - - 

B2 1 16 11 −15.79 −26.67 

B3 1 13 7 −31.58 −53.33 

B4 1 8 4 −57.89 −73.33 

4. Finite Element Modelling 

4.1. Geometry and Meshing 

The finite element modelling was conducted by using LS-DYNA software to inves-

tigate the dynamic behaviour of RC beams under different loading conditions [33]. An 

eight-node element (SOLID 164) was adopted to simulate the concrete beam, hemi-

spherical-headed projectile, and steel support, as shown in Figure 9. A default option 

(constant stress solid elements (ELFORM = 1)) was adopted, which utilized a reduced 

(one point) integration plus viscous hourglass control for faster element formulation. 

 

Figure 9. Finite element modelling of the impact test setup. 

The convergence test proved that a mesh size of 5 × 5 × 5 mm for RC beam and steel 

supports is efficient in terms of accuracy with less computational time and lower costs. 

The longitudinal steel reinforcements and shear links were simulated by using a 

two-node Hughes–Liu beam element with 2 × 2 Gauss quadrature integration. The CFRP 

strip of dimension 500 × 50 × 1.4 mm applied on the tension surface below the RC beam 

and the CFRP wrapping of the RC beam with and without the strip were simulated by 

using a Belytschko–Tsay 3D shell element [33], as shown in Figure 10. 

Figure 9. Finite element modelling of the impact test setup.

The convergence test proved that a mesh size of 5 × 5 × 5 mm for RC beam and steel
supports is efficient in terms of accuracy with less computational time and lower costs.
The longitudinal steel reinforcements and shear links were simulated by using a two-node
Hughes–Liu beam element with 2 × 2 Gauss quadrature integration. The CFRP strip of
dimension 500 × 50 × 1.4 mm applied on the tension surface below the RC beam and the
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CFRP wrapping of the RC beam with and without the strip were simulated by using a
Belytschko–Tsay 3D shell element [33], as shown in Figure 10.
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4.2. Material Model
4.2.1. Concrete

The RC beams were modelled via Material Model 72Rel3 (MAT CONCRETE DAM-
AGE REL3) due to its capability to analyze the RC structure subjected to explosion loads
with high accuracy and reliable outcomes [40,41]. The MAT_ADD_EROSION option was
adopted to eliminate the elements that did not participate in the impact resistance of the
beam during the analysis. The concrete mesh will disappear when the tensile stress reaches
the values of the rupture modulus listed in Table 2 above. Careful usage of erosion is
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necessary to eliminate the concrete materials that resulted in a severe violation in the mass
conservation of the structure [42].

4.2.2. Steel Reinforcement

The elastoplastic Material Model 24 (MAT PIECEWISE LINEAR PLASTICITY) is
adopted to model the steel reinforcement, with properties shown in Table 2 above. This
material model permits the user to input an effective stress versus an effective plastic
strain curve and a curve defining the strain rate scaling effect on yield stress. Each point
of effective plastic strain (EPS) corresponding to the yield stress (ES) is introduced based
on the steel properties. Moreover, the effect of the strain rate on steel is considered by
defining the (LCSR) option, which mainly depends on the values of the dynamic increase
factor curve.

4.2.3. Hemispherical-Headed Projectile and Supports

The hemispherical-headed projectile and steel support are to be assumed rigid and
simulated by using Material 20 (MAT_RIGID), available in the LS-DYNA library.

4.2.4. CFRP

Material model 54 (MAT ENHANCED COMPOSITE DAMAGE TITLE) was adopted
to simulate the CFRP sheets [43,44]. The lamina failure criterion of this material was
according to Chang–Chang failure, which includes four failure modes of CFRP fiber: the
tensile mode, compressive mode, tensile matrix, and compressive matrix [33].

4.3. Boundary Condition and Contact

The nodes of bolt locations and steel support of the RC beam are fixed. The contact
option “AUTOMATIC SURFACE-TO-SURFACE” available in the LS-Dyna library was used
between the beam and the boundary elements to avoid the penetration of the distorted beam
material into the steel support. The perfect bond between concrete and steel reinforcement
might not give a reliable assessment of the RC beam behavior, particularly under impact
loads [45]. Therefore, the CONTACT 1D option available in the LS-Dyna library was used
to simulate the bond slip between the concrete and reinforcement bars with a default control
option for static and dynamic friction coefficient. The bond between reinforcement bars
and the concrete was assumed to have an elastic–plastic relationship with the maximum
shear stress τmax. τmax was calculated by

τmax = GSumaxe−hdmgD (1)

where GS is the modulus of bond shear, umax is the maximum elastic slip, hdmg is the
damage curve exponent, and D is the damage parameter, which is introduced as the sum
of the absolute values of the plastic displacement increments. Shi et al. [45] performed
several parametric tests and stated that the values of the effect of hdmg and D values are
insignificant and might be ignored. In this study, GS is taken as 20 MPa/mm, and umax is
1.0 mm according to the recommendation proposed by Shi et al. [45].

The adhesive contact between the concrete beam surface and the CFRP sheets was
simulated by using an option “AUTOMATIC SURFACE TO SURFACE TIEBREAK” to
simulate the expected delamination of the CFRP composite as well as the contact between
the CFRP strip and wrap sheets. This contact option relies on the variables of the tensile
and shear failure stresses (NFLS and SFLS) of epoxy. The NFLS and SFLS magnitudes were
according to the bond strength of epoxy type “Sikadur-30” between concrete and CFRP
strip sheets and the epoxy type “Sikadur-330” between concrete and CFRP wrap. Contact
failure occurs if (

|σn|
NFLS

)2
+

(
|σS|

SFLS

)2
≥ 1 (2)
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where σn and σS are the tensile and shear stresses at the interface, respectively. Various
factors affect the defining of bond strength, which ranges between 4 MPa and 30 according
to the applying quality of epoxy and CFRP sheets, curing days, and the temperature used
during the curing after applying the CFRP sheets [39]. Simulation of the RC beam group
(B3) was performed initially to determine these magnitudes due to the debonding of CFRP
observed obviously during this test. The simulation did not stop until the debonding
of CFRP sheets occurred. The NFLS and SFLS values were assumed to be 20 MPa for
both parameters during the analysis of the RC beam group (B3); thus, those values were
adopted in all the subsequent models of RC beams strengthened by CFRP sheets. The initial
velocity of the hemispherical head projectile nodes was according to the initial velocity
determined during the experimental impact tests, as shown in Table 5. As expected, the
impact velocities during the experimental tests were slightly slower than the theoretical
velocities due to the air resistance.

Table 5. Impact velocity results during the experimental tests.

Tested Group Drop Height (m) Experimental Impact Velocity (ms−1) Theoretical Impact Velocity (ms−1)

B1a 0.6 3.32 3.43
B1b 1 4.29 4.43
B2 1 4.30 4.43
B3 1 4.28 4.43
B4 1 4.34 4.43

4.4. Dynamic Increase Factor (DIF)

The strain rate effects of steel and concrete are included by obtaining the DIF curves
via the empirical equations suggested by prior studies [36,37]. On the other hand, several
studies stated that the strain rate effects of CFRP are insignificant compared with concrete
and steel materials [46,47]; therefore, its effects are ignored in the current study.

5. Comparison between Numerical and Experimental Results
5.1. Failure Modes

A similar failure model was obtained for the simulated unstrengthened RC beams of
group (B1) with the experimental failure mode within an impact load of 0.6 m and 1 m
drop height, as shown in Figure 11. High strain values were observed around the beam
mid-span where the headed projectile impacted the beam and at the boundary on which
the beam was fixed to the steel frame support. The calculated plastic strain distribution
agreed well with the cracks noted during the experimental test.
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Figure 11. Comparison between failure modes of the RC beams group (B1) at a drop height of
(a) 0.6 m, (b) 1 m.

Figure 12 reveals that the CFRP of the RC beams of the group (B2) model at the mid-
span is ruptured, similar to the experimental test at a drop height of 1 m, which might
attributed to the location of the normal CFRP in the fibre direction, which is considered
relatively weak.
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Figure 12. Comparison between failure modes of the RC beams group (B2) at a drop height of 1 m:
(a) numerical analysis, (b) experimental test.

Similar to the experimental results of the RC beams of group (B3), the debonding
of the CFRP strip was captured at a drop height of 1.0 m during the numerical analysis,
as shown in Figure 13. Debonding of the CFRP strip occurs after the prescribed failure
criterion of the contact option between the RC beam and CFRP sheets is reached. Moreover,
a high stress concentration and diagonal shear failure at the boundaries on both sides of
the beam are noted during the numerical simulation.

Finally, the numerical results for the RC beams group (B4) revealed minor damage
with a slight residual deflection compared to the experimental test, as shown in Figure 14.
The above results reflected the efficiency of using the numerical simulation to closely
resemble the test observations of RC beam strengthened by CFRP under impact load with
high accuracy and less computational time and costs.
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Figure 14. Comparison between failure modes of RC beam group (B4) at a drop height of 1 m:
(a) numerical analysis, (b) experimental test.

5.2. Load–Displacement Response

The average displacement–time response of the RC beams tested groups under a drop
height of 1 m was determined to ensure the accuracy of the proposed numerical models, as
shown in Figure 15.

The results proved a good agreement between numerical and experimental tests for
the dynamic response behaviour within differences in maximum displacement at the mid-
height of −12.5%, as shown in Table 6. These outcomes highlighted the reliability of the
suggested numerical models in determining the response of RC beams under impact loads
with less computation costs and time.

Table 6. Differences of maximum displacement between numerical and experimental results at a
drop height of 1 m.

Beam Code
Maximum Displacement (mm)

Differences (%)
Numerical Experimental

B1 18.7 19 −1.6

B2 14 16 −12.5

B3 13.2 13 1.54

B4 7.3 8 −8.76
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6. Conclusions

The results of this study can be summarized as follows:

1. The static test results proved that the beams of group (B4) strengthened via both a
CFRP strip and wrap could significantly delay the debonding failure, within no cracks
at the mid-span of the beam.

2. The results indicated that the average flexural strength of the RC beams of group
(B4) strengthened with the CFRP strip and wrap increased by 84.88% compared with
unstrengthened beam group (B1), with a recorded maximum load of 61.14 kN and a
deflection of 10.29 mm.

3. The impact test results recorded a collapse in the unstrengthened beams of group (B1)
during a drop weight test from a height of 1 m within an average maximum crack
width at the mid-span of 19 mm, which spread vertically upwards from the bottom of
the beam. At the same tested height, minor damage for RC beam group (B4) with an
average maximum deflection of 8 mm was determined.

4. The numerical analysis results proved a good agreement with the experimental tests
in terms of failure modes and the load–displacement response. The maximum dif-
ferences of −12.5% reflect the capability of using these models to perform further
parametric studies to obtain optimal CFRP strengthening for RC beams under impact
loads for future investigations.

In conclusion, the above results proved the efficiency of using CFRP strengthening to
increase the resistance capacities of RC beams under static and impact loads.
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