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Abstract: Textile-reinforced concrete (TRC) is a composite concrete material that utilizes textile
reinforcement in place of steel reinforcement. In this paper, the efficacy of the partial replacement of
steel reinforcement with textile reinforcement as a technique to boost the flexural strength of reinforced
concrete (RC) beams was experimentally investigated. To increase the tensile strength of concrete,
epoxy-coated carbon textile fabric was used as a reinforcing material alongside steel reinforcement.
Beams were cast by partially replacing the steel reinforcement with carbon fabric. Partially replaced
carbon fabric-reinforced concrete beams of size 1000 × 100 × 150 mm3 were cast by placing the
fabrics in different layers. A four-point bending test was used to test cast beams as simply supported
until failure. Then, 120 ohm strain gauges were used to study the stress–strain behavior of the control
and TRC beams. Based on this experimental study, it was observed that 50% and 25% of the steel
replaced with carbon fabric beams performed better than the conventional beam. ABAQUS software
was used for numerical investigation. For the load deflection characteristics, a good agreement was
found between the experimental and numerical results. Based on the experimental analysis carried
out, a prediction model to determine the ultimate load-carrying capacity of TRC beams was created
using an Artificial Neural Network (ANN).

Keywords: textile-reinforced concrete; carbon fabric; tensile strength; four-point bending; flexural
behavior; ANN

1. Introduction

Steel-reinforced concrete is one of the most important building materials used in the
construction industry [1]. The carbonization of concrete and corrosion of reinforcing steel
due to air exposure results in a reduction in the strength and durability of the structure [2].
Thus, non-corrosive materials have become more significant during the past three decades
as precast and lightweight concrete constructions with great durability have been a prior-
ity [3]. High-performance fibers implanted in the shape of a textile mesh are combined
with conventional concrete to create textile-reinforced concrete (TRC) [4,5]. It is intended
to improve the concrete’s mechanical properties, including tensile strength, ductility, and
impact resistance, which are typically low in conventional concrete [6–11].

In TRC, the textile reinforcement serves as a replacement for traditional steel reinforce-
ment, offering advantages like corrosion resistance, ease of handling and installation, and
improved crack control [12,13]. The process of manufacturing textile-reinforced concrete
involves applying a thin layer of cementitious mortar to the textile reinforcement, which is
then impregnated with a high-performance cementitious matrix. The fibers’ strong bond to
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the concrete matrix is ensured by this impregnation, allowing for efficient load transfer be-
tween the two materials [14]. The resulting TRC panels or elements can be used in various
applications, including architectural facades, cladding, thin-shell structures, and precast
elements. TRC offers design flexibility, allowing for thinner and lighter elements compared
to traditional concrete, while maintaining or improving structural performance [15,16].
Recently, there has been an increase in interest in the usage of textile-reinforced concrete
due to its potential for reducing material consumption, energy consumption during man-
ufacturing, and carbon footprint [17,18]. Additionally, TRC exhibits good durability and
fire resistance properties, making it an attractive choice for sustainable construction prac-
tices [19–22]. Based on the kind of fibers utilized for reinforcement and the arrangement of
the textile reinforcement, there are various types of textile-reinforced concrete (TRC) [23–27].
Fibers generally come in two types: natural and artificial. Animals, plants, and natural
minerals are the primary sources of natural textile fibers; in contrast, man-made materials
include ceramics and synthetic materials made with mineral fibers [28]. Jute, flax, bamboo,
cotton, sisal, and coir are a few examples of common natural fibers. Table 1 displays
man-made fabrics and their characteristics.

Table 1. Types of textile reinforcement.

Types of Textile Fabric Usage in TRC Tensile Strength (MPa) Young’s Modulus
(GPa)

Characteristics and
Applications

Carbon Abundantly used in
TRC 1100–4000 150–235

High ductility, used in shells,
slabs, and most structural

applications

AR Glass Next most used in
TRC 120–790 30–40

Less ductile than carbon fabric,
used in façade panels,

formwork, and non-load
bearing partition walls

Basalt (with coatings) Least commonly
used in TRC 490–890 28–45

Most sustainable alternative,
used in non-structural

elements

Additionally, textile reinforcements can be categorized based on their configurations,
which include woven fabrics, non-woven fabrics, and grid structures. Woven fabrics consist
of interlaced fibers, similar to traditional textiles, while non-woven fabrics have fibers
bonded together mechanically or chemically. Grid structures involve the arrangement of
fibers in a grid pattern, creating a mesh-like reinforcement. The specific type of TRC chosen
depends on the requirements, such as the desired mechanical properties, environmental
conditions, and cost considerations. Corrosion of the embedded metals and reinforcing
steel is the primary cause of concrete deterioration. As a result, non-corrosive metals are
now utilized, such as textile reinforcement. In previous studies, only textile reinforcement,
excluding steel reinforcement, was used, and it did not give satisfactory flexural strength
compared to conventional beams. In this study, carbon fabric has been chosen as a textile
reinforcement to reinforce the concrete partially along with a steel reinforcement to improve
the tensile strength of concrete and reduce concrete deterioration. As the reinforcement is
placed over the fabric, the foreign ions will first reach the fabric, thus reducing the concrete
deterioration. Structural health monitoring (SHM) is an important aspect of evaluating
the safety, integrity, and functionality of structures [29]. SHM involves the continuous
or periodic monitoring of structural parameters to detect changes, damage, or potential
failures in real-time [30,31]. Here are some commonly employed SHM techniques:

Strain Gauges—Strain gauges are frequently employed in structural health monitoring
to measure the deformation or strain in structural components such as bridges, buildings,
and other infrastructure. Strain gauges are embedded in the surface of the structural
component where deformation or strain needs to be monitored. They are often attached
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to critical locations, such as areas prone to high stress or where damage is more likely to
occur [32,33].

Fiber Optic Sensors—Because of their unique properties, fiber optic sensors have
become increasingly common in structural health monitoring, including high sensitivity,
resistance to electromagnetic interference, and their ability to cover large areas with dis-
tributed sensing. Fiber Bragg grating sensors and distributed fiber optic sensors are most
commonly used [34,35].

Acoustic emission sensors are strategically placed on or within the structure being
monitored. These sensors are sensitive to the high-frequency stress waves produced by
structural changes [36–38].

Electromagnetic techniques are employed in structural health monitoring to assess
the condition of structures by utilizing electromagnetic waves and their interactions with
the materials. These techniques are non-destructive and can provide valuable information
about the integrity and potential damage of structures [39–41].

Ultrasonic techniques are widely used in structural health monitoring to assess the
condition of materials and structures by utilizing ultrasonic waves. Ultrasonic methods are
non-destructive and can provide valuable information about the integrity, thickness, and
potential defects within structures [42–44].

The choice of monitoring technique depends on factors such as the specific application,
accessibility of the structure, required sensitivity, and desired level of monitoring coverage.
Developing a comprehensive monitoring strategy tailored to the structure’s characteristics
and anticipated failure modes to ensure an effective and reliable assessment of the struc-
ture’s health is important. Generally, sensors are bonded to the surface of the structure or
embedded within the concrete during construction. In this study, strain gauges were used
to monitor the stress–strain behavior of the carbon fabric-reinforced concrete beam.

2. Design and Properties of Materials
2.1. Textile

The carbon fabric, produced by Taishan Company in Mumbai, was the textile em-
ployed in this study. As shown in Figure 1, carbon fabric was woven along the warp and
weft direction. Table 2 shows the properties of the carbon fabric mesh.
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Table 2. Mechanical properties of the carbon fabric mesh.

Properties Values

Woven pattern Plain

Linear Density
Warp g/cm3 4.5

Weft g/cm3 4.5

Thickness(mm) 0.28

Area weight (g/m2) ± 10% 200

Tensile strength (Mpa) 3530

Modulus in tension (GPa) 230

Elongation % 1.5

2.2. Tensile Test of Carbon Fabric

Carbon fabric was impregnated with epoxy coating to activate more internal filaments,
which improves the load transfer between the filaments. Samples were taken in weft and
warp direction to test the horizontal and vertical tensile load and its elongation force. Each
sample was clamped in the jaws of the tensile strength tester machine in the required
direction. The gauge length was about 300 mm, and the test speed was about 2 mm/min.
The load was applied slowly for about 2 mm/min until its elongation break point, as
depicted in Figure 2.
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Figure 2. Tensile testing of carbon fabric.

Figure 3 displays the stress–strain curve of the fabric sample that was recorded in
both the warp and weft directions. Table 3 displays the test findings. From the graph, it is
observed that both the specimens tested in the weft direction record a maximum tensile
stress of 104 MPa and the specimens tested in the warp direction record a maximum tensile
stress of 44.3 MPa and 40.9 MPa, respectively. It is also visible that the carbon fabric has
linear elastic behavior.
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Table 3. Tensile properties of the fabric in warp and weft direction.

No. Specimen ID P (kN) S (MPa) E Vat Failure %

1 WARP 1 8.18 40.9 5.5

2 WARP 2 5.54 44.3 4.5

3 WEFT 1 13.1 104 3.7

4 WEFT 2 13.0 104 2.6

2.3. Concrete

Ordinary Portland Cement 53 grade (OPC) conforming to IS: 12269-2013 (https://
law.resource.org/pub/in/bis/S03/is.12269.2013.pdf, accessed on 4 July 2024) was used
for the tests. M-Sand that conformed to the specifications of IS 383-1970 (https://law.
resource.org/pub/in/bis/S03/is.383.1970.pdf, accessed on 5 July 2024) was used. Coarse
aggregate that conformed to the specifications of IS 383-1970 was used. The specific gravity
of the fine aggregates (FAs) and 10 mm coarse aggregates (CAs) was found to be 2.56
and 2.74, respectively. The specific gravity of the cement was found to be 3.15. Both the
textile-reinforced concrete (TRC) and reinforced concrete (RC) beam specimens were cast
using a concrete mix design with a target compressive strength of 30 MPa. Three standard
cubes measuring 150 × 150 × 150 mm3 were cast and tested at 28 days under compression.
The concrete’s average compressive strength at 28 days was 35.97 N/mm2. The concrete
mix proportioning for a design compressive strength of 30 MPa is shown in Table 4.

Table 4. Mix proportion of concrete.

Component Quantity (kg/m3)

Cement 376

Fine aggregate 873.27

Coarse aggregate 996.4

Superplasticizer 3.76

Water 158

2.4. Pull Out Test

To ascertain the strength of the bond between the concrete and the carbon fabric, a pull
out test was performed. Four thin panel specimens measuring 250 × 100 × 10 mm3 were
strengthened by a single layer of epoxy-coated carbon fabric placed in the center based on
the test requirements, as shown in Figure 4.

https://law.resource.org/pub/in/bis/S03/is.12269.2013.pdf
https://law.resource.org/pub/in/bis/S03/is.12269.2013.pdf
https://law.resource.org/pub/in/bis/S03/is.383.1970.pdf
https://law.resource.org/pub/in/bis/S03/is.383.1970.pdf
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Figure 4. Pull out test specimen.

The defined embedment length was 500 mm. The fabric was axially pulled from the
specimen and the load applied was at the rate of 5 mm/min. The results recorded are
shown in Figure 5. The mean value of the maximum force recorded was 1270 N and the
maximum strain recorded was 2.9 mm. The results show that because of the increased
stiffness that the epoxy coating to the carbon fabric gave it, the fabric had a better bond
strength with the concrete and less active slip. The linear response signifies the perfect
bond between the fabric and the concrete matrix.
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2.5. Test Specimen

The beam specimen’s dimensions were 150 mm in depth, 100 mm in width, and
1000 mm in total length. An epoxy resin coating was applied to the carbon fabric and
allowed to cure for 24 h. Fabrics were coated with epoxy to influence the stiffness and
draping characteristics. Figure 6 shows the step-by-step casting procedure.

The cast beams were left to set for 24 h. After the setting period, the molds were
removed and the beams were immersed in a curing tank and allowed to cure for 28 days.
The number of fabric layers and the amount of steel reinforcement (Ast) were chosen as
variables to compare the flexural behavior of TRC beams. A total of 3 control beams and
27 TRC beams were cast by partially replacing the steel reinforcement (25%, 50%, and
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75%) with 1, 2, and 3 layers of epoxy-coated carbon fabric. Figure 7 shows the detailing of
conventional reinforced concrete beams, and Table 5 shows the list of beams cast and their
test ID.
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Table 5. Test ID of specimens.

Sr. No Beam Designation Percentage of Steel Reinforcement Number of Carbon Fabric Layers

1 Control 100% NA

2 75% Ast + 1L 75% 1 layer

3 75% Ast + 2L 75% 2 layers

4 75% Ast + 3L 75% 3 layers

5 50% Ast + 1L 50% 1 layer

6 50% Ast + 2L 50% 2 layers

7 50% Ast + 3L 50% 3 layers

8 25% Ast + 1L 25% 1 layer

9 25% Ast + 2L 25% 2 layers

10 25% Ast + 3L 25% 3 layers
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3. Test Setup

Four-point bending tests were carried out to extensively evaluate the beams’ flexural
behavior. The beams were tested using a loading frame. The load deflection behavior,
maximum load-carrying capacity, and beam crack pattern were studied in the experiments.
The effective span of the beam was 800 mm. To monitor the stress–strain characteristics,
four numbers of 120 ohms 30 mm strain gauges were pasted using bonding adhesive at
four different locations, as shown in Figure 8. Before pasting the strain gauges, the surface
of the beams was cleaned.
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Figure 8. Pasting of strain gauges on the surface of beam.

Three LVDTs placed at the left end, center, and right end were used to monitor the
deflection of the beams. White paint was applied to the test area to make it easier to observe
the way cracks developed and propagated. The reading was obtained at consistent load
intervals. The specimen was visually examined, and cracks were noted while it was being
loaded. At regular intervals, pictures were taken to properly capture the crack pattern
during testing, and this is depicted in Figure 9.
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4. Analytical Study of Conventional and TRC Beams

To validate the results of the experimental investigation, finite element (FE) model-
ing of the control and TRC beams was carried out. The general-purpose finite element
modeling software ABAQUS (2017, Simulia, Johnston, RI, USA) was used to simulate
the beams numerically. The various items concerned with modeling were addressed as
follows: element type, specify boundary conditions, material assigning property, loading
conditions, meshing operations, and assigning sections; finally, result analysis was per-
formed to complete the entire analytical process. Deformable solid extrusion and shell
planar modeling were used for the concrete and laminate modeling. Three-dimensional
deformable wire planar modeling was used for the reinforcement. The measured material
properties were used in the finite element model. The homogenization in beam dynamics
has been extensively studied for heterogeneous material [45].

5. Test Results and Discussion
5.1. Flexure Strength of Beams

The test results summary for all the beams tested is shown in Table 6. The ultimate load-
carrying capacity of the control beam was 44.3 kN from the experimental investigations. It
was observed that 50% and 25% steel-replaced beams with carbon fabrics performed better
than the control beams. However, 75% of steel-replaced beams did not show significant
improvement in flexure strength. The ultimate load-carrying capacity of 50% steel-replaced
beam with one-layer carbon fabric and 25% steel-replaced beam with one-layer carbon
fabric was 52 kN and 70 kN, respectively. The ultimate load-carrying capacity of the TRC
beams increased with an increase in the number of fabric layers. The results obtained by
testing both the conventional and partially steel-replaced carbon fabric-reinforced concrete
beams for flexure strength are shown in Figure 10.

Table 6. Test matrix.

Sr. No Beam Designation Ultimate Load (kN) Mid Span Deflection at Ultimate Load (mm)

1 Control 44.3 4.01

2 75% Ast + 1L 70 6.22

3 75% Ast + 2L 83.2 3.08

4 75% Ast + 3L 90.8 2.05

5 50% Ast + 1L 52 8.32

6 50% Ast + 2L 54 4.65

7 50% Ast + 3L 60.6 3.42

8 25% Ast + 1L 28 9.8

9 25% Ast + 2L 36 5.7

10 25% Ast + 3L 40 4.95

From the graph, it is evident that the flexural strength is directly proportional to
the increase in the number of fabric layers. In addition, the partial replacement of steel
reinforcement with 50% and 25% carbon fabric beams performed better than conventional
beams. Based on the cost analysis carried out, it is apparent that 50% partial replacement of
steel reinforcement with one-layer carbon fabric beam is more advantageous than other
TRC beams.
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Figure 10. Flexure strength of beams.

5.2. Crack Pattern of TRC Beam

Crack patterns were carefully observed throughout the loading process. Diagonal
tension failure started due to the development of a vertical crack at the bottom of the beam
due to flexural tensile stress. Then, as the beam’s load increases, the fracture grows longer
and wider, bending diagonally and advancing toward the upper section of the beam and
the loading point. Additionally, sudden failure of concrete in shear happens during the
final stage of shear tension failure. Figure 11 shows the crack pattern developed in 50%
steel replaced with a one-layer carbon fabric beam.
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5.3. Load Deflection Behavior

From the flexure strength results, 50% steel provision with one layer of carbon fabric
and 75% steel provision with one layer of carbon fabric were identified as optimum beams.
The load deflection curves for the conventional beam and optimum beams are shown in
Figures 12–14. On a general note, from all three curves, it is visible that the deformation
increases as the load increases gradually, which results in the widening of the crack widths,
and many cracks were observed as the load increased. In the control beam, the first crack
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was observed at 18.2 kN. After the initiation of the first crack, the load-carrying capacity of
the beam did not reduce. Immediately after the initiation of the first crack, other cracks also
propagated at regular intervals of the load. From Figure 12, it is evident that maximum
deflection was recorded in all three LVDTs at an ultimate load of 44.3 kN. By comparing
the deflection data, it was seen that LVDT 2 (placed at the center side) showed a maximum
deflection of 4.01 mm.
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In the 75% Ast + 1 layer carbon fabric beam, the first crack was observed at 30.8 kN.
Figure 13 depicts that maximum deflection was recorded in all three LVDTs at an ultimate
load of 70 kN. By comparing the deflection data, it was seen that LVDT 2 (placed at the
middle side) showed a maximum deflection of 6.22 mm.

In the 50% Ast + 1 layer carbon fabric beam, the first crack was observed at 20.4 kN.
From Figure 14, it is seen that maximum deflection was recorded in all three LVDTs at an
ultimate load of 52 kN. By comparing the deflection data, it was observed that LVDT 3
(placed on the right side) showed a maximum deflection of 9.64 mm.
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5.4. Analytical Study of TRC Beams

The complete geometry of the control beam, 50% and 25% steel replaced with one-
layer carbon fabric beams, and their experimental setup were modeled using ABAQUS
software to compare the deflection characteristics of the beam to the experimental results. A
1000 × 100 × 150 mm3 concrete beam was constructed using a 3D deformable solid
extrusion type. In order to develop a concrete beam, an eight-node continuum solid
element was utilized. It was created by C3D8R. The element has eight nodes with three
degrees of freedom at each node—translations in the nodal x, y, and z directions. A mesh
size of 15 mm was used based on the mesh convergence scale. Shell element was utilized
to develop carbon fabric. It was created by SC8R. It is a three-dimensional eight node shell
element. A mesh size of 10 mm was used based on the mesh convergence scale. To develop
steel reinforcement, beam element, was used. It was developed by B31. It is a two-node
beam element. Based on the mesh convergence scale, a mesh size of 5 mm was used. The
concrete, steel, and fabric properties were listed under material properties. Two-point
loading was applied using the interaction module, and the analysis was performed. The
deflection models created for control and TRC beams are shown in Figures 15–17.
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Mid-span deflection showed a reasonable agreement between the numerical and
experimental results, as summarized in Table 7. As shown in Table 7, compared with the
experimental results, a maximum deviation of 0.19% to 1.33% was found for the numerical
results for mid-span deflection, respectively.

Table 7. Experimental versus numerical study comparison.

Beam Designation EXP FEM % Difference

Control beam 4.01 4.018 0.19

75% Ast + 1 layer carbon fabric 6.22 6.303 1.33

50% Ast + 1 layer carbon fabric 8.32 8.395 0.90

Figures 18–20 compare the load versus deflection curves for the tested beam specimens
derived from the numerical studies and the experimental investigation.
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5.5. Stress–Strain Characteristics

To monitor the stress–strain characteristics of the beam, four numbers of 30 mm 120
ohm strain gauges were used. Figures 21–23 show the stress–strain curve for the control
beam and TRC beams. Overall, the stress–strain curve showed a linear relationship in
all the beams. The strain gauge near the left support (SG1) in the control beam recorded
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the maximum strain of 111 mm/mm. The strain gauge placed near the left support
(SG1) recorded the maximum strain of 83 mm/mm for 75% steel-provided carbon fabric-
reinforced concrete beam. In 50% steel-provided carbon fabric-reinforced concrete beam,
the strain gauge placed near the right load (SG3) recorded the maximum strain of 96
mm/mm. The carbon fabric-reinforced concrete beams experienced less strain than the
conventional beam.
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6. Prediction Model to Determine the Ultimate Load of TRC Beams by ANN

Artificial Neural Networks (ANNs) are extensively used in predictive analysis due
to their ability to learn complex patterns and relationships from data. ANNs are versatile
and can be applied to various predictive analysis tasks, including regression, classification,
time-series forecasting, and pattern recognition. Collecting relevant data is the first step
in predictive analysis. Raw data often need preprocessing before being fed into an ANN.
Identifying and selecting relevant features are crucial for the performance of an ANN. Too
many irrelevant or redundant features may lead to overfitting, while too few features may
result in poor predictive performance. Designing the architecture of the neural network
involves finding the number of layers, the number of neurons in each layer, the activation
functions, and the overall structure of the network. During the training phase, the ANN
learns from the historical data to identify patterns and relationships. After training, the
ANN’s performance is assessed using validation and testing datasets. Once the ANN
demonstrates satisfactory performance, it can be deployed for making predictions on new,
real-world data [46,47]. In this research, an ANN is used to predict the load-carrying
capacity of partially replaced carbon fabric-reinforced concrete beams by taking the steel
reinforcement percentage and number of fabric layers as variables. From the experimental
investigations carried out, datasets were taken to carry out the predictive analysis.

6.1. Random Forest Regression Algorithm

A versatile machine learning method for predicting numerical values is called random
forest regression. The random forest regressor prediction class implements a random
forest regression model using the sklearn random forest regressor. This ensemble learning
technique works by building a large number of decision trees during training. The mean
or average prediction made by each tree is returned for regression tasks. Many decision
trees are trained on random subsets of the training data using a technique called bagging.
This introduces randomness into the model and reduces overfitting. When splitting nodes
during tree construction, only a random subset of features is considered. This further
decorrelates the individual trees to improve performance. Combining multiple decision
trees produces a more robust and accurate model compared to a single decision tree [48].

6.1.1. Training of Random Forest Regression Algorithm

Training in random forest regression refers to the process of building a random forest
model to predict continuous numeric values (regression) based on input features. Random
forest algorithms have three main hyperparameters which need to be set before training.
These include node size, the number of trees, and the number of features sampled. From
there, the random forest classifier can be used to solve regression. The train_data_points()
method generates some dummy input feature data X and target values y to train the model.
The RandomForestRegressor.fit() method is used to train the regressor on these data.

6.1.2. Prediction of Random Forest Regression Algorithm

Once the model is trained and validated, it can be used to make predictions on new,
unseen data by inputting the features of the new data into the trained model, which will
then output the predicted target values. A random forest regression model combines
multiple decision trees to create a single model. Each tree in the forest builds from a
different subset of the data and makes its own independent prediction. The final prediction
for the input is based on the average or weighted average of all the individual trees’
predictions. For making predictions on new data, get_predic_input_value() reads in a CSV
file uploaded and returns the input feature data. predict_output() feeds these data into the
trained random forest regressor model to generate predictions. The forest’s predictions are
averaged to produce the final predicted regression value.
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6.1.3. Visualization of Random Forest Regression Algorithm

Visualization involves various techniques used to gain insights into the trained model,
understand its behavior, and interpret its results. Visualization techniques are essential
for understanding and interpreting the behavior of a random forest regression model,
identifying potential issues such as overfitting or underfitting, and gaining insights into
the relationships between features and the target variable. create_dataframe() packages
the predictions with the original input data into a Pandas DataFrame. Graph() generates
a scatter plot of the training data and adds the new prediction point. This allows for
visualization of how the prediction relates to the original training data distribution. A
scatter plot of random forest regression prediction is shown in Figure 24.
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6.2. Support Vector Machine (SVM) Regression

The SVM prediction class implements a support vector regression model using
Sklearn’s SVR.VM regression aims to find the hyperplane (defined by support vectors)
that best fits the training data while maximizing the flatness of the mapping. This makes
the method robust and less prone to overfitting. SVR maps inputs to a high-dimensional
feature space, where a linear regression is carried out, using a kernel trick. Common
kernels include radial basis function and polynomial kernels. A tube with radius e is
added around the fitted hyperplane to tolerate some prediction errors and prevent massive
overfitting. This tube constraint controls model flexibility. Only support vectors that define
the hyperplane margins influence the prediction. Data points inside the tube do not.

6.2.1. Training of SVM Regression

Training in support vector machine (SVM) regression involves the process of fitting a
model to a dataset in order to learn the relationship between input features and continuous
target variables. Training in SVM regression involves finding the optimal hyperplane that
best fits the training data while maximizing the margin and minimizing prediction errors.
train_data_points() generates dummy input feature data X and target values y. SVR.fit()
fits the regression model on this training data. Key hyperparameters like C, epsilon, and
kernel parameters control model behavior.

6.2.2. Prediction of SVM Regression

Prediction in SVM regression involves applying the learned model to new data points
to estimate the continuous target variable and assessing the performance of these predic-
tions to understand the model’s accuracy and reliability. To make predictions, the values
of the features for the new data point are input into the trained SVM regression model.
The model then applies the learned decision function to these feature values to estimate
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the continuous target variable. get_predic_input_value() obtains new input data from the
uploaded CSV. predict_output() feeds these data into the trained SVR model to generate
predicted values. The position of the new data relative to the tube and support vectors
determines the prediction.

6.2.3. Visualization of SVM Regression

Visualization in support vector machine (SVM) regression can be challenging com-
pared to classification tasks, as the output is a continuous variable rather than a discrete
class. While visualizing SVM regression models may not be as straightforward as in classi-
fication tasks, these techniques can still provide valuable insights into the model’s behavior,
performance, and the relationships between input features and the target variable. A plot
shows the training data distribution and where the new prediction point falls relative to
it. This provides insight into the prediction logic for the given inputs. The gradio inter-
face allows for the interactive testing of different input data CSVs to see the prediction
performance. The scatter plot of support vector machine regression is shown in Figure 25.
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6.3. Multilayer Perceptron (MLP) Regression

The MLP Regressor Algorithm implements a multilayer perceptron neural network
for regression using sklearn’s MLP Regressor. This feed-forward ANN model maps inputs
to appropriate outputs. It is made up of various node layers, such as an input layer, one or
more hidden layers, and an output layer. Each node in one layer connects with a certain
weight wij to every node in the following layer.

6.3.1. Training of MLP Regression

Training an MLP regression model involves iteratively adjusting the weights and
biases of the network to minimize the difference between the predicted and actual target
values, ultimately resulting in a model that can accurately predict continuous variables.
The fit() method trains the MLP Regressor on the provided input feature data X and target
values y. Backpropagation is used to iteratively adjust weights and biases to minimize the
loss between the predicted and actual target values.

6.3.2. Prediction of MLP Regression

Prediction involves using a trained neural network model to estimate the continuous
target variable (or response variable) for new, unseen data points based on their input
features. To make predictions on new data, get_predic_input_value() obtains new input
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data from the uploaded CSV. The trained MLP Regressor generates predicted values by
passing new data through the network architecture. Outputs are generated by calculating
activations through the network layer by layer.

6.3.3. Visualization of MLP Regression

Visualizing the relationship between each input feature and the target variable can
provide insights into their correlation. A scatter plot shows true targets vs. predictions to
visually assess performance. The gradio interface allows for interactive testing to gauge
prediction accuracy on varying input data. Figure 26 shows the scatter plot of multilayer
perceptron regression.

Fibers 2024, 12, x FOR PEER REVIEW 19 of 23 
 

6.3.2. Prediction of MLP Regression 
Prediction involves using a trained neural network model to estimate the continuous 

target variable (or response variable) for new, unseen data points based on their input 
features. To make predictions on new data, get_predic_input_value() obtains new input 
data from the uploaded CSV. The trained MLP Regressor generates predicted values by 
passing new data through the network architecture. Outputs are generated by calculating 
activations through the network layer by layer. 

6.3.3. Visualization of MLP Regression 
Visualizing the relationship between each input feature and the target variable can 

provide insights into their correlation. A scatter plot shows true targets vs. predictions to 
visually assess performance. The gradio interface allows for interactive testing to gauge 
prediction accuracy on varying input data. Figure 26 shows the scatter plot of multilayer 
perceptron regression. 

 
Figure 26. Scatter plot of multilayer perceptron regression. 

6.4. XGBoost Algorithm 
The XGBoost class implements the XGBoost library for gradient-boosted decision 

tree regression. This ensemble technique combines multiple decision tree models. Trees 
are added sequentially, with each new tree correcting errors from the existing sequence. 
This boosting process reduces bias and variance for improved performance. Regulariza-
tion helps prevent overfitting as more trees are added. 

6.4.1. Training of XGBoost Algorithm 
Training in the XGBoost algorithm involves iteratively building decision trees and 

optimizing them to minimize a specified objective function. Through gradient boosting 
and regularization techniques, XGBoost produces an ensemble of decision trees that can 
make accurate predictions for regression tasks. The fit() method trains an XGB Regressor 
on the provided X input features and the y target variable. Key hyperparameters like n_es-
timators control ensemble size and performance. 

6.4.2. Prediction of XGBoost Algorithm 
For prediction, the values of the features for the new data point are inputted into the 

trained XGBoost model. The model then uses the ensemble of decision trees to generate a 
prediction for the target variable based on the input features. get_predict_input_values() 

Figure 26. Scatter plot of multilayer perceptron regression.

6.4. XGBoost Algorithm

The XGBoost class implements the XGBoost library for gradient-boosted decision tree
regression. This ensemble technique combines multiple decision tree models. Trees are
added sequentially, with each new tree correcting errors from the existing sequence. This
boosting process reduces bias and variance for improved performance. Regularization
helps prevent overfitting as more trees are added.

6.4.1. Training of XGBoost Algorithm

Training in the XGBoost algorithm involves iteratively building decision trees and
optimizing them to minimize a specified objective function. Through gradient boosting and
regularization techniques, XGBoost produces an ensemble of decision trees that can make
accurate predictions for regression tasks. The fit() method trains an XGB Regressor on the
provided X input features and the y target variable. Key hyperparameters like n_estimators
control ensemble size and performance.

6.4.2. Prediction of XGBoost Algorithm

For prediction, the values of the features for the new data point are inputted into the
trained XGBoost model. The model then uses the ensemble of decision trees to generate a
prediction for the target variable based on the input features. get_predict_input_values()
obtains new input data from the uploaded CSV. The trained model uses the learned tree
sequence to generate predictions for this new data. Predictions are made by the weighted
summation of outputs from individual trees.
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6.4.3. Visualization of XGBoost Algorithm

Visualization in the XGBoost algorithm primarily revolves around understanding
the model’s structure, feature importance, and decision-making process. A scatter plot
can visually assess prediction accuracy and can compare actual vs. predicted values. The
gradio interface allows for interactively testing predictions on new input CSVs. Figure 27
shows the XGBoost prediction scatter plot.
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6.5. Output

In the prediction model created based on the regression analysis carried out, steel
reinforcement percentage and the number of fabric layers are taken as inputs to predict the
ultimate load of the TRC beams. Figure 28 shows the prediction model created by ANN.
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7. Conclusions

This research explores the potential application of carbon fabric as textile reinforcement.
Based on the experimental and numerical results reported in this study, the following
conclusions are made.

• It is concluded that the flexural behavior of beams can be improved by partially
replacing the steel reinforcement with carbon fabric, and the effectiveness depends on
the number of fabric layers used.

• Based on the experimental investigation conducted in this research work, compared
to control beams, 50% and 75% steel-provided beams proved a significant increase in
the flexural capacity of beams with one, two, and three layers of carbon fabrics.
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• In accordance with the results of the cost analysis, the optimum level of replacement
is identified as 50% steel replacement with one layer of carbon fabric.

• From the crack pattern, it is observed that the beam failed in shear. Hence, shear
strengthening of the beam would yield better results.

• The numerical results showed a maximum deviation ranging from 0.19% to 1.33%
when compared to the experimental results for mid-span deflection of the control and
TRC beams.

• The stress–strain characteristics of the carbon fabric-reinforced concrete beams proved
promising by showing a linear elastic response.

• Hence, from the study carried out, it is concluded that carbon fabric can be effectively
used as textile reinforcement in beams in addition to steel reinforcement to improve
the flexural strength of beams.
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