Glass and Process Development for the Next Generation of Optical Fibers: A Review
Abstract
:1. Introduction
2. Silica-Based Optical Fibers
3. Nanoparticle-Doped Glasses and Fibers
4. Semiconductor Core Optical Fibers
5. Innovative Chalcogenide Glasses and Optical Fibers
6. Conclusions and Future Opportunities
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Osanai, H.; Shioda, T.; Moriyama, T.; Araki, S.; Horiguchi, M.; Izawa, T.; Takata, H. Effect of dopants on transmission loss of low-OH-content optical fibres. Electron. Lett. 1976, 12, 549–550. [Google Scholar] [CrossRef]
- Saifi, M.A. Emerging applications of optical fibers and photonics in intelligent automobiles and highway systems. In Proceedings of the 8th Annual Meeting Conference on IEEE Lasers and Electro-Optics Society 1995 Annual Meeting, San Francisco, CA, USA, 30–31 October 1995; Volume 2, pp. 382–383.
- Peterson, J.I.; Vurek, G.G. Fiber-Optic sensors for biomedical applications. Science 1984, 224, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Bubnov, M.M.; Vechkanov, V.N.; Gur’yanov, A.N.; Zotov, K.V.; Lipatov, D.S.; Likhachev, M.E.; Yashkov, M.V. Fabrication and optical properties of fibers with an Al2O3-P2O5-SiO2 glass core. Inorg. Mater. 2009, 45, 444–449. [Google Scholar] [CrossRef]
- Weber, M.J. Science and technology of laser glass. J. Non-Cryst. Solids 1990, 123, 208–222. [Google Scholar] [CrossRef]
- Digonnet, M.J.F. Rare-Earth-Doped Fiber Lasers and Amplifiers; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- Likhachev, M.E.; Bubnov, M.M.; Zotov, K.V.; Medvedkov, O.I.; Lipatov, D.S.; Yashkov, M.V.; Guryanov, A.N. Erbium-doped aluminophosphosilicate optical fibres. Quantum Electron. 2010, 40, 633–638. [Google Scholar] [CrossRef]
- DiGiovanni, D.J.; MacChesney, J.B.; Kometani, T.Y. Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join. J. Non-Cryst. Solids 1989, 113, 58–64. [Google Scholar] [CrossRef]
- Townsend, J.E.; Poole, S.B.; Payne, D.N. Solution-doping technique for fabrication of rare-earth-doped optical fibres. Electron. Lett. 1987, 23, 329–331. [Google Scholar] [CrossRef]
- Nagel, S.R.; MacChesney, J.B.; Walker, K.L. An overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE J. Quantum Electron. 1982, 18, 459–476. [Google Scholar] [CrossRef]
- Barua, P.; Sekiya, E.H.; Saito, K.; Ikushima, A.J. Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass. J. Non-Cryst. Solids 2008, 354, 4760–4764. [Google Scholar] [CrossRef]
- Poole, S.B.; Payne, D.N.; Fermann, M.E. Fabrication of low-loss optical fibres containing rare-earth ions. Electron. Lett. 1985, 21, 737–738. [Google Scholar]
- Sekiya, E.H.; Barua, P.; Saito, K.; Ikushima, A.J. Fabrication of Yb-doped silica glass through the modification of MCVD process. J. Non-Cryst. Solids 2008, 354, 4737–4742. [Google Scholar] [CrossRef]
- Unger, S.; Lindner, F.; Aichele, C.; Leich, M.; Schwuchow, A.; Kobelke, J.; Dellith, J.; Schuster, K.; Bartelt, H. A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology. Laser Phys. 2014, 24, 035103. [Google Scholar] [CrossRef]
- Webb, A.S.; Boyland, A.J.; Standish, R.J.; Yoo, S.; Sahu, J.K.; Payne, D.N. MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers. J. Non-Cryst. Solids 2010, 356, 848–851. [Google Scholar] [CrossRef]
- Boyland, A.J.; Webb, A.S.; Kalita, M.P.; Yoo, S.; Codemard, C.A.; Standish, R.J.; Nilsson, J.; Sahu, J.K. Rare-Earth Doped Optical Fiber Fabrication Using Novel Gas Phase Deposition Technique. In Proceedings of the Conference on Lasers and Electrooptics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), San Jose, CA, USA, 16–21 May 2010.
- Arai, K.; Namikawa, H.; Kumata, K.; Honda, T. Aluminum or phosphorous co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. J. Appl. Phys. 1986, 59, 3430–3436. [Google Scholar] [CrossRef]
- Blanc, W.; Mauroy, V.; Nguyen, L.; Bhaktha, B.N.S.; Sebbah, P.; Pal, B.P.; Dussardier, B. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition. J. Am. Ceram. Soc. 2010, 94, 2315–2318. [Google Scholar] [CrossRef]
- Blanc, W.; Dussardier, B.; Monnom, G.; Peretti, R.; Jurdyc, A.-M.; Jacquier, B.; Foret, M.; Roberts, A. Erbium emission properties in nanostructured fibers. Appl. Opt. 2009, 48, G119–G124. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.C.; Bysakh, S.; Das, S.; Pal, M.; Bhadra, S.K.; Yoo, S.; Boyland, A.J.; Sahu, J.K. Nano-Engineered Yb2O3 Doped Optical Fiber: Fabrication, Material Characterizations, Spectroscopic Properties and Lasing Characteristics: A Review. Sci. Adv. Mater. 2012, 4, 292–321. [Google Scholar] [CrossRef]
- Pastouret, A.; Gonnet, C.; Collet, C.; Cavani, O.; Burov, E.; Chaneac, C.; Carton, A.; Jolivet, J.-P. Nanoparticle doping process for improved fibre amplifiers and lasers. In Proceedings of the SPIE 7195 Fiber Lasers VI: Technology, Systems, and Applications, San Jose, CA, USA, 19 February 2009; Volume 7195, p. 71951X.
- Lindstrom, T.; Garber, E.; Edmonson, D.; Hawkins, T.; Bass, M.; Ballato, J. Spectral engineering of optical fiber preforms through active nanoparticle doping. Opt. Mater. Express 2012, 2, 1520–1528. [Google Scholar] [CrossRef]
- Vermillac, M.; Fneich, H.; Lupi, J.-F.; Tissot, J.-B.; Kucera, C.; Vennéguès, P.; Mehdi, A.; Neuville, D.; Ballato, J.; Blanc, W. Use of thulium-doped LaF3:Tm3+ nanoparticles to lower the phonon energy of the thulium’s environment in silica-based optical fibres. Opt. Mater. 2017. submitted. [Google Scholar]
- Koponen, J.; Petit, L.; Kokki, T.; Aallos, V.; Paul, J.; Ihalainen, H. Progress in Direct Nanoparticle Deposition (DND) for the development of the next generation fiber lasers. Opt. Eng. 2011, 50, 111605. [Google Scholar] [CrossRef]
- Ye, C.; Koponen, J.; Aallos, V.; Petit, L.; Kimmelma, O.; Kokki, T. Measuring bend losses in large-mode-area fibers. In Proceedings of the SPIE 9344, Fiber Lasers XII: Technology, Systems, and Applications, San Francisco, CA, USA, 4 March 2015; p. 934425.
- Ye, C.; Koponen, J.; Aallos, V.; Petit, L.; Kimmelma, O.; Kokki, T. Mode coupling in few-mode large-mode-area fibers. In Proceedings of the SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications, San Francisco, CA, USA, 7 March 2014; p. 201489612W.
- Dianov, E.M.; Golant, K.M.; Karpov, V.I.; Khrapko, R.R.; Kurkov, A.S.; Protopopov, V.N.; Semenov, S.L.; Shebuniaev, A.G. Application of reduced-pressure plasma CVD technology to the fabrication of Er-doped optical fibers. Opt. Mater. 1994, 3, 181–185. [Google Scholar] [CrossRef]
- Bufetov, I.A.; Golant, K.M.; Firstov, S.V.; Kholodkov, A.V.; Shubin, A.V.; Dianov, E.M. Bismuth activated alumosilicate optical fibers fabricated by surface-plasma chemical vapor deposition technology. Appl. Opt. 2008, 47, 4940–4944. [Google Scholar] [CrossRef] [PubMed]
- Savel’ev, E.A.; Golant, K.M. Influence of fusing on the uniformity of the distribution of Yb3+ ions and the formation of clusters in silica with phosphorus admixture synthesized by SPCVD. Opt. Mater. Express 2015, 5, 2337–2346. [Google Scholar] [CrossRef]
- Golant, K.M.; Bazakutsa, A.P.; Butov, O.V.; Chamorovskij, Y.K.; Lanin, A.V.; Nikitov, S.A. Bismuth-activated Silica-core Fibres Fabricated by SPCVD. In Proceedings of the Conference: Optical Communication (ECOC), Torino, Italy, 9–13 September 2010.
- Brevet Silitec n°WO 2005/102947 A1 (Carlos PEDRIDO Datwyler Fiber SA). Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2005102947 (accessed on 3 November 2005).
- Langner, A.; Such, M.; Schötz, G.; Reichel, V.; Grimm, S.; Just, F.; Leich, M.; Kirchhof, J.; Wedel, B.; Köhler, G.; et al. Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica. In Proceedings of the SPIE 7580, Fiber Lasers VII: Technology, Systems, and Applications, San Francisco, CA, USA, 17 February 2010; p. 75802X.
- Schuster, K.; Unger, S.; Aichele, C.; Lindner, F.; Grimm, S.; Litzkendorf, D.; Kobelke, J.; Bierlich, J.; Wondraczek, K.; Bartelt, H. Material and technology trends in fiber optics. Adv. Opt. Technol. 2014, 3, 447–468. [Google Scholar] [CrossRef]
- Leich, M.; Just, F.; Langner, A.; Such, M.; Schötz, G.; Eschrich, T.; Grimm, S. Highly efficient Yb-doped silica fibers prepared by powder sinter technology. Opt. Lett. 2011, 36, 1557–1559. [Google Scholar] [CrossRef] [PubMed]
- Norin, L.; Vanin, E.; Soininen, P.; Putkonen, M. Atomic Layer Deposition as a New Method for Rare-Earth Doping of Optical Fibers. In Proceedings of the Conference on Lasers and Electrooptics (CLEO), Baltimore, MD, USA, 6–11 May 2007; p. CTuBB5.
- Montiel Ponsoda, J.J.; Norin, L.; Ye, C.; Bosund, M.; Söderlund, M.J.; Tervonen, A.; Honkanen, S. Ytterbium-doped fibers fabricated with atomic layer deposition method. Opt. Express 2012, 25085–25095. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Wang, J.; Dong, Y.; Chen, N.; Luo, Y.; Peng, G.-D.; Pang, F.; Chen, Z.; Wang, T. Photoluminescence properties of Bi/Al-codoped silica optical fiber based on atomic layer deposition method. Appl. Surf. Sci. 2015, 349, 287–291. [Google Scholar] [CrossRef]
- Nadort, A.; Zhao, J.; Goldys, E.M. Lanthanide upconversion luminescence at the nanoscale: Fundamentals and optical properties. Nanoscale 2016, 8, 13099–13130. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jin, D.; Schartner, E.P.; Lu, Y.; Liu, Y.; Zvyagin, A.V.; Zhang, L.; Dawes, J.M.; Xi, P.; Piper, J.A.; et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 2013, 8, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Deng, R.; MacDonald, M.A.; Chen, B.; Yuan, J.; Wang, F.; Chi, D.; Andy Hor, T.S.; Zhang, P.; Liu, G.; et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 2014, 13, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Shi, B.; Jin, D.; Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Du, S.-R.; Zheng, X.-Y.; Lyu, G.-M.; Sun, L.-D.; Li, L.-D.; Zhang, P.-Z.; Zhang, C.; Yan, C.-H. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem. Rev. 2015, 115, 10725–10815. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, G.; Chan, I.Y.; Kolesov, R.; Al-Hmoud, M.; Tisler, J.; Shin, C.; Kim, C.; Wojcik, A.; Hemmer, P.R.; Krueger, A.; et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008, 455, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.M.; Cappellaro, P.; Childress, L.; Jiang, L.; Budker, D.; Hemmer, P.R.; Yacoby, A.; Walsworth, R.; Lukin, M.D. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 2008, 4, 810–816. [Google Scholar] [CrossRef]
- Dolde, F.; Fedder, H.; Doherty, M.W.; Nöbauer, T.; Rempp, F.; Balasubramanian, G.; Wolf, T.; Reinhard, R.; Hollenberg, L.C.L.; Jelezko, F.; et al. Electric-field sensing using single diamond spins. Nat. Phys. 2011, 7, 459–463. [Google Scholar] [CrossRef]
- McGuinness, L.P.; Hall, L.T.; Stacey, A.; Simpson, D.A.; Hill, C.D.; Cole, J.H.; Ganesan, K.; Gibson, B.C.; Prawer, S.; Mulvaney, P.; et al. Ambient nanoscale sensing with single spins using quantum decoherence. New J. Phys. 2013, 15, 073042. [Google Scholar] [CrossRef]
- Dejneka, M.J. Transparent oxyfluoride glass ceramics. MRS Bull. 1998, 23, 57–62. [Google Scholar] [CrossRef]
- Herrmann, A.; Tylkowski, M.; Bocker, C.; Rüssel, C. Cubic and Hexagonal NaGdF4 Crystals Precipitated from an Aluminosilicate Glass: Preparation and Luminescence Properties. Chem. Mater. 2013, 25, 2878–2884. [Google Scholar] [CrossRef]
- Xiaoying, S.; Ping, C.; Wenjing, C.; Kan, Z.; Jing, M.; Donghai, F.; Shian, Z.; Zhenrong, S.; Jianrong, Q.; Tianqing, J. Fine tunable red-green upconversion luminescence from glass ceramic containing 5%Er3+:NaYF4 nanocrystals under excitation of two near infrared femtosecond lasers. J. Appl. Phys. 2014, 116, 063101. [Google Scholar]
- Melekhin, V.G.; Kolobkova, E.V.; Lipovskii, A.A.; Petrikov, V.D.; Malyarevich, A.M.; Savitsky, V.G. Fluorophosphate glasses doped with PbSe quantum dots and their nonlinear optical characteristics. Glass Phys. Chem. 2008, 34, 351–355. [Google Scholar] [CrossRef]
- Masai, H.; Takahashi, Y.; Fujiwara, T. Glass-Ceramics Containing Nano-Crystallites of Oxide Semiconductor; Ceramic Materials; Wilfried Wunderlich, Ed.; Sciyo: Rijeka, Croatia, 2010. [Google Scholar]
- Mattarelli, M.; Gasperi, G.; Montagna, M.; Verrocchio, P. Transparency and long-ranged fluctuations: The case of glass ceramics. Phys. Rev. B 2010, 82, 094204. [Google Scholar] [CrossRef]
- Ledemi, Y.; Trudel, A.-A.; Rivera, V.A.G.; Chenu, S.; Veron, E.; Nunes, L.A.; Allix, M.; Messaddeq, Y. White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics. J. Mater. Chem. C 2014, 2, 5046–5056. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ohwaki, J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl. Phys. Lett. 1993, 63, 3268–3270. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Yu, Y.; Huang, P.; Weng, F. Near-infrared quantum cutting in transparent nanostructured glass ceramics. Opt. Lett. 2008, 33, 1884–1886. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Sun, L.-D.; Wang, Y.-F.; Ke, J.; Si, R.; Xiao, J.-W.; Lyu, G.-M.; Shi, S.; Yan, C.-H. Efficient Tailoring of Upconversion Selectivity by Engineering Local Structure of Lanthanides in NaxREF3+x Nanocrystals. J. Am. Chem. Soc. 2015, 137, 6569–6576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Deng, R.; Tian, J.; Zong, Y.; Jin, D.; Liu, X. Multicolor Barcoding in a Single Upconversion Crystal. J. Am. Chem. Soc. 2014, 136, 4893–4896. [Google Scholar] [CrossRef] [PubMed]
- Reineck, P.; Gibson, B.C. Near-Infrared Fluorescent Nanomaterials for Bioimaging and Sensing. Adv. Opt. Mater. 2016. [Google Scholar] [CrossRef]
- Reineck, P.; Francis, A.; Orth, A.; Lau, D.W.M.; Nixon-Luke, R.D.V.; Rastogi, I.D.; Razali, W.A.W.; Cordina, N.M.; Parker, L.M.; Sreenivasan, V.K.A.; et al. Brightness and Photostability of Emerging Red and Near-IR Fluorescent Nanomaterials for Bioimaging. Adv. Opt. Mater. 2016, 4, 1549–1557. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.; Richards, B.; Jose, G.; Teddy-Fernandez, T.; Joshi, P.; Jiang, X.; Lousteau, J. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Progress Mater. Sci. 2012, 57, 1426–1491. [Google Scholar] [CrossRef]
- Jha, A.; Shen, S.; Naftaly, M. Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses. Phys. Rev. B 2000, 62, 6215–6227. [Google Scholar] [CrossRef]
- Gao, G.; Winterstein-Beckmann, A.; Surzhenko, O.; Dubs, C.; Dellith, J.; Schmidt, M.A.; Wondraczek, L. Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics. Sci. Rep. 2015, 5, 8942. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Zhou, S.; Su, D.; Qiu, J. Do Eu dopants prefer the precipitated LaF3 nanocrystals in glass ceramics? Phys. Status Solidi (RRL) Rapid Res. Lett. 2012, 6, 487–489. [Google Scholar] [CrossRef]
- De Pablos-Martin, A.; Patzig, C.; Höche, T.; Duran, A.; Pascual, M. Distribution of thulium in Tm3+-doped oxyfluoride glasses and glass-ceramics. CrystEngComm 2013, 15, 6979–6985. [Google Scholar] [CrossRef]
- De Pablos-Martín, A.; García, M.A.; Muñoz-Noval, A.; Castro, G.R.; Pascual, M.J.; Durán, A. Analysis of the distribution of Tm3+ ions in LaF3 containing transparent glass-ceramics through X-ray absorption spectroscopy. J. Non-Cryst. Solids 2014, 384, 83–87. [Google Scholar] [CrossRef]
- Tick, P.A.; Borrelli, N.F.; Cornelius, L.K.; Newhouse, M.A. Transparent glass ceramics for 1300 nm amplifier applications. J. Appl. Phys. 1995, 78, 6367–6374. [Google Scholar] [CrossRef]
- Hendy, S. Light scattering in transparent glass ceramics. Appl. Phys. Lett. 2002, 81, 1171–1173. [Google Scholar] [CrossRef]
- Liu, C.; Heo, J. Lead Chalcogenide Quantum Dot-Doped Glasses for Photonic Devices. Int. J. Appl. Glass Sci. 2013, 4, 163–173. [Google Scholar] [CrossRef]
- Samson, B.N.; Tick, P.A.; Borrelli, N.F. Efficient neodymium-doped glass-ceramic fiber laser and amplifier. Opt. Lett. 2001, 26, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Samson, B.N.; Pinckney, L.R.; Wang, J.; Beall, G.H.; Borrelli, N.F. Nickel-doped nanocrystalline glass-ceramic fiber. Opt. Lett. 2002, 27, 1309–1311. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lu, Z.; Yin, Y.; McRae, C.; Piper, J.A.; Dawes, J.M.; Jin, D.; Goldys, E.M. Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size. Nanoscale. 2013, 5, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Gargas, D.J.; Chan, E.M.; Ostrowski, A.D.; Aloni, S.; Altoe, M.V.P.; Barnard, E.S.; Sanii, B.; Urban, J.J.; Milliron, D.J.; Cohen, B.E.; Schuck, P.J. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 2014, 9, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xu, X.; Du, Y.; Qin, X.; Zhang, Y.; Ma, C.; Wen, S.; Ren, W.; Goldys, E.M.; Piper, J.A. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat. Commun. 2016, 7, 10254. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, A.M.; Sobhan, M.A.; Sreenivasan, V.K.A.; Grebenik, E.A.; Rabeau, J.R.; Goldys, E.M.; Zvyagin, A.V. Nano-Ruby: A Promising Fluorescent Probe for Background-Free Cellular Imaging. Part. Part. Syst. Charact. 2013, 30, 506–513. [Google Scholar] [CrossRef]
- Gajc, M.; Surma, H.B.; Klos, A.; Sadecka, K.; Orlinski, K.; Nikolaenko, A.E.; Zdunek, K.; Pawlak, D.A. Nanoparticle Direct Doping: Novel Method for Manufacturing Three-Dimensional Bulk Plasmonic Nanocomposites. Adv. Funct. Mater. 2013, 23, 3443–3451. [Google Scholar] [CrossRef]
- Karaksina, E.V.; Shiryaev, V.S.; Ketkova, L.A. Preparation of composite materials for fiber optics based on chalcogenide glasses containing ZnS(ZnSe):Cr(2+) crystals. J. Non-Cryst. Solids 2013, 377, 220–224. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, D.; Tian, W.; Ji, Z. Impact of Eu3+ Dopants on Optical Spectroscopy of Ce3+:Y3Al5O12-Embedded Transparent Glass-Ceramics. J. Am. Ceram. Soc. 2015, 2445–2450. [Google Scholar] [CrossRef]
- Huang, J.; Hu, X.; Shen, J.; Wu, D.; Yin, C.; Xiang, R.; Yang, C.; Liang, X.; Xiang, W. Facile synthesis of a thermally stable Ce3+:Y3Al5O12 phosphor-in-glass for white LEDs. CrystEngComm 2015, 17, 7079–7085. [Google Scholar] [CrossRef]
- Chai, G.; Dong, G.; Qiu, J.; Zhang, Q.; Yang, Z. 2.7 μm Emission from Transparent Er3+,Tm3+ Codoped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystals–Tellurate Glass Composites by Novel Comelting Technology. J. Phys. Chem. C 2012, 116, 19941–19950. [Google Scholar] [CrossRef]
- Massera, J.; Gaussiran, M.; Głuchowski, P.; Lastusaari, M.; Rodrigues, L.C.V.; Petit, L.; Hölsä, J.; Hupa, L. Effect of the glass melting condition on the processing of phosphate-based glass-ceramics with persistent luminescence properties. Opt. Mater. 2016, 52, 56–61. [Google Scholar] [CrossRef]
- Massera, J.; Głuchowski, P.; Lastusaari, M.; Rodrigues, L.C.V.; Petit, L.; Hölsä, J.; Hupa, L.; Hupa, M. New alternative route for the preparation of phosphate glasses with persistent luminescence properties. J. Eur. Ceram. Soc. 2015, 35, 1255–1261. [Google Scholar] [CrossRef]
- Massera, J.; Petit, L.; Koponen, J.; Glorieux, B.; Hupa, L.; Hupa, M. Er3+-Al2O3 nanoparticles doping of borosilicate glass. Bull. Mater. Sci. 2015, 38, 1407–1410. [Google Scholar] [CrossRef]
- Henderson, M.R.; Gibson, B.C.; Ebendorff-Heidepriem, H.; Kuan, K.; Afshar, V.S.; Orwa, J.O.; Aharonovich, I.; Tomljenovic-Hanic, S.; Greentree, A.D.; Prawer, S.; et al. Diamond in Tellurite Glass: A New Medium for Quantum Information. Adv. Mater. 2011, 23, 2806–2810. [Google Scholar] [CrossRef] [PubMed]
- Ebendorff-Heidepriem, H.; Ruan, Y.; Ji, H.; Greentree, A.D.; Gibson, B.C.; Monro, T.M. Nanodiamond in tellurite glass Part I: Origin of loss in nanodiamond-doped glass. Opt. Mater. Express 2014, 4, 2608–2620. [Google Scholar] [CrossRef]
- Ruan, Y.; Ji, H.; Johnson, B.C.; Ohshima, T.; Greentree, A.D.; Gibson, B.C.; Monro, T.M.; Ebendorff-Heidepriem, H. Nanodiamond in tellurite glass Part II: Practical nanodiamond-doped fibers. Opt. Mater. Express 2015, 5, 73–87. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, X.; Schartner, E.P.; Ionescu, P.; Zhang, R.; Nguyen, T.-L.; Jin, D.; Ebendorff-Heidepriem, H. Upconversion Nanocrystals Doped Glass: A New Paradigm for Photonic Materials. Adv. Opt. Mater. 2016, 4, 1507–1517. [Google Scholar] [CrossRef]
- Jalali, B.; Fathpour, S. Silicon photonics. J. Lightwave Technol. 2006, 24, 4600–4615. [Google Scholar] [CrossRef]
- Leuthold, J.; Koos, C.; Freude, W. Nonlinear silicon photonics. Nat. Photonics 2010, 4, 535–544. [Google Scholar] [CrossRef]
- Ballato, J.; Hawkins, T.; Foy, P.; Yazgan-Kokuoz, B.; McMillen, C.; Burka, L.; Morris, S.; Stolen, R.; Rice, R. Advancements in Semiconductor Core Optical Fiber. Opt. Fiber Technol. 2010, 16, 399–408. [Google Scholar] [CrossRef]
- Morris, S.; Ballato, J. Molten Core Fabrication of Novel Optical Fibers. Bull. Am. Ceram. Soc. 2013, 92, 24–29. [Google Scholar]
- Ballato, J.; Dragic, P. Rethinking Optical Fiber: New Demands, Old Glasses. J. Am. Ceram. Soc. 2013, 96, 2675–2692. [Google Scholar] [CrossRef]
- Peacock, A.; Sparks, J.; Healy, N. Semiconductor optical fibres: Progress and opportunities. Laser Photonics Rev. 2014, 8, 53–72. [Google Scholar] [CrossRef]
- Tao, G.; Ebendorff-Heidepriem, H.; Stolyarov, A.; Danto, S.; Badding, J.; Fink, Y.; Ballato, J.; Abouraddy, A. Infrared fibers. Adv. Opt. Photonics 2015, 7, 379–458. [Google Scholar] [CrossRef]
- Peacock, A.; Gibson, U.; Ballato, J. Silicon Optical Fiber—Past, Present, and Future. Adv. Phys. X 2016, 1, 114–127. [Google Scholar]
- Sparks, J.; Sazio, P.; Gopalan, V.; Badding, J. Templated Chemically Deposited Semiconductor Optical Fiber Materials. Ann. Rev. Mater. Res. 2013, 43, 527–557. [Google Scholar] [CrossRef]
- Shimamura, K.; Uda, S.; Yamada, T.; Sakaguchi, S.; Fukuda, T. Silicon single crystal fiber growth by micro pulling down method. Jpn. J. Appl. Phys. 1996, 35, L793–L795. [Google Scholar] [CrossRef]
- Sazio, P.; Amezcua-Correa, A.; Finlayson, C.; Hayes, J.; Scheidemantel, T.; Baril, N.; Jackson, B.; Won, D.; Zhang, F.; Margine, E.; et al. Microstructured optical fibers as high-pressure microfluidic reactors. Science 2006, 311, 1583–1586. [Google Scholar] [CrossRef] [PubMed]
- Ballato, J.; Hawkins, T.; Foy, P.; Stolen, R.; Kokuoz, B.; Ellison, M.; McMillen, C.; Reppert, J.; Rao, A.; Daw, M.; et al. Silicon Optical Fiber. Opt. Express 2008, 16, 18675–18683. [Google Scholar] [CrossRef] [PubMed]
- Ballato, J.; Snitzer, E. Fabrication of Fibers with High Rare-Earth Concentrations for Faraday Isolator Applications. Appl. Opt. 1995, 34, 6848–6854. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.; Ke, W.; Pickrell, G. Fabrication of n-Type Silicon Optical Fibers. Photon Technol. Lett. 2009, 21, 1798–1800. [Google Scholar] [CrossRef]
- Finlayson, C.; Amezcua-Correa, A.; Sazio, P.; Baril, N.; Badding, J. Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers. Appl. Phys. Lett. 2007, 90, 132110. [Google Scholar] [CrossRef]
- Ballato, J.; Hawkins, T.; Foy, P.; Yazgan-Kokuoz, B.; Stolen, R.; McMillen, C.; Hon, N.; Jalali, B.; Rice, R. Glass-Clad Single-Crystal Germanium Optical Fiber. Opt. Express 2009, 17, 8029–8035. [Google Scholar] [CrossRef] [PubMed]
- Ballato, J.; Hawkins, T.; Foy, P.; Morris, S.; Hon, N.; Jalali, B.; Rice, R. Silica-Clad Crystalline Germanium Core Optical Fiber. Opt. Lett. 2011, 36, 687–688. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Orf, N.; Danto, S.; Abouraddy, A.; Joannopoulos, J.; Fink, Y. Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments. Appl. Phys. Lett. 2010, 96, 023102. [Google Scholar] [CrossRef]
- Tang, G.; Qian, Q.; Wen, X.; Zhou, G.; Chen, X.; Sun, M.; Chen, D.; Yang, Z. Phosphate glass-clad tellurium semiconductor core optical fibers. J. Alloys Compd. 2015, 633, 1–4. [Google Scholar] [CrossRef]
- Coucheron, D.; Fokine, M.; Patel, N.; Breiby, D.; Tore Buset, O.; Hawkins, T.; Jones, M.; Ballato, J.; Gibson, U. Laser inscription of compositional microstructures in crystalline SiGe-core fibres. Nat. Commun. 2017, in press. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Qian, Q.; Wen, X.; Chen, X.; Liu, W.; Sun, M.; Yang, Z. Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers. Opt. Express 2015, 23, 23624–23633. [Google Scholar] [CrossRef] [PubMed]
- Ballato, J.; Hawkins, T.; Foy, P.; McMillen, C.; Burka, L.; Reppert, J.; Podila, R.; Rao, A.; Rice, R. Binary III-V Semiconductor Core Optical Fiber. Opt. Express 2010, 18, 4972–4979. [Google Scholar] [CrossRef] [PubMed]
- Sparks, J.; He, R.; Healy, N.; Krishnamurthi, M.; Peacock, A.; Sazio, P.; Gopalan, V.; Badding, J. Zinc selenide optical fibers. Adv. Mater. 2011, 23, 1647–1651. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Jia, X.; Wei, L.; Stolyarov, A.; Shapira, O.; Joannopoulos, J.; Fink, Y. Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing. Nano Lett. 2013, 13, 975–979. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Martin, S.; Hawkins, T.; Foy, P.; Rice, R.; Ballato, J. Cladding Glass Development for Semiconductor Core Optical Fibers. Int. J. Appl. Glass. Sci. 2012, 3, 144–153. [Google Scholar] [CrossRef]
- Orf, N.; Shapira, O.; Sorin, F.; Danto, S.; Baldo, M.; Joannopoulos, J.; Fink, Y. Fiber draw synthesis. Proc. Nat. Acad. Sci. USA 2011, 108, 4743–4747. [Google Scholar] [CrossRef]
- Hou, C.; Jia, X.; Wei, L.; Tan, S.; Zhao, X.; Joannopoulos, J.; Fink, Y. Crystalline silicon core fibres from aluminium core preforms. Nat. Commun. 2015, 6, 6248. [Google Scholar] [CrossRef] [PubMed]
- Healy, N.; Lagonigro, L.; Sparks, J.; Boden, S.; Sazio, P.; Badding, J.; Peacock, A. Polycrystalline silicon optical fibers with atomically smooth surfaces. Opt. Lett. 2011, 36, 2480–2482. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Hawkins, T.; Foy, P.; Hudson, J.; Zhu, L.; Stolen, R.; Ballato, J. On loss in silicon core optical fibers. Opt. Mater. Express 2012, 2, 1511–1519. [Google Scholar] [CrossRef]
- Scott, B.; Pickrell, G. Silicon optical fiber diameter dependent grain size. J. Cryst. Growth 2013, 371, 134–141. [Google Scholar] [CrossRef]
- Morris, S.; Hawkins, T.; Foy, P.; McMillen, C.; Fan, J.; Zhu, L.; Stolen, R.; Rice, R.; Ballato, J. Reactive Molten Core Fabrication of Silicon Optical Fiber. Opt. Mater. Express 2011, 1, 1141–1149. [Google Scholar] [CrossRef]
- Nordstrand, E.; Dibbs, A.; Eraker, A.; Gibson, U. Alkaline oxide interface modifiers for silicon fiber production. Opt. Mater. Express 2013, 3, 651–657. [Google Scholar] [CrossRef]
- McMillen, C.; Hawkins, T.; Foy, P.; Mulwee, D.; Kolis, J.; Rice, R.; Ballato, J. On Crystallographic Orientation in Crystal Core Optical Fibers. Opt. Mater. 2010, 32, 862–867. [Google Scholar] [CrossRef]
- Gupta, N.; McMillen, C.; Singh, R.; Podila, R.; Rao, A.; Hawkins, T.; Foy, P.; Morris, S.; Rice, R.; Poole, K.; Zhu, L.; Ballato, J. Annealing of Silicon Optical Fibers. J. Appl. Phys. 2011, 110, 093107. [Google Scholar] [CrossRef]
- Morris, S.; McMillen, C.; Hawkins, T.; Foy, P.; Stolen, R.; Rice, R.; Ballato, J. The Influence of Core Geometry on the Crystallography of Silicon Optical Fiber. J. Cryst. Growth 2012, 352, 53–58. [Google Scholar] [CrossRef]
- McMillen, C.; Brambilla, G.; Morris, S.; Hawkins, T.; Foy, P.; Broderick, N.; Rice, R.; Ballato, J. On Crystallographic Orientation in Crystal Core Optical Fibers II: Effects of Tapering. Opt. Mater. 2012, 35, 93–96. [Google Scholar] [CrossRef]
- Healy, N.; Mailis, S.; Bulgakova, N.; Sazio, P.; Day, T.; Sparks, J.; Cheng, H.; Badding, J.; Peacock, A. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres. Nat. Mater. 2014, 13, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Coucheron, D.; Fokine, M.; Patil, N.; Breiby, D.; Buset, O.; Healy, N.; Peacock, A.; Hawkins, T.; Jones, M.; Ballato, J.; et al. CO2 Laser-Induced Directional Recrystallization to Produce Single Crystal Silicon-Core Optical Fibers with Low Loss. Adv. Opt. Mater. 2016, 4, 1004–1008. [Google Scholar]
- Won, D.; Ramirez, M.; Kang, H.; Gopalan, V.; Baril, N.; Calkins, J.; Badding, J.; Sazio, P. All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers. Appl. Phys. Lett. 2007, 91, 161112. [Google Scholar] [CrossRef]
- Mehta, P.; Healy, N.; Baril, N.; Sazio, P.; Badding, J.; Peacock, A. Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers. Opt. Express 2010, 18, 16826–16831. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Healy, N.; Sparks, J.; Day, T.; Sazio, P.; Badding, J.; Peacock, A. All-optical modulation using two-photon absorption in silicon core optical fibers. Opt. Express 2011, 19, 19078–19083. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Healy, N.; Day, T.; Badding, J.; Peacock, A. Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers. Opt. Express 2012, 20, 26110–26116. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Healy, N.; Xu, L.; Cheng, H.; Day, T.; Price, J.; Badding, J.; Peacock, P. Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared. Opt. Lett. 2014, 39, 5721–5724. [Google Scholar] [CrossRef] [PubMed]
- Peacock, A. Soliton propagation in tapered silicon core fibers. Opt. Lett. 2010, 35, 3697–3699. [Google Scholar] [CrossRef] [PubMed]
- Suhailin, F.; Shen, L.; Healy, N.; Xiao, L.; Jones, M.; Hawkins, T.; Ballato, J.; Gibson, U.; Peacock, A. Tapered polysilicon core fibers for nonlinear photonics. Opt. Lett. 2016, 41, 1360–1363. [Google Scholar] [CrossRef] [PubMed]
- Gumennik, A.; Wei, L.; Lestoquoy, G.; Stolyarov, A.; Jia, X.; Rekemeyer, P.; Smith, M.; Liang, X.; Grena, B.; Johnson, S.; et al. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nat. Commun. 2013, 4, 2216–2220. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lee, T.; Ding, M.; Dhar, A.; Hawkins, T.; Foy, P.; Semenova, Y.; Wu, Q.; Sahu, J.; Farrell, G.; et al. A Germanium Microsphere High-Q Resonator. Opt. Lett. 2012, 37, 728–730. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Chen, J.; Wang, L. High-Q Si microsphere resonators fabricated from Si-cored fibers for WGMs excitation. IEEE Photonics Technol. Lett. 2015, 27, 1355–1358. [Google Scholar] [CrossRef]
- Vukovic, N.; Healy, N.; Day, T.; Sparks, J.; Saizo, P.; Badding, J.; Peacock, A. Thermal nonlinearity in silicon microcylindrical resonators. Appl. Phys. Lett. 2012, 100, 181101. [Google Scholar] [CrossRef]
- Vukovic, N.; Healy, N.; Suhailin, F.; Mehta, P.; Day, T.; Badding, J.; Peacock, A. Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators. Sci. Rep. 2013, 3, 2885. [Google Scholar] [CrossRef] [PubMed]
- Suhailin, F.; Healy, N.; Franz, Y.; Sumetsky, M.; Ballato, J.; Dibbs, A.; Gibson, U.; Peacock, A. Kerr nonlinear switching in a hybrid silica-silicon microspherical resonator. Opt. Express 2015, 23, 17263–17268. [Google Scholar] [CrossRef] [PubMed]
- Healy, N.; Sparks, J.; He, R.; Sazio, P.; Badding, J.; Peacock, A. High index contrast semiconductor ARROW and hybrid ARROW fibers. Opt. Express 2011, 19, 10979–10985. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Charlton, C.; Lee, T.; Ismaeel, R.; Hawkins, T.; Semenova, Y.; Bo, L.; Wu, Q.; McDonagh, C.; Farrell, G.; et al. Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers. Appl. Phys. Lett. 2013, 102, 011111. [Google Scholar] [CrossRef]
- Davis, R.; Rice, R.; Ballato, A.; Hawkins, T.; Foy, P.; Ballato, J. Toward a Photoconducting Semiconductor RF Fiber Antenna Array. Appl. Opt. 2010, 49, 5163–5168. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Day, T.; Krishnamurthi, M.; Sparks, J.; Sazio, P.; Gopalan, V.; Badding, J. Silicon p-i-n Junction Fibers. Adv. Mater. 2013, 25, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B. Silicon fiber with p-n junction. Appl. Phys. Lett. 2014, 105, 122110. [Google Scholar] [CrossRef]
- He, R.; Sazio, P.; Peacock, A.; Healy, N.; Sparks, J.; Krishnamurthi, M.; Gopalan, V.; Badding, J. Integration of Gigahertz-bandwidth semiconductor devices inside microstructured optical fibers. Nat. Photonics 2012, 6, 174–179. [Google Scholar] [CrossRef]
- Martinsen, F.; Smeltzer, B.; Nord, M.; Hawkins, T.; Ballato, J.; Gibson, U. Silicon-core glass fibres as microwire radial-junction solar cells. Sci. Rep. 2014, 4, 6283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinsen, F.; Ballato, J.; Hawkins, T.; Gibson, U. Bulk fabrication and properties of solar grade silicon microwires. Appl. Phys. Lett. Mater. 2014, 2, 116108. [Google Scholar] [CrossRef]
- Martinsen, F.; Smeltzer, B.; Ballato, J.; Hawkins, T.; Jones, M.; Gibson, U. Light trapping in horizontally aligned silicon microwire solar cells. Opt. Express. 2015, 23, A1463–A1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, J.A. Optical properties of chalcogenide glasses. J. Non-Cryst. Solids 1982, 47, 101–116. [Google Scholar] [CrossRef]
- Snopatin, G.; Shiryaev, V.; Plotnichenko, V.; Dianov, E.; Churbanov, M. High-purity chalcogenide glasses for fiber optics. Inorg. Mater. 2009, 45, 1439–1460. [Google Scholar] [CrossRef]
- Churbanov, M.F. High-purity chalcogenide glasses as materials for fiber optics. J. Non-Cryst. Solids 1995, 184, 25–29. [Google Scholar] [CrossRef]
- Cui, S.; Boussard-Plédel, C.; Lucas, J.; Bureau, B. Te-based glass fiber for far-infrared biochemical sensing up to 16 μm. Opt. Express 2014, 22, 21253–21262. [Google Scholar] [CrossRef] [PubMed]
- King, W.A.; Clare, A.G.; Lacourse, W.C. Laboratory preparation of highly pure As2Se3 glass. J. Non-Cryst. Solids 1995, 181, 231–237. [Google Scholar] [CrossRef]
- Kokorina, V.F. Glasses for Infrared Optics; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Hocdé, S.; Boussard-Plédel, C.; Fonteneau, G.; Lucas, J. Chalcogens based glasses for IR fiber chemical sensors. Solid State Sci. 2001, 3, 279–284. [Google Scholar] [CrossRef]
- Danto, S.; Thompson, D.; Wachtel, P.; Musgraves, J.D.; Richardson, K.; Giroire, B. A comparative study of purification routes for As2Se3 chalcogenide glass. Int. J Appl. Glass Sci. 2013, 4, 31–41. [Google Scholar] [CrossRef]
- Troles, J.; Coulombier, Q.; Canat, G.; Duhant, M.; Renard, W.; Toupin, P.; Calvez, L.; Renversez, G.; Smektala, F.; El Amraoui, M.; et al. Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm. Opt. Express 2010, 18, 26647–26654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochalov, L.A.; Lobanov, A.S.; Nezhdanov, A.V.; Kostrov, A.V.; Vorotyntsev, V.M. Preparation of Ge-S-I and Ge-Sb-S-I glasses by plasma-enhanced chemical vapor deposition. J. Non-Cryst. Solids 2015, 423, 76–80. [Google Scholar] [CrossRef]
- Churbanov, M.F.; Shiryaev, V.S.; Scripachev, I.V.; Snopatin, G.E.; Gerasimenko, V.V.; Smetanin, S.V.; Fadin, I.E.; Plotnichenko, V.G. Optical fibers based on As-S-Se glass system. J. Non-Cryst. Solids 2001, 284, 146–152. [Google Scholar] [CrossRef]
- Kim, W.H.; Nguyen, V.Q.; Shaw, L.B.; Busse, L.E.; Florea, C.; Gibson, D.J.; Gattass, R.R.; Bayya, S.S.; Kung, F.H.; Chin, G.D.; et al. Recent progress in chalcogenide fiber technology at NRL. J. Non-Cryst. Solids 2016, 431, 8–15. [Google Scholar] [CrossRef]
- Kobelke, J.; Kirchhof, J.; Scheffler, M.; Schwuchow, A. Chalcogenide glass single mode fibres—Preparation and properties. J. Non-Cryst. Solids 1999, 257, 226–231. [Google Scholar] [CrossRef]
- Chenard, F.; Alvarez, O.; Moawad, H. MIR chalcogenide fiber and devices. In Proceedings of the SPIE BiOS, International Society for Optics and Photonics, San Francisco, CA, USA, 2015; p. 93170B.
- Lafond, C.; Couillard, J.-F.; Delarosbil, J.-L.; Sylvain, F.; de Sandro, P. Recent improvements on mid-IR chalcogenide optical fibers. In Proceedings of the SPIE Defense + Security, International Society for Optics and Photonics, Batimore, MD, USA, 2014; p. 90701C.
- Houizot, P.; Smektala, F.; Couderc, V.; Troles, J.; Grossard, L. Selenide glass single mode optical fiber for nonlinear optics. Opt. Mater. 2007, 29, 651–656. [Google Scholar]
- Troles, J.; Niu, Y.; Duverger-Arfuso, C.; Smektala, F.; Brilland, L.; Nazabal, V.; Moizan, V.; Desevedavy, F.; Houizot, P. Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 µm. Mater. Res Bull. 2008, 43, 976–982. [Google Scholar] [CrossRef]
- Conseil, C.; Coulombier, Q.; Boussard-Pledel, C.; Troles, J.; Brilland, L.; Renversez, G.; Mechin, D.; Bureau, B.; Adam, J.L.; Lucas, J. Chalcogenide step index and microstructured single mode fibers. J. Non-Cryst. Solids 2011, 357, 2480–2483. [Google Scholar] [CrossRef]
- Savage, S.D.; Miller, C.A.; Furniss, D.; Seddon, A.B. Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers. J. Non-Cryst. Solids 2008, 354, 3418–3427. [Google Scholar] [CrossRef]
- Russell, P. Photonic crystal fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Birks, T.A.; Roberts, P.J.; Russell, P.S.J.; Atkin, D.M.; Shepherd, T.J. Full 2-D photonic bandgaps in silica/air structures. Electron. Lett. 1995, 31, 1941–1943. [Google Scholar] [CrossRef]
- Monro, T.M.; West, Y.D.; Hewak, D.W.; Broderick, N.G.R.; Richardson, D.J. Chalcogenide holey fibres. Electron. Lett. 2000, 36, 1998–2000. [Google Scholar] [CrossRef]
- Brilland, L.; Smektala, F.; Renversez, G.; Chartier, T.; Troles, J.; Nguyen, T.N.; Traynor, N.; Monteville, A. Fabrication of complex structures of holey fibers in chalcogenide glass. Opt. Express 2006, 14, 1280–1285. [Google Scholar] [CrossRef] [PubMed]
- Birks, T.A.; Knight, J.C.; Russell, P.S. Endlessly single-mode photonic crystal fiber. Opt. Lett. 1997, 22, 961–963. [Google Scholar] [CrossRef] [PubMed]
- Renversez, G.; Bordas, F.; Kuhlmey, B.T. Second mode transition in microstructured optical fibers: Determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size. Opt. Lett. 2005, 30, 1264–1266. [Google Scholar] [CrossRef] [PubMed]
- Toupin, P.; Brilland, L.; Boussard-Pledel, C.; Bureau, B.; Mechin, D.; Adam, J.-L.; Troles, J. Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing. J. Non-Cryst. Solids 2013, 377, 217–219. [Google Scholar] [CrossRef]
- Gattass, R.R.; Rhonehouse, D.; Gibson, D.; McClain, C.C.; Thapa, R.; Nguyen, V.Q.; Bayya, S.S.; Weiblen, R.J.; Menyuk, C.R.; Shaw, L.B.; et al. Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion. Opt. Express 2016, 24, 25697–25703. [Google Scholar] [CrossRef] [PubMed]
- Coulombier, Q.; Brilland, L.; Houizot, P.; Chartier, T.; Nguyen, T.N.; Smektala, F.; Renversez, G.; Monteville, A.; Méchin, D.; Pain, T.; et al. Casting method for producing low-loss chalcogenide microstructured optical fibers. Opt. Express 2010, 18, 9107–9112. [Google Scholar] [CrossRef] [PubMed]
- El-Amraoui, M.; Gadret, G.; Jules, J.C.; Fatome, J.; Fortier, C.; Désévédavy, F.; Skripatchev, I.; Messaddeq, Y.; Troles, J.; Brilland, L.; et al. Microstructured chalcogenide optical fibers from As2S3 glass: Towards new IR broadband sources. Opt. Express 2010, 18, 26655–26665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, J.; Yang, P.; Dai, S.; Wang, X.; Zhang, W. Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Opt. Fiber Technol. 2015, 26 Pt B, 176–179. [Google Scholar] [CrossRef]
- Heo, J.; Rodrigues, M.; Saggese, S.J.; Sigel, G.H. Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers. Appl. Opt. 1991, 30, 3944–3951. [Google Scholar] [CrossRef] [PubMed]
- Keirsse, J.; Boussard-Pledel, C.; Loreal, O.; Sire, O.; Bureau, B.; Leroyer, P.; Turlin, B.; Lucas, J. IR optical fiber sensor for biomedical applications. Vib. Spectrosc. 2003, 32, 23–32. [Google Scholar] [CrossRef]
- Charpentier, F.; Troles, J.; Coulombier, Q.; Brilland, L.; Houizot, P.; Smektala, F.; Boussard-Pledel, C.; Nazabal, V.; Thibaud, N.; Le Pierres, K.; et al. CO2 detection using microstructured chalcogenide fibers. Sens. Lett. 2009, 7, 745–749. [Google Scholar] [CrossRef]
- Wilhelm, A.A.; Lucas, P.; DeRosa, D.L.; Riley, M.R. Biocompatibility of Te–As–Se glass fibers for cell-based bio-optic infrared sensor. J. Mater. Res. 2007, 22, 1098–1104. [Google Scholar] [CrossRef]
- Lucas, P.; Wilhelm, A.A.; Videa, M.; Boussard-Plédel, C.; Bureau, B. Hemical stability of chalcogenide infrared glass fibers. Corros. Sci. 2008, 50, 2047–2052. [Google Scholar] [CrossRef]
- Godard, A. Infrared (2–12 µm) solid-state laser sources: A review. C. R. Phys. 2007, 8, 1100–1128. [Google Scholar] [CrossRef]
- Xia, C.; Kumar, M.; Cheng, M.-Y.; Hegde, R.S.; Islam, M.N.; Galvanauskas, A.; Winful, H.G.; Terry, J.F.L.; Freeman, M.J.; Poulain, M.; et al. Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power. Opt. Express 2007, 15, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Heo, J. Optical characteristics of rare-earth doped sulfide glasses. J. Mater. Sci. Lett. 1995, 14, 1014–1016. [Google Scholar] [CrossRef]
- Park, B.J.; Seo, H.S.; Ahn, J.T.; Choi, Y.G.; Jeon, D.Y.; Chung, W.J. Mid-infrared (3.5–5.5 μm) spectroscopic properties of Pr3+-doped Ge–Ga–Sb–Se glasses and optical fibers. J. Lumin. 2008, 128, 1617–1622. [Google Scholar] [CrossRef]
- Shaw, L.B.; Cole, B.; Thielen, P.A.; Sanghera, J.S.; Aggarwal, I.D. Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber. IEEE J. Quantum Elect. 2001, 37, 1127–1137. [Google Scholar] [CrossRef]
- Schweizer, T.; Hewak, D.W.; Samson, B.N.; Payne, D.N. Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulfide glass. J Lumin. 1997, 72–74, 419–421. [Google Scholar] [CrossRef]
- Prudenzano, F.; Mescia, L.; Allegretti, L.A.; De Sario, M.; Palmisano, T.; Smektala, F.; Moizan, V.; Nazabal, V.; Troles, J. Design of Er3+-doped chalcogenide glass laser for mid-IR application. J. Non-Cryst. Solids 2009, 355, 1145–1148. [Google Scholar] [CrossRef]
- Starecki, F.; Charpentier, F.; Doualan, J.-L.; Quetel, L.; Michel, K.; Chahal, R.; Troles, J.; Bureau, B.; Braud, A.; Camy, P. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers. Sens. Actuators B Chem. 2015, 207, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Dudley, J.M.; Taylor, J.R. Supercontinuum Generation in Optical Fibers; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Petersen, C.R.; Møller, U.; Kubat, I.; Zhou, B.; Dupont, S.; Ramsay, J.; Benson, T.; Sujecki, S.; Abdel-Moneim, N.; Tang, Z.; et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics 2014, 8, 830–834. [Google Scholar] [CrossRef]
- Gattas, R.; Shaw, B.; Nguyen, V.Q.; Pureza, P.C.; Aggarwal, I.D.; Sanghera, J.S. All-fiber chalcogenide-bsed mid-infrared supercontinuum source. Opt. Fiber Technol. 2012, 18, 345–348. [Google Scholar] [CrossRef]
- Mouawad, O.; Picot-Clemente, J.; Amrani, F.; Strutynski, C.; Fatome, J.; Kibler, B.; Desevedavy, F.; Gadret, G.; Jules, J.C.; Deng, D.; et al. Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers. Opt. Lett. 2014, 39, 2684–2687. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, B.; Gai, X.; Zhai, C.; Qi, S.; Guo, W.; Yang, Z.; Wang, R.; Choi, D.-Y.; Madden, S.; et al. 1.8–10 mu m mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. Opt. Lett. 2015, 40, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Møller, U.; Yu, Y.; Kubat, I.; Petersen, C.R.; Gai, X.; Brilland, L.; Méchin, D.; Caillaud, C.; Troles, J.; Luther-Davies, B.; et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt. Express 2015, 23, 3282–3291. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.L.; Nagasaka, K.; Tuan, T.H.; Xue, X.J.; Matsumoto, M.; Tezuka, H.; Suzuki, T.; Ohishi, Y. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 µm in a chalcogenide step-index fiber. Opt. Lett. 2016, 41, 2117–2120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yu, Y.; Zhai, C.; Qi, S.; Wang, Y.; Yang, A.; Gai, X.; Wang, R.; Yang, Z.; Luther-Davies, B. High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber. J. Am. Ceram. Soc. 2016, 99, 2565–2568. [Google Scholar] [CrossRef]
Impurity | O–H | S–H | Se–H | Te–H | CO2 | C–S | H2O | As–O | Se–O | Ge–O |
---|---|---|---|---|---|---|---|---|---|---|
Position(s) λ (µm) | 1.44 | 2.5 | 2.30 | 5.0 | 4.26 | 4.94 | 2.29 | 7.5 | 10.4 | 7.5 |
1.92 | 3.1 | 3.45 | 2.32 | 7.9 | 13.9 | 7.9–8.1 | ||||
2.92 | 3.7 | 3.55 | 2.83 | 8.6–8.9 | ||||||
4.0 | 4.55 | 6.32 | ||||||||
7.5 |
Fiber | Spectral Broadening | λpump (Pulse Duration) | Average Power (mW) | Reference |
---|---|---|---|---|
As-S MOF ** | 1–4 µm | 2.5 µm (200 fs) | - | [194] |
As-S SIF | 1.9–4,8 µm | 2–2.4 µm (>100 ps) | 565 | [193] |
As-Se MOF | 1.7–7.5 µm | 4.4 µm (320 fs) | 15 | [196] |
Ge-As-Se SIF | 1.8–10 µm | 4 µm (330 fs) | - | [195] |
Ge-Sb-Se SIF | 2.2–12 µm | 4.5 µm (320 fs) | 17 | [198] |
Ge-As-Se SIF * | 1.4–13.3 µm | 4–7 µm (100 fs) | 0,7 | [192] |
As-Se SIF | 2–15 µm | 9.8 µm (170 fs) | - | [197] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballato, J.; Ebendorff-Heidepriem, H.; Zhao, J.; Petit, L.; Troles, J. Glass and Process Development for the Next Generation of Optical Fibers: A Review. Fibers 2017, 5, 11. https://doi.org/10.3390/fib5010011
Ballato J, Ebendorff-Heidepriem H, Zhao J, Petit L, Troles J. Glass and Process Development for the Next Generation of Optical Fibers: A Review. Fibers. 2017; 5(1):11. https://doi.org/10.3390/fib5010011
Chicago/Turabian StyleBallato, John, Heike Ebendorff-Heidepriem, Jiangbo Zhao, Laeticia Petit, and Johann Troles. 2017. "Glass and Process Development for the Next Generation of Optical Fibers: A Review" Fibers 5, no. 1: 11. https://doi.org/10.3390/fib5010011
APA StyleBallato, J., Ebendorff-Heidepriem, H., Zhao, J., Petit, L., & Troles, J. (2017). Glass and Process Development for the Next Generation of Optical Fibers: A Review. Fibers, 5(1), 11. https://doi.org/10.3390/fib5010011