Solid Tellurite Optical Fiber Based on Stack-and-Draw Method for Mid-Infrared Supercontinuum Generation
Abstract
:1. Introduction
2. Materials and Design Issues
2.1. Fiber Dispersion Simulation
2.2. Bulk Glass Loss
3. Fiber Fabrication
4. Fiber Characterization
4.1. Fiber Loss
4.2. Fiber Dispersion
5. Supercontinuum Generation
6. Discussion
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Razeghi, M.; Slivken, S.; Bai, Y.; Darvish, R. The Quantum Cascade Laser: A Versatile and Powerful Tool. Opt. Photonics News 2008, 19, 42–47. [Google Scholar] [CrossRef]
- Carter, A.; Samson, B.; Tankala, K. Thulium doped fiber forms kilowatt-class laser. Laser Focus World 2009, 45, 51. [Google Scholar]
- Mouawad, O.; Strutynski, C.; Picot-Clémente, J.; Désévédavy, F.; Gadret, G.; Jules, J.C.; Smektala, F. Optical aging behaviour naturally induced on As2S3 microstructured optical fibres. Opt. Mater. Express 2014, 4, 2190–2203. [Google Scholar] [CrossRef]
- Ettabib, M.A.; Hammani, K.; Feng, X.; Belal, M.; Shi, J.; Bogris, A.; Kapsalis, A.; Syvridis, D.; Richardson, D.J.; Petropoulos, P. Highly Nonlinear Tellurite Glass Fiber for Broadband Applications. In Proceedings of the Optical Fiber Communication Conference, San Francisco, CA, USA, 9–13 March 2014. [Google Scholar]
- Anashkina, E.A.; Shiryaev, V.S.; Koptev, M.Y.; Stepanov, B.S.; Muravyev, S.V. Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion. J. Non-Cryst. Solids 2017, in press. [Google Scholar] [CrossRef]
- Zhang, M.; Kelleher, E.J.R.; Runcorn, T.H.; Mashinsky, V.M.; Medvedkov, O.I.; Dianov, E.M.; Popa, D.; Milana, S.; Hasan, T.; Sun, A.; et al. Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tmdoped MOPFA. Opt. Express 2013, 21, 23261–23271. [Google Scholar] [CrossRef] [PubMed]
- Jain, D.; Sidharthan, R.; Moselund, P.M.; Yoo, S.; Ho, D.; Bang, O. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber. Opt. Express 2016, 24, 26667–26677. [Google Scholar] [CrossRef] [PubMed]
- Rhonehouse, D.; Zong, J.; Nguyen, D.; Thapa, R.; Wiersma, K.; Smith, C.; Chavez-Pirson, A. Low loss, wide transparency, robust tellurite glass fibers for mid-IR (2–5 µm) applications. Proc. SPIE 2013, 8898, 88980D. [Google Scholar]
- Thapa, R.; Rhonehouse, D.; Nguyen, D.; Wiersma, K.; Smith, C.; Zong, J.; Chavez-Pirson, A. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 µm. Proc. SPIE 2013, 8898, 889808. [Google Scholar]
- Anashkina, E.A.; Andrianov, A.V.; Dorofeev, V.V.; Kim, A.V. Toward a mid-infrared femtosecond laser system with suspended-core tungstate–tellurite glass fibers. Appl. Opt. 2016, 55, 4522–4530. [Google Scholar] [CrossRef] [PubMed]
- Savelii, I.; Desevedavy, F.; Jules, J.; Gadret, G.; Fatome, J.; Kibler, B.; Kawashima, H.; Ohishi, Y.; Smektala, F. Management of OH absorption in tellurite optical fibers and related supercontinuum generation. Opt. Mater. 2013, 35, 1595–1599. [Google Scholar] [CrossRef]
- Cheng, T.; Zhang, L.; Xue, X.; Deng, D.; Suzuki, T.; Ohishi, Y. Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 µm. Opt. Express 2015, 23, 4125–4134. [Google Scholar] [CrossRef] [PubMed]
- Strutynski, C.; Picot-Clémente, J.; Lemière, A.; Froidevaux, P.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Kibler, B.; Smektala, F. Fabrication and characterization of step-index tellurite fibers with varying numerical aperture for near- and mid-infrared nonlinear optics. J. Opt. Soc. Am. B 2016, 33, D12–D18. [Google Scholar] [CrossRef]
- Kedenburg, S.; Strutynski, C.; Kibler, B.; Froidevaux, P.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Steinle, T.; Mörz, F.; Steinmann, A.; et al. High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 µm in robust step-index tellurite fibers. J. Opt. Soc. Am. B 2017, 34, 601–607. [Google Scholar]
- Savelii, I.; Jules, J.; Gadret, G.; Kibler, B.; Fatome, J.; El-Amraoui, M.; Manikandan, N.; Zheng, X.; Désévédavy, F.; Dudley, J.; et al. Suspended core tellurite glass optical fibers for infrared supercontinuum generation. Opt. Mater. 2011, 33, 1661–1666. [Google Scholar] [CrossRef]
- Feng, X.; Loh, W.H.; Flanagan, J.C.; Camerlingo, A.; Dasgupta, S.; Petropoulos, P.; Horak, P.; Frampton, K.E.; White, N.M.; Price, J.H.; et al. Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications. Opt. Express 2008, 16, 13651–13656. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Monro, T.; Finazzi, V.; Moore, R.; Frampton, K.; Petropoulos, P.; Richardson, D.J. Extruded singlemode, high-nonlinearity, tellurite glass holey fibre. Electron. Lett. 2005, 41, 835–837. [Google Scholar] [CrossRef]
- Kumar, V.V.R.K.; George, A.; Knight, J.C.; Russell, P. Tellurite photonic crystal fiber. Opt. Express 2003, 11, 2641–2645. [Google Scholar] [CrossRef] [PubMed]
- Ebendorff-Heidepriem, H.; Kuan, K.; Oermann, M.; Knight, K.; Monro, T. Extruded tellurite glass and fibers with low OH content for mid-infrared applications. Opt. Mater. Express 2012, 2, 432–442. [Google Scholar] [CrossRef]
- Domachuk, P.; Wolchover, N.; Cronin-Golomb, M.; Wang, A.; George, A.; Cordeiro, C.; Knight, J.C.; Omenetto, F. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 2008, 16, 7161–7168. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Zhang, A.; Bushong, E.J.; Toulouse, J. Solid-core tellurite glass fiber for infrared and nonlinear applications. Opt. Express 2009, 17, 16716–16721. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, Y.; Qin, G.; Liao, M.; Yan, X.; Suzuki, T. Recent progress in tellurite fibers. In Proceedings of the 2010 Conference on (OFC/NFOEC) Collocated National Fiber Optic Engineers Conference Optical Fiber Communication Conference, San Diego, CA, USA, 21–25 March 2010. [Google Scholar]
- Liao, M.; Chaudhari, C.; Qin, G.; Yan, X.; Suzuki, T.; Ohishi, Y. Tellurite microstructure fibers with small hexagonal core for supercontinuum generation. Opt. Express 2009, 17, 12174–12182. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Yan, X.; Qin, G.; Chaudhari, C.; Suzuki, T.; Ohishi, Y. A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation. Opt. Express 2009, 17, 15481–15490. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Vogel, E.M.; Snitzer, E. Tellurite glass: A new candidate for fiber devices. Opt. Mater. 1994, 3, 187–203. [Google Scholar] [CrossRef]
- Zhou, B.; Rapp, C.; Driver, J.; Myers, M.; Myers, J.; Goldstein, J.; Utano, R.; Gupta, S. Development of tellurium oxide and lead-bismuth oxide glasses for mid-wave infra-red transmission optics. Proc. SPIE 2013, 8626, 86261F. [Google Scholar]
- Dong, L. Formulation of a complex mode solver for arbitrary circular acoustic waveguide. J. Lightwave Technol. 2010, 28, 3162–3175. [Google Scholar]
- Knight, J.C.; Birks, T.; Russell, P.; Atkin, D. All-silica single-mode photonic crystal fiber. Opt. Lett. 1996, 21, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Gu, G.; Hawkins, T.W.; Parsons, J.; Jones, M.; Dunn, C.; Kalichevsky-Dong, M.T.; Palese, S.P.; Cheng, E.; Dong, L. Quantitative mode quality characterization of fibers with extremely large mode areas by matched white-light interferometry. Opt. Express 2014, 22, 14657–14665. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.; Taylor, J. Supercontinuum Generation in Optical Fibers; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Yan, X.; Qin, G.; Liao, M.; Suzuki, T.; Ohishi, Y. Transient Raman response effects on the soliton self-frequency shift in tellurite microstructured optical fiber. J. Opt. Soc. Am. B 2011, 28, 1831–1836. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunn, C.; Kong, F.; Gu, G.; Hawkins, T.W.; Jones, M.; Parsons, J.; Runnion, A.; Kalichevsky-Dong, M.T.; Salem, R.; Liu, D.; et al. Solid Tellurite Optical Fiber Based on Stack-and-Draw Method for Mid-Infrared Supercontinuum Generation. Fibers 2017, 5, 37. https://doi.org/10.3390/fib5040037
Dunn C, Kong F, Gu G, Hawkins TW, Jones M, Parsons J, Runnion A, Kalichevsky-Dong MT, Salem R, Liu D, et al. Solid Tellurite Optical Fiber Based on Stack-and-Draw Method for Mid-Infrared Supercontinuum Generation. Fibers. 2017; 5(4):37. https://doi.org/10.3390/fib5040037
Chicago/Turabian StyleDunn, Christopher, Fanting Kong, Guancheng Gu, Thomas Wade Hawkins, Maxwell Jones, Joshua Parsons, Andrew Runnion, Monica Tamara Kalichevsky-Dong, Reza Salem, Dongfeng Liu, and et al. 2017. "Solid Tellurite Optical Fiber Based on Stack-and-Draw Method for Mid-Infrared Supercontinuum Generation" Fibers 5, no. 4: 37. https://doi.org/10.3390/fib5040037
APA StyleDunn, C., Kong, F., Gu, G., Hawkins, T. W., Jones, M., Parsons, J., Runnion, A., Kalichevsky-Dong, M. T., Salem, R., Liu, D., Gardner, D., Fendel, P., Synowicki, R., Cheung, E., Gomes, J. -T., Lavoute, L., Gaponov, D., Février, S., & Dong, L. (2017). Solid Tellurite Optical Fiber Based on Stack-and-Draw Method for Mid-Infrared Supercontinuum Generation. Fibers, 5(4), 37. https://doi.org/10.3390/fib5040037