Mechanical Behavior of High-Performance Yarns Transversely Loaded by Different Indenters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Uniaxial Tensile Experiments
2.2. Transverse Loading Experiments
3. Results
4. Discussion
4.1. Strain Energy Model
4.2. The Curved Beam Model
4.3. Failure Surfaces
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hudspeth, M.; Li, D.; Spatola, J.; Chen, W.; Zheng, J. The effects of off-axis transverse deflection loading on the failure strain of various high-performance fibers. Text. Res. J. 2016, 86, 897–910. [Google Scholar] [CrossRef]
- Hudspeth, M.; Chu, J.-M.; Jewell, E.; Lim, B.; Ytuarte, E.; Tsutsui, W.; Horner, S.; Zheng, J.; Chen, W. Effect of projectile nose geometry on the critical velocity and failure of yarn subjected to transverse impact. Text. Res. J. 2016, 87, 953–972. [Google Scholar] [CrossRef]
- Hudspeth, M.; Chen, W.; Zheng, J. Why the smith theory over-predicts instant rupture velocities during fiber transverse impact. Text. Res. J. 2015, 86, 743–754. [Google Scholar] [CrossRef]
- Walker, J.D.; Chocron, S. Why impacted yarns break at lower speed than classical theory predicts. J. Appl. Mech. 2011, 78, 051021. [Google Scholar] [CrossRef]
- Chocron, S.; Kirchdoerfer, T.; King, N.; Freitas, C.J. Modeling of fabric impact with high speed imaging and nickel-chromium wires validation. J. Appl. Mech. 2011, 78, 051007. [Google Scholar] [CrossRef]
- Smith, J.C.; McCrackin, F.L., Jr.; Schiefer, H.F. Stress-strain relationships in yarns subjected to rapid impact loading: Part V: Wave propagation in long textile yarns impacted transversely. Text. Res. J. 1958, 28, 288–302. [Google Scholar] [CrossRef]
- Sockalingam, S.; Gillespie, J.W.; Keefe, M. Dynamic modeling of Kevlar KM2 single fiber subjected to transverse impact. Int. J. Solids Struct. 2015,, 67–68, 297–310. [Google Scholar] [CrossRef]
- Sockalingam, S.; John, W.; Gillespie, J.; Keefe, M. Modeling the fiber length-scale response of Kevlar KM2 yarn during transverse impact. Text. Res. J. 2017, 87, 2242–2254. [Google Scholar] [CrossRef]
- Hudspeth, M.C. Multi-Axial Failure of High-Performance Fiber During Transverse Impact. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2016. [Google Scholar]
- Guo, Z.; Hong, J.; Zheng, J.; Chen, W. Out-of-plane effects on dynamic pull-out of p-phenylene terephthalamide yarns. Text. Res. J. 2015, 85, 140–149. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Methods for Tensile Testing of Aramid Yarns; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM International. Standard Test Method for Tensile Properties of Yarns by the Single-Strand Method; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Hudspeth, M.; Nie, X.; Chen, W. Dynamic failure of Dyneema SK76 single fibers under biaxial shear/tension. Polymer 2012, 53, 5568–5574. [Google Scholar] [CrossRef]
- Cheng, M.; Chen, W.; Weerasooriya, T. Mechanical properties of Kevlar® KM2 single fiber. J. Eng. Mater. Technol. 2005, 127, 197–203. [Google Scholar] [CrossRef]
- Doyle, J.F. Wave Propagation in Structure: Spectral Analysis Using Fast Discrete Fourier Transforms; Springer-Verlag: New York, NY, USA, 1997. [Google Scholar]
- Barber, J.R. Intermediate Mechanics of Materials; Springer Science & Business Media: Berlin, Germany, 2010; Volume 175. [Google Scholar]
- Hearle, J.W.; Lomas, B.; Cooke, W.D. Atlas of Fibre Fracture and Damage to Textiles; Elsevier: New York, NY, USA, 1998. [Google Scholar]
- Shin, H.-S.; Erlich, D.C.; Simons, J.W.; Shockey, D.A. Cut resistance of high-strength yarns. Text. Res. J. 2006, 76, 607–613. [Google Scholar] [CrossRef]
- Mayo, J.B.; Wetzel, E. Cut resistance and failure of high-performance single fibers. Text. Res. J. 2014, 84, 1233–1246. [Google Scholar] [CrossRef]
Radius of Curvature (mm) | Maximum Axial Load, Pax (N) | Maximum Transverse Load (N) |
---|---|---|
0.20 | 132.7 ± 1.7 | 192.0 ± 3.3 |
0.40 | 137.6 ± 3.0 | 200.0 ± 4.5 |
0.79 | 139.3 ± 2.0 | 201.7 ± 2.9 |
1.59 | 138.7 ± 4.5 | 204.6 ± 4.2 |
2.50 | 145.5 ± 4.8 | 211.8 ± 4.7 |
3.81 | 150.5 ± 3.6 | 220.7 ± 5.2 |
4.50 | 151.3 ± 5.4 | 222.0 ± 6.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, B.H.; Chu, J.-M.; Chen, W. Mechanical Behavior of High-Performance Yarns Transversely Loaded by Different Indenters. Fibers 2018, 6, 69. https://doi.org/10.3390/fib6040069
Lim BH, Chu J-M, Chen W. Mechanical Behavior of High-Performance Yarns Transversely Loaded by Different Indenters. Fibers. 2018; 6(4):69. https://doi.org/10.3390/fib6040069
Chicago/Turabian StyleLim, Boon Him, Jou-Mei Chu, and Wayne Chen. 2018. "Mechanical Behavior of High-Performance Yarns Transversely Loaded by Different Indenters" Fibers 6, no. 4: 69. https://doi.org/10.3390/fib6040069
APA StyleLim, B. H., Chu, J. -M., & Chen, W. (2018). Mechanical Behavior of High-Performance Yarns Transversely Loaded by Different Indenters. Fibers, 6(4), 69. https://doi.org/10.3390/fib6040069