Flexural Behavior of Carbon Textile-Reinforced Geopolymer Composite Thin Plate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Manufacturing
2.2.1. Geopolymer Mortar Matrix Preparation
2.2.2. Specimen Preparation for the Four-Point Flexural Test
2.2.3. Specimen Preparation for the Pull-Out Test
2.2.4. Curing Regime and Curing Time
2.3. Four-Point Bending Test and Pull-Out Test Setup
3. Results and Discussion
3.1. The Mechanical Strength of Geopolymer Mortar Matrix
3.2. Pull-Out Behavior
3.3. Flexural Behavior of Carbon Textile-Reinforced Geopolymer Composites
4. Conclusions
- When BF is added into geopolymer mortar, the experimental results showed that the mechanical strength of the thin plate specimens improved significantly; and the mechanical strength increased with increasing BF content.
- In comparison with the one textile layer reinforced specimens, reinforcement with two to three textile layers significantly improves the flexural strength and toughness. However, the three textile layer reinforced specimens do not have an increase in flexural toughness, as compared to those reinforced with two textile layers.
- The specimens with the mortar cover layer of 2 mm provide the best result in both flexural stress and toughness.
- The experimental results from the pull-out test show that the average interfacial bond stress decreased with increasing embedded length of the fiber yarn. For this reason, it can be explained by that, the longer the embedded length of fiber yarn in the matrix, the more difficult for the unified distribution of bond stress over the whole embedded length. As a result, the average maximum bond stress will be smaller. After finishing the pull-out test, all the specimens show the same failure by slipping of the fiber yarn from the matrix and, in this case, there is no impact on the specimen length.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Verian, K.P.; Behnood, A. Effects of deicers on the performance of concrete pavements containing air-cooled blast furnace slag and supplementary cementitious materials. Cem. Concr. Compos. 2018, 90, 27–41. [Google Scholar] [CrossRef]
- Meyer, C. The greening of the concrete industry. Cem. Concr. Compos. 2009, 31, 601–605. [Google Scholar] [CrossRef]
- Davidovits, P.J. Properties of Geopolymer Cements. In Proceedings of the First International Conference on Alkaline Cements and Concretes Scientific, Kiev, Ukraine, 11–14 October 1994; pp. 131–149. [Google Scholar]
- Davidovits, J. Geopolymers: Ceramic-like inorganic polymers. J. Ceram. Sci. Technol. 2017, 8, 335–350. [Google Scholar] [CrossRef]
- Wang, M.R.; Jia, D.C.; He, P.G.; Zhou, Y. Microstructural and mechanical characterization of fly ash cenosphere/metakaolin-based geopolymeric composites. Ceram. Int. 2011, 37, 1661–1666. [Google Scholar] [CrossRef]
- Bernal, S.A.; Rodríguez, E.D.; Mejía De Gutiérrez, R.; Gordillo, M.; Provis, J.L. Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 2011, 46, 5477–5486. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Zhu, Y.; Reid, A.; Provis, J.L.; Bullen, F. Using fly ash to partially substitute metakaolin in geopolymer synthesis. Appl. Clay Sci. 2014, 88–89, 194–201. [Google Scholar] [CrossRef]
- Wan, Q.; Rao, F.; Song, S.; García, R.E.; Estrella, R.M.; Patino, C.L.; Zhang, Y. Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem. Concr. Compos. 2017, 79, 45–52. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Z.; Zhu, H.; Chen, Y. Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry. Thermochim. Acta 2009, 493, 49–54. [Google Scholar] [CrossRef]
- Yuan, J.; He, P.; Jia, D.; Yang, C.; Zhang, Y.; Yan, S.; Yang, Z.; Duan, X.; Wang, S.; Zhou, Y. Effect of curing temperature and SiO2/K2O molar ratio on the performance of metakaolin-based geopolymers. Ceram. Int. 2016, 42, 16184–16190. [Google Scholar] [CrossRef]
- Salhi, K.; Mezghiche, B. Evaluation of the mechanical properties and durability of cement mortars containing algerian metakaolin. Ceram. Silikaty 2017, 61, 65–73. [Google Scholar] [CrossRef]
- Allahverdi, A.; Škvára, F. Sulfuric acid attack on hardened paste of geopolymer cements Part 2. Corrosion mechanism at mild and relatively low concentrations. Ceram. Silikaty 2006, 50, 1–4. [Google Scholar] [CrossRef]
- Allahverdi, A. Sulfuric Acid Attack on Hardened Paste of Geopolymer Cements Part 2. Corrosion Mechanism at Mild and Relatively Low Concentrations. Ceram. Silikaty 2005, 4, 3–6. [Google Scholar]
- Zheng, K.; Chen, L.; Gbozee, M. Thermal stability of geopolymers used as supporting materials for TiO2 film coating through sol-gel process: Feasibility and improvement. Constr. Build. Mater. 2016, 125, 1114–1126. [Google Scholar] [CrossRef]
- Sarker, P.K.; Kelly, S.; Yao, Z. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater. Des. 2014, 63, 584–592. [Google Scholar] [CrossRef]
- Pan, Z.; Sanjayan, J.G.; Rangan, B.V. Fracture properties of geopolymer paste and concrete. Mag. Concr. Res. 2011, 63, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yao, X.; Yang, T.; Liu, C.; Zhang, Z. Increasing mechanical strength and acid resistance of geopolymers by incorporating different siliceous materials. Constr. Build. Mater. 2018, 175, 411–421. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Zhou, W. Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cem. Concr. Compos. 2017, 78, 108–119. [Google Scholar] [CrossRef]
- Roviello, G.; Ricciotti, L.; Ferone, C.; Colangelo, F.; Tarallo, O. Fire resistant melamine based organic-geopolymer hybrid composites. Cem. Concr. Compos. 2015, 59, 89–99. [Google Scholar] [CrossRef]
- Lyon, R.E.; Balaguru, P.N.; Foden, A.; Sorathia, U.; Davidovits, J.; Davidovics, M. Fire-resistant aluminosilicate composites. Fire Mater. 1997, 21, 67–73. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Rickard, W.; Lee, M.; Williams, I.; van Riessen, A. Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. Appl. Clay Sci. 2009, 46, 265–270. [Google Scholar] [CrossRef]
- Temuujin, J.; Rickard, W.; Lee, M.; Van Riessen, A. Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings. J. Non Cryst. Solids 2011, 357, 1399–1404. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Rickard, W.; Lee, M.; Williams, I.; van Riessen, A. Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation. J. Hazard Mater. 2010, 180, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Timakul, P.; Rattanaprasit, W.; Aungkavattana, P. Enhancement of compressive strength and thermal shock resistance of fly ash-based geopolymer composites. Constr. Build. Mater. 2016, 121, 653–658. [Google Scholar] [CrossRef]
- Rickard, W.D.A.; Gluth, G.J.G.; Pistol, K. In-situ thermo-mechanical testing of fly ash geopolymer concretes made with quartz and expanded clay aggregates. Cem. Concr. Res. 2016, 80, 33–43. [Google Scholar] [CrossRef]
- Torres, M.L.; GARCÍA-RUIZ, P.A. Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cem. Concr. Compos. 2009, 31, 114–119. [Google Scholar] [CrossRef]
- Medri, V.; Papa, E.; Mazzocchi, M.; Laghi, L.; Morganti, M.; Francisconi, J.; Landi, E. Production and characterization of lightweight vermiculite/geopolymer-based panels. Mater. Des. 2015, 85, 266–274. [Google Scholar] [CrossRef]
- Rickard, W.D.A.; Van Riessen, A. Performance of solid and cellular structured fly ash geopolymers exposed to a simulated fire. Cem. Concr. Compos. 2014, 48, 75–82. [Google Scholar] [CrossRef]
- Masi, G.; Rickard, W.D.A.; Vickers, L.; Bignozzi, M.C.; Van Riessen, A. A comparison between different foaming methods for the synthesis of light weight geopolymers. Ceram. Int. 2014, 40, 13891–13902. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cao, W.; Cheng, X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 2015, 65, 529–533. [Google Scholar] [CrossRef]
- Williams Portal, N.; Flansbjer, M.; Johannesson, P.; Malaga, K.; Lundgren, K. Tensile behaviour of textile reinforcement under accelerated ageing conditions. J. Build. Eng. 2016, 5, 57–66. [Google Scholar] [CrossRef]
- Williams Portal, N.; Flansbjer, M.; Zandi, K.; Wlasak, L.; Malaga, K. Bending behaviour of novel Textile Reinforced Concrete-foamed concrete (TRC-FC) sandwich elements. Compos. Struct. 2017, 177, 104–118. [Google Scholar] [CrossRef]
- Colombo, I.G.; Colombo, M.; Di Prisco, M. Bending behaviour of Textile Reinforced Concrete sandwich beams. Constr. Build. Mater. 2015, 95, 675–685. [Google Scholar] [CrossRef]
- Dey, V.; Zani, G.; Colombo, M.; Di Prisco, M.; Mobasher, B. Flexural impact response of textile-reinforced aerated concrete sandwich panels. Mater. Des. 2015, 86, 187–197. [Google Scholar] [CrossRef]
- Mechtcherine, V. Novel cement-based composites for the strengthening and repair of concrete structures. Constr. Build. Mater. 2013, 41, 365–373. [Google Scholar] [CrossRef]
- Jabr, A.; El-Ragaby, A.; Ghrib, F. Effect of the Fiber Type and Axial Stiffness of FRCM on the Flexural Strengthening of RC Beams. Fibers 2017, 5, 2. [Google Scholar] [CrossRef]
- Naaman, A.E. Evolution in Ferrocement and Thin Reinforced Cementitious Composites. Arab. J. Sci. Eng. 2012, 37, 421–441. [Google Scholar] [CrossRef]
- Williams Portal, N.; Nyholm Thrane, L.; Lundgren, K. Flexural behaviour of textile reinforced concrete composites: Experimental and numerical evaluation. Mater. Struct. Constr. 2017, 50, 1–14. [Google Scholar] [CrossRef]
- Tamburini, S.; Natali, M.; Garbin, E.; Panizza, M.; Favaro, M.; Valluzzi, M.R. Geopolymer matrix for fibre reinforced composites aimed at strengthening masonry structures. Constr. Build. Mater. 2017, 141, 542–552. [Google Scholar] [CrossRef]
- Uddin, F.; Shaikh, A. Flexural Behavior of Hybrid PVA Fiber and AR-Glass Textile Reinforced Geopolymer Composites. Fibers 2018, 6, 2. [Google Scholar] [CrossRef]
- Menna, C.; Asprone, D.; Ferone, C.; Colangelo, F.; Balsamo, A.; Prota, A.; Cioffi, R.; Manfredi, G. Use of geopolymers for composite external reinforcement of RC members. Compos. Part B Eng. 2013, 45, 1667–1676. [Google Scholar] [CrossRef]
- BS EN. Methods of Testing Cement—Part 1: Determination of Strength; European Committee for Standardization: Brussels, Belgium, 2005; Volume 169, p. 36. [Google Scholar]
- Aljewifi, H.; Zhang, X.B.; Li, J. Analysis on Pull-Out Behaviour of Continuous Multi-Filament Glass Yarns Embedded in Cementitious Matrix by Using a Developed Model. In Proceedings of the 11th International Symposium on Ferrocement and 3rd ICTRC Texttile Reinforced Concrete, Aachen, Germany, 7–10 June 2015. [Google Scholar]
- Yin, S.; Wang, B.; Wang, F.; Xu, S. Bond investigation of hybrid textile with self-compacting fine-grain concrete. J. Ind. Text. 2017, 46, 1616–1632. [Google Scholar] [CrossRef]
Form | Carbon Fiber Grid |
---|---|
Fiber type | Carbon fiber 10/15–40 |
Binder yarn | PP 110dtex |
Fiber construction | Fiber orientation 0/90° (bi-directional) |
Tex | 800 g/km |
Fiber density | 1.8 g/cm3 |
Number of threads/m | 78 (lengthways) and 55 (crossways) |
weight | 350 g/m2 |
Coating | Styrene-butadiene |
Stitch spacing | 10 × 15 mm (center to center distance) |
Tensile strength | 2551 N/mm2 (lengthways) and 2847 N/mm2 (crossways) |
Elongation lengthways | 1.17% |
Elongation crossways | 1.24% |
BF Content (wt % of Geopolymer Resin) | By Weight Ratio (–) | |||
---|---|---|---|---|
Geopolymer Cement | Activator | Microsand | Rough-Sand | |
0, 3, 5, 7.5 | 1 | 0.8 | 0.2 | 1.5 |
Specimen | The Average Value (Standard Deviation) | |||||
---|---|---|---|---|---|---|
First-Crack Load (kN) | First-Crack Stress (MPa) | Ultimate Load (kN) | Ultimate Stress (MPa) | Ultimate Displacement (mm) | Flexural Toughness (kN.mm) | |
1 layer + 0%BF | 0.42 (0.07) | 5.61 (1.16) | 1.62 (0.52) | 21.59 (2.12) | 18.94 (2.42) | 21.03 (1.56) |
1 layer + 3% BF | 0.68 (0.11) | 9.02 (1.60) | 2.05 (0.40) | 26.72 (4.07) | 18.01 (2.93) | 23.74 (2.99) |
1 layer + 5% BF | 0.78 (0.06) | 10.38 (0.79) | 2.25 (0.31) | 29.99 (4.11) | 20.03 (2.61) | 27.93 (5.90) |
1 layer + 7.5% BF | 0.88 (0.11) | 11.78 (1.40) | 2.57 (0.14) | 34.24 (1.88) | 21.85 (1.83) | 36.39 (4.51) |
1 layer + 0%BF | 0.42 (0.07) | 5.61 (1.16) | 1.62 (0.52) | 21.59 (2.12) | 18.94 (2.42) | 21.03 (1.56) |
2 layers + 0%BF | 0.54 (0.04) | 7.23 (0.47) | 2.73 (0.32) | 36.41 (4.32) | 19.98 (1.79) | 32.87 (0.56) |
3 layers + 0%BF | 0.73 (0.02) | 9.71 (0.22) | 3.54 (0.55) | 47.21 (7.40) | 15.23 (1.77) | 32.35 (1.84) |
2 mm + 5% BF | 0.90 (0.11) | 12.02 (1.52) | 3.58 (0.25) | 47.72 (3.35) | 14.56 (3.72) | 33.19 (8.05) |
4 mm + 5% BF | 0.79 (0.11) | 10.52 (1.52) | 2.34 (0.41) | 31.23 (5.51) | 13.68 (0.60) | 19.85 (3.27) |
6 mm + 5% BF | 0.78 (0.06) | 10.38 (0.79) | 2.25 (0.31) | 29.99 (4.11) | 20.03 (2.61) | 27.93 (5.90) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Chi, H.; Louda, P.; Periyasamy, A.P.; Bakalova, T.; Kovacic, V. Flexural Behavior of Carbon Textile-Reinforced Geopolymer Composite Thin Plate. Fibers 2018, 6, 87. https://doi.org/10.3390/fib6040087
Le Chi H, Louda P, Periyasamy AP, Bakalova T, Kovacic V. Flexural Behavior of Carbon Textile-Reinforced Geopolymer Composite Thin Plate. Fibers. 2018; 6(4):87. https://doi.org/10.3390/fib6040087
Chicago/Turabian StyleLe Chi, Hiep, Petr Louda, Aravin Prince Periyasamy, Totka Bakalova, and Vladimir Kovacic. 2018. "Flexural Behavior of Carbon Textile-Reinforced Geopolymer Composite Thin Plate" Fibers 6, no. 4: 87. https://doi.org/10.3390/fib6040087
APA StyleLe Chi, H., Louda, P., Periyasamy, A. P., Bakalova, T., & Kovacic, V. (2018). Flexural Behavior of Carbon Textile-Reinforced Geopolymer Composite Thin Plate. Fibers, 6(4), 87. https://doi.org/10.3390/fib6040087