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Abstract: Mechanical properties of parts produced with polymer deposition additive manufacturing
(AM) depend on the print bead direction, particularly when short carbon-fiber reinforcement is added
to the polymer feedstock. This offers a unique opportunity in the design of these structures since the
AM print path can potentially be defined in a direction that takes advantage of the enhanced stiffness
gained in the bead and, therefore, fiber direction. This paper presents a topology optimization
approach for continuous fiber angle optimization (CFAO), which computes the best layout and
orientation of fiber reinforcement for AM structures. Statically loaded structures are designed for
minimum compliance where the adjoint variable method is used to compute design derivatives, and
a sensitivity filter is employed to reduce the checkerboard effect. The nature of the layer-by-layer
approach in AM is given special consideration in the algorithm presented. Examples are provided
to demonstrate the applicability of the method in both two and three dimensions. The solution to
our two dimensional problem is then printed with a fused filament fabrication (FFF) desktop printer
using the material distribution results and a simple infill method which approximates the optimal
fiber angle results using a contour-parallel deposition strategy. Mechanical stiffness testing of the
printed parts shows improved results as compared to structures designed without accounting for
the direction of the composite structure. Results show that the mechanical properties of the final
FFF carbon fiber/polymer composite printed parts are greatly influenced by the print direction,
and optimized material orientation tends to align with the imposed force direction to minimize
the compliance.

Keywords: topology optimization; additive manufacturing; short fiber polymer composites; fused
filament fabrication

1. Introduction

Carbon-fiber-filled polymer composites continue to provide unique engineering solutions for
lightweight structures in industries such as automotive and aerospace. It is well understood that the
mechanical properties of thermoplastic polymers can be greatly improved by adding short carbon
or glass fibers to the polymer matrix, making it possible to produce structures having superior
performance with existing tooling. This is true in today’s additive manufacturing (AM) where
small-scale three-dimensional (3D) printer filament suppliers now offer carbon-fiber-filled products
for the fused filament fabrication (FFF) process (also known as fused filament deposition (FDM)).
The success of polymer composite large-scale additive manufacturing (LSAM) is due in part to the
improved mechanical performance gained when short carbon-fiber polymers are employed. A unique
design opportunity emerged for fiber-reinforced polymer composite AM since the direction of the
non-isotropic print bead can potentially be designed to give the best overall structural performance.
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The design freedom afforded by AM requires new design approaches such as that provided by topology
optimization, which determines the best layout of a structure without the limitations typically imposed
by traditional manufacturing methods.

Fused filament fabrication (FFF) uses polymer-based feedstock as input to make parts from digital
design data where a material orientation is defined by the print direction. In FFF, polymer or polymer
composite filament is forced through a heated nozzle where the molten material is deposited onto a
platform to print a part in a layer-by-layer fashion. The non-isotropic mechanical properties of the
printed parts depend greatly on the deposited material and the orientation of the printed bead [1–3],
especially when the feedstock polymer is blended with short carbon fibers. In addition, topology
optimization (see, e.g., Bendsøe and Sigmund [4]) enjoys a long history in mechanical part design,
and it has also become very popular in the design of AM structures [5–10]. With the presence of short
carbon fibers, the computation of optimal structures must incorporate the non-isotropic response
of the material, making it necessary to solve for optimal material distribution in addition to the
optimal material angle orientation distribution. This paper focuses on the use of short fiber/polymer
composites in the FFF process; however, the design method presented here is equally applicable to
other AM processes that result in oriented microstructures.

1.1. Polymer Composite Deposition Additive Manufacturing

Polymer deposition AM can be categorized into two main areas. The first one is for small-scale
3D printing application, which uses continuous filament as the feedstock commonly known as FFF.
FFF has a continually growing market [11] and is popular among hobbyists, in academic research, for
rapid prototyping, and for select industrial final products. There are several drawbacks in small-scale
FFF. The size of the objects is relatively small, mostly smaller than one cubic foot. The dominant type
of the feedstock for small-scale FFF is thermoplastic, which has weaker mechanical properties than
metals, limiting its use for final part production in industry. Various polymer composite filaments
were introduced to improve the filament’s mechanical properties [12–20]. One approach for improving
mechanical performance is to blend short carbon fiber (CF) within the thermoplastic feedstock to form
a CF/polymer filament. Researchers showed that parts made of CF/polymer filament have improved
tensile strength and stiffness as compared to those made from unfilled polymer filament [18–20].
Adding CF to the polymer feedstock also reduces print-induced warpage of the structure [21], due in
part to the relative lower coefficient of thermal expansion and higher thermal conductivity of the CF.

The second category of polymer deposition AM is large-scale 3D printing. This process aims
to print objects in large size, with polymer nozzle exit diameters exceeding 6.35 mm. Large-scale
3D printing is a more recent innovation, and the most prominent example is large-scale additive
manufacturing (LSAM) technology [22]. LSAM systems print with a single screw extruder attached
to a large gantry system and discontinuous CF polymer pellets. LSAM requires lower energy input
and gives higher material output per unit time than small-scale 3D printing [23]. Examples include
the big area additive manufacturing (BAAM) system [22] in addition to others who created custom
large-scale 3D printers and print objects with CF/polymer pellets (cf. Reference [24]). The adoption of
large-scale 3D printing is pushing the application of polymer/short fiber composite deposition to new
industrial applications.

Research on FFF with CF/polymer feedstock shows that the fibers become highly aligned along
the printing direction [18,20,25], forming a non-isotropic microstructure having mechanical strength
and stiffness that is much higher along the bead axis than across the bead. Furthermore, it is possible
to predict the mechanical property of the short fiber composite printed part which is needed for part
design [25,26].

1.2. Topology Optimization and Additive Manufacturing

Topology optimization is a finite-element-based computational tool commonly used to compute
the optimum layout of a structure within a prescribed design domain [4]. Optimal structures are
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obtained by minimizing a certain objective value, given prescribed design constraints. In structural
mechanics, it is common to minimize the compliance of a structure, thus maximizing its stiffness, while
constraining the amount of material used in the design. There are numerous topology optimization
approaches, including homogenization method [27,28], solid isotropic material method (SIMP) [29–34],
evolutionary structural optimization method (ESO) [35], and bidirectional structural optimization
method (BESO) [36].

Topology optimization enjoys widespread application, particularly in additive manufacturing.
Sundararajan [5] applied the homogenization method with a smoothing scheme to optimize the
Messerschimitt–Bölkow–Blohm (MBB) and a cantilever beam. The optimized shape was assembled
using mesostructures through elements with a square void. Zhang et al. [10] employed the
homogenization, optimization, and construction (HOC) technique to design variable cellular structures.
In Zhang’s paper, the cellular structure was constructed based on the optimized density distribution
using the SIMP method, and the part was fabricated with stereolithography. Gaynor et al. [6]
implemented the original, combinatory, and multiphase SIMP approaches to optimize the shape
of compliant mechanisms. Their research showed that an optimized topology can be obtained using
more than one material, and then it can be built using the multimaterial Polyjet 3D printing technique.
Wang et al. [7] also presented a review on AM of porous metals for orthopedic implants. Furthermore,
numerical methods were proposed to overcome the overhang limitation of the 3D printed parts [8,9].

1.3. Simultaneous Topology and Fiber Orientation Optimization

Development and application of topology optimization includes both isotropic material and
non-isotropic material response (see, e.g., Bendsøe and Sigmund [4]). The penalized material
density approach that provides a basis for our work appears as the density method in Yang and
Chuang [37], and more recently as the SIMP method (cf. Bendsøe and Sigmund [4]) which saw
extensive development and application in structural design problems. Early topology optimizations
based on the homogenization method (cf. Bendsøe and Kikuchi [27]) considered composite structures
with continuously varying material orientation and distribution. While the homogenization approach
saw extensive developments over the past three decades [27], application of the method is limited to
non-discrete (0-1) layout structures, thus making it of limited use in additive manufacturing.

In this paper, we are particularly interested in extending the SIMP method for AM structures
having oriented microstructures such as polymer composite FFF. The SIMP method (see, e.g.,
Reference [4]) employs an isotropic material model in each discretized finite element where a
penalization parameter is imposed to drive the solution field to a discrete (0-1) layout. The original
SIMP method was modified to accommodate anisotropic materials, referred to as solid orthotropic
material penalization (SOMP) in [38], but is yet to be applied to polymer composite AM. Extensions of
the SIMP method were proposed [39,40] to accommodate in-plane angle design variability, which is
ideally suited for these applications. Previously, Jia et al. [38] applied the SIMP method with material
orientation design variables to a fiber-reinforced composite for minimum compliance. The optimized
topology appears with minor checkerboard effect, as no anti-checkerboarding filter [41,42] was
employed. Setoodeh et al. [43] developed a stress-based approach combined with cellular automata
using the SIMP method to solve for minimum compliance. They further extended their approach to
problems with multiple loads, though the fiber angle update scheme was based on a random search.
Nomura et al. [44] proposed a general topology optimization method that simultaneously optimized
both material distribution and material orientation based on discrete angle sets. Their orientation
variables are defined by Cartesian components and include a relaxation of the orientation design space.
Our previous topology optimization work appeared in Hoglund and Smith [45–47] which considered
fixed fiber directions and extended the SIMP method to accommodate orientation design variables
where design sensitivities with respect to both the density and material orientation were derived and
implemented in a finite-element-based design program. In this approach, the density sensitivity was
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filtered using a linear weighted-average filter [41,42], thus avoiding common topology optimization
checkerboarding issues.

Many of the aforementioned optimization schemes for material distribution and material
orientation are limited to two-dimensional problems without considering the three-dimensional
(3D) aspects of the AM design space. Indeed, the literature has yet to address topology material
distribution and orientation optimization for 3D AM applications such as polymer composite FFF.
Therefore, this paper proposes a design optimization approach that optimizes material distribution
and material orientation for AM structures with oriented microstructures. Examples include structures
having 2D layouts, and another having a 3D layout. Testing included in this paper illustrates the
effectiveness of the 2D optimized structures. An important assumption in 3D design is that, since the
AM parts are made through a layer-by-layer process, material orientation is constrained to the print
plane. This assumption is applicable to polymer composite FFF since fibers are highly aligned along
the print direction. The design approach given here will provide insight into the optimal topology and
the bead pattern of the printed part, thus making the AM designs more efficient and competitive in
the market.

2. Methodology

2.1. CFAO Topology Optimization Formulation

The common topology optimization problem is to minimize the compliance of a structure subject
to constraints on material usage and equilibrium. The traditional topology optimization problem (see,
e.g., Bendsøe and Sigmund [4]) is extended here to include both material density and fiber orientation
for AM, which may be written mathematically as shown below.

Minimize : c(ρ,θ) = U(ρ,θ)TF, (1)

Subject to :


v(ρ)

V0
= f

K(ρ,θ)U(ρ,θ) = F
ρmin ≤ ρe ≤ 1
−2π ≤ θe ≤ 2π

, (2)

where the compliance c is the objective function in the optimization, written here as a function of the
density and material angle design variable vectors ρ and θ, respectively. The vectors ρ = [ρ1 ρ2 · · · ρN ]

and θ = [θ1 θ2 · · · θN ] are defined, respectively, by element density design variables ρe, e = 1, · · · , N
and element material angle design variables θe, e = 1, · · · , N, where N is the number of elements in
the finite element model. Since AM processes such as FFF deposit material in a layer-by-layer fashion,
element material angle is assumed to only vary within the print plane. Therefore, each element e
contains only two design variables: one element density ρe and one material angle θe.

The compliance objective function c in Equation (1) is written in terms of the finite element global
stiffness matrix K, displacement vector U, and load vector F in the usual manner (cf. Sigmund [32]).
The first constraint in Equation (2) is imposed on the design volume v(ρ) limiting it to a prescribed
volume fraction f (0 ≤ f ≤ 1) of the total design domain volume V0. The second constraint imposes
equilibrium on the design where it is noted that the stiffness matrix K = K(ρ,θ) and the displacement
vector U = U(ρ,θ) are design-dependent. We assume here that the applied loads in F are not a
function of the design variables.

Also included in Equation (2) are simple bounds on element density and element material angle.
The former imposes a lower bound of ρmin on element density to avoid singularity issues in the
finite element stiffness matrix K. The upper bond on each ρe of unity allows for an element to realize
full material utilization. Simple bounds on each θe of ±2π allow for angle rotation into the optimal
orientation without restriction. This simple approach was shown to work well in the examples
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considered here while avoiding the added computation required in other shape-function-based
approaches used to define orientation angle (see, e.g., Nomura et al. [44] and Xia and Shi [48]).

The stiffness matrix K = K(ρ,θ) is assembled through contributions from each element stiffness
matrix ke(ρe, θe) (given below) as

K(ρ,θ) =
N

∑
e=1

(ρe)
pke(θe), (3)

where a penalization parameter p is imposed on each element density variable, which tends to drive
the element density ρe to its lower or upper limit. Equation (3) extends the SIMP method proposed
by Sigmund [32] by including an anisotropic element stiffness matrix ke(θe) which is written here
in terms of the element material angle variable θe as proposed by Hoglund and Smith [46] and also
Jia et al. [38]. It follows that the compliance objective function c in Equation (1) may be written in terms
of the element stiffness matrices ke and element displacement vectors ue as

c(ρ,θ) =
N

∑
e=1

(ρe)
puT

e ke(θe)ue, (4)

which simplifies the evaluation of the compliance in the optimization calculations by making it an
element-by-element computation.

2.2. Isoparametric Hexagonal Element

In our analyses, the elemental stiffness matrix ke is defined using the eight-node isoparametric
hexahedral element [49] shown in Figure 1.
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The element stiffness matrix is obtained in the usual manner (see, e.g., the finite element text by
Huebner et al. [49]) where element integrations are performed with Gauss quadrature as

ke(θe) =
t

Ωe
BTC

′
(θe)BdΩ

≈
ngp

∑
i=1

ngp

∑
j=1

ngp

∑
k=1

(
WiWjWkB

(
ξi, ηj, ζk

)TC
′
(θe)B

(
ξi, ηj, ζk

)∣∣J(ξi, ηj, ζk
)∣∣),

(5)

where ngp is the number of Gauss points for the integrals in each of the three coordinate directions,
and B is the strain–displacement matrix defined by derivatives of the element shape functions in the
usual manner. The element angle θe is used to define the rotated constitutive matrix C

′
(θe) in Equation

(5) in terms of the original constitutive matrix C as [50]

C
′
(θe) = T(θe)

−1CT(θe)
−T. (6)

We assume that the plane formed by axes ξ and η in Figure 1 is the AM print plane, such that
a rotation about the ζ axis by an angle θ with respect to the positive ξ direction defines the material
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direction within the element. The resulting rotation matrix T(θ) for each element is evaluated through
T−1 as

T−1(θ) =



cos(θ)2 sin(θ)2 0 0 0 −2 cos(θ) sin(θ)
sin(θ)2 cos(θ)2 0 0 0 2 cos(θ) sin(θ)

0 0 1 0 0 0
0 0 0 cos(θ) sin(θ) 0
0 0 0 − sin(θ) cos(θ) 0

cos(θ)sin(θ) − cos(θ)sin(θ) 0 0 0 cos(θ)2 − sin(θ)2


. (7)

We consider AM materials that may be modeled using transversely isotropic material
symmetry [51]. Considering xyz-space, the transversely isotropic constitutive tensor C having a
primary axis in the x-direction may be written in terms of the elastic moduli Ex and Ey, the Poison’s
ratios νxy and νyx, and shear modulus Gxy, as follows [51]:

C =



1
Ex

−
νxy

Ex
−

νxy

Ex
0 0 0

−
νxy

Ex

1
Ey

−
νyz

Ey
0 0 0

−
νxy

Ex
−

νyz

Ey

1
Ey

0 0 0

0 0 0
2
(
1 + νyz

)
Ey

0 0

0 0 0 0
1

Gxy
0

0 0 0 0 0
1

Gxy



−1

. (8)

While Equation (8) may represent material microstructures produced by various additive
processes, our focus is on carbon fiber/polymer composite produced with FFF and/or large-scale
additive polymer deposition processes whose microstructures are composed of suspended carbon
fibers that are highly aligned in the print direction. The above reduces to a 2D xy planar formulation
by assuming a plane-stress condition, which is applied in our 2D examples below.

2.3. Design Sensitivities

Design derivatives, often referred to as design sensitivities, of the objective function (cf. Equation
(1)) with respect to design variables in ρ and θ required for the optimization are derived using the
adjoint variable method (see, e.g., Tortorelli and Michaleris [52]). The adjoint variable method is
employed here due to the large number of design variables present in the topology optimization
problem. When compliance is the objective function as in Equation (1), the adjoint variable vector for a
linear elastic structure is simply the nodal displacement vector U, which yields the design sensitivity
of the compliance c with respect to the element density design variable ρe given by Sigmund as
follows [22]:

∂c
∂ρe

= −p(ρe)
p−1uT

e keue, (9)

where the resulting simplified expression is possible since the compliance may be computed on an
element-by-element basis as in Equation (4). Similarly, the design sensitivity with respect to each
element material orientation angle design variable θe is

∂c
∂θe

= ρ
p
e uT

e

y

Ωe

BT

(
∂T(θe)

−1

∂θe
CT(θe)

−T + T(θe)
−1C

∂T(θe)
−T

∂θe

)
BdΩ

ue, (10)



Fibers 2019, 7, 14 7 of 21

where it is assumed that the volume integration is performed with the same Gauss quadrature
computation as that used to evaluate the finite element integrals in Equation (5) above. Derivatives of
the inverse transformation matrix T−1 are obtained by differentiating Equation (7) with respect to θ.

During the topology optimization process, a checkerboard pattern is likely to occur, resulting
in undesirable sub-optimal structure. To mitigate such an effect, a linear sensitivity filter [41,42] is
employed which is written in terms of the compliance design sensitivity in Equation (9) as

∂ĉ
∂ρe

=
∑N

j=1 Hijρj
∂c
∂ρj

ρi ∑N
j=1 Hij

, (11)

where
Hij = rmin − dist(i, j). (12)

In the above equations, Hij is a weight factor computed as a linear function of the distance between
the center of element i to the center of neighboring element j, and rmin is the desired minimum member
size in the final topology.

2.4. Optimization Process

Figure 2 illustrates the iterative topology optimization process used in our work. Firstly, the design
domain and boundary conditions are defined, and the domain is discretized into quadrilateral elements
in 2D or hexagonal elements in 3D. Secondly, the finite element analysis (FEA) procedure is performed
to calculate the global displacement vector U by solving KU = F in Equation (2) where two-point Gauss
quadrature (i.e., ngp = 2) is used for the numerical integrations appearing in Equations (3) and (8).
Thirdly, the compliance objective function in Equation (4) and its design sensitivities in Equations (7)
and (8) are computed on an element-by-element basis where we use a penalization power of p = 3 and
rmin is assigned a value of 1.5. Fourthly, the design sensitivities with respect to the density variables
are filtered using a linear weighted-average function appearing in Equations (9) and (10). Fifthly, the
objective function and design sensitivities are used by the Matlab optimizer function fmincon [53] to
update the design variable vectors ρ and θ. During the iteration process, the allowable range for
density variables is from ρmin = 10−6 to 1. The complete finite element, design sensitivity analysis, and
optimization process was performed in our custom Matlab code. To the best of our knowledge, there
is no commercially available program for simultaneously computing optimal topology and material
orientation for microstructures such as those produced in the FFF process.

The default Matlab fmincon solver interior-point algorithm was chosen as the optimization
scheme in our examples where the optimal constrained nonlinear problem is solved by introducing
an exterior barrier function into the objective function. A convergence criterion is defined to end
computations when relative changes of design variables and objective function values between two
iterations are smaller than 0.1%. Our use of Matlab nonlinear programming methods provides a
more general approach for incorporating both material angle and density design variables into the
topology optimization problem than is afforded by typical density-only approaches [4,32]. To reduce
computational time for our topology optimizations, we used the parallel processing capabilities of
Matlab when calculating the element stiffness matrices and solving the linear system of equations in
our finite element analyses.

While optimality criteria-based methods enjoy extensive application in the topology optimization
literature (see, e.g., development of the homogenization method and SIMP method described in
Bendsøe and Sigmund [4]), little attention has been given to its use for determining optimal material
orientations outside of homogenization method applications. When an optimal material orientation is
desired, prior research updated density design variables with Equation (9) (and also Equations (11)
and (12)) while computing a constant-density sub-optimal material orientation at each density iteration
as in Soto and Yang [54,55]. It is expected that computational efficiencies could be gained through
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a study of minimization algorithms for our material density and orientation AM design approach;
however, our focus here was firstly obtaining useful results for parts produced by AM.Fibers 2019, 7, x FOR PEER REVIEW 8 of 20 
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3. CFAO Design Examples

Numerical examples are presented below to illustrate our CFAO topology optimization
methodology. The first example considers a 2D print domain for a center-loaded simply supported
beam where all loading is within the plane and all FFF layers are assumed to be printed in the same
manner. Following this example, we present the static load testing of a structures printed to follow
the 2D CFAO topology results. Finally, the second numerical example considers a 3D cantilever beam
which is optimized for printing in each of three different directions. The study aims to quantify the
effect of print direction on the elastic response of the optimized printed part. Additional examples
that demonstrate the optimization procedure and the code may be found in Hoglund [56] and also
Jiang [57].

3.1. One-Dimensional (1D) CFAO Topology Optimization Example

To illustrate the applicability of the CFAO method to polymer composite FFF part design, a 2D
topology optimization was considered here first based on the Messerschimitt–Bölkow–Blohm (MBB)
beam (see, e.g., Bendsøe and Kikuchi [28]). The MBB beam is defined by the design domain appearing
in Figure 3 where the topology optimization is expected to produce a truss-like structure as in prior
topology optimization studies. In this example, the elastic modulus in the fiber direction was set to
5 units while the elastic modulus normal to the fiber direction was 1 unit. Poisson’s ratio of the major
direction (greater Young’s modulus) was defined to be 0.3. We defined the topology optimization
volume fraction constraint in Equation (2) with f = 0.5. In the following analysis, all elements contain
both a density and a fiber angle design variable which define the topology optimization problem
from Equations (1) and (2) having the number of design variables equal to twice the number of
elements. The thickness of the model into the plane was set to h = 1 unit, and the applied load was
1 unit acting downward in the center of the design domain as shown. The topology optimization
was performed with a half-symmetry finite element model having 30 elements in the horizontal
direction and 10 elements in the vertical direction where each element was 1 unit by 1 unit square
(note that results from the half-symmetry model are mirrored in Figure 4 to show the entire structure
for better illustration).



Fibers 2019, 7, 14 9 of 21

Fibers 2019, 7, x FOR PEER REVIEW 9 of 20 

 
Figure 3. Messerschimitt–Bölkow–Blohm (MBB) beam design space with boundary conditions and 
applied load. 

 
Figure 4. CFAO density and fiber angle results for the MBB beam after (a) 0 iterations (i.e., initial 
design), (b) five iterations, (c) 25 iterations, and (d) final iteration 48. Elements with density 
approaching unity appear dark, while those appearing white indicate zero density. 

Selected designs taken from iterations of the CFAO topology optimization appear in Figure 4. 
Elements in the figure appear dark as 𝜌 approaches unity (i.e., element full of material), and white 
as 𝜌 approaches zero (i.e., no material). Also shown in each element is an arrow indicating the fiber 
angle direction. Note that all 𝜃 are zero for the initial design and quickly change to become parallel 
to the direction of the dominant structure in the truss-like members. The topology of the structure 
emerges after approximately 25 iterations; however, the edge of the truss-like members become more 
distinct as the optimization concludes.  

To better understand the effect of mesh size on the optimal layout and compliance, the topology 
optimization described above was repeated here using various mesh sizes. All parameters for these 
optimizations were the same as that given above except that the modulus in the fiber direction was 
set to 10 units and the Poisson’s ratio of the material was 0.36. The modulus normal to the fiber 
direction remained at 1 unit as before. We note that, in other work (see, e.g., Hoglund [56]), the 
optimal topology and fiber direction for the MBB beam was found to be nearly the same once the 
modulus ratio exceeded about 2 making these result comparable to those given above. Computed 

Figure 3. Messerschimitt–Bölkow–Blohm (MBB) beam design space with boundary conditions and
applied load.

Fibers 2019, 7, x FOR PEER REVIEW 9 of 20 

 
Figure 3. Messerschimitt–Bölkow–Blohm (MBB) beam design space with boundary conditions and 
applied load. 

 
Figure 4. CFAO density and fiber angle results for the MBB beam after (a) 0 iterations (i.e., initial 
design), (b) five iterations, (c) 25 iterations, and (d) final iteration 48. Elements with density 
approaching unity appear dark, while those appearing white indicate zero density. 

Selected designs taken from iterations of the CFAO topology optimization appear in Figure 4. 
Elements in the figure appear dark as 𝜌 approaches unity (i.e., element full of material), and white 
as 𝜌 approaches zero (i.e., no material). Also shown in each element is an arrow indicating the fiber 
angle direction. Note that all 𝜃 are zero for the initial design and quickly change to become parallel 
to the direction of the dominant structure in the truss-like members. The topology of the structure 
emerges after approximately 25 iterations; however, the edge of the truss-like members become more 
distinct as the optimization concludes.  

To better understand the effect of mesh size on the optimal layout and compliance, the topology 
optimization described above was repeated here using various mesh sizes. All parameters for these 
optimizations were the same as that given above except that the modulus in the fiber direction was 
set to 10 units and the Poisson’s ratio of the material was 0.36. The modulus normal to the fiber 
direction remained at 1 unit as before. We note that, in other work (see, e.g., Hoglund [56]), the 
optimal topology and fiber direction for the MBB beam was found to be nearly the same once the 
modulus ratio exceeded about 2 making these result comparable to those given above. Computed 

Figure 4. CFAO density and fiber angle results for the MBB beam after (a) 0 iterations (i.e., initial
design), (b) 5 iterations, (c) 25 iterations, and (d) final iteration 48. Elements with density approaching
unity appear dark, while those appearing white indicate zero density.

Selected designs taken from iterations of the CFAO topology optimization appear in Figure 4.
Elements in the figure appear dark as ρe approaches unity (i.e., element full of material), and white
as ρe approaches zero (i.e., no material). Also shown in each element is an arrow indicating the fiber
angle direction. Note that all θe are zero for the initial design and quickly change to become parallel
to the direction of the dominant structure in the truss-like members. The topology of the structure
emerges after approximately 25 iterations; however, the edge of the truss-like members become more
distinct as the optimization concludes.

To better understand the effect of mesh size on the optimal layout and compliance, the topology
optimization described above was repeated here using various mesh sizes. All parameters for these
optimizations were the same as that given above except that the modulus in the fiber direction was set
to 10 units and the Poisson’s ratio of the material was 0.36. The modulus normal to the fiber direction
remained at 1 unit as before. We note that, in other work (see, e.g., Hoglund [56]), the optimal topology
and fiber direction for the MBB beam was found to be nearly the same once the modulus ratio exceeded
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about 2 making these result comparable to those given above. Computed optimal topologies and fiber
directions appear in Figure 5, and values of optimal compliance, central processing unit (CPU) time,
and number of optimization iterations are given in Table 1.

Computed values in Table 1 show that the compliance of the structure does not decrease with
increased mesh density as one might expect. We note that there is no guarantee that the global
minimum is achieved here due to the complexity of the nonconvex objective function. The optimization
routine may instead converge to a local minimum at higher mesh sizes as opposed to finding the global
minimum. The local minimum issue appears in related topology optimizations that also consider
material orientation in a similar manner (see, e.g., References [44,58]), and should be addressed in
future research in directional topology optimization.

Results in Figure 5 show that, as the mesh size increased, the optimal structure became increasingly
complex. Although the sensitivity filter was designed to prevent mesh-dependency in SIMP topology
optimizations [41], it may not be effective in preventing a local minimum from occurring in the
simultaneous optimization of fiber direction and material distribution, even with implementation of a
mesh-independent filter radius. The distribution of material in Figure 5 designs became noticeably
different for mesh sizes higher than 120× 20 mesh. In all cases, optimized fiber directions were aligned
along the principal stress directions of the segments. For singly loaded structures, this follows the
established theory that the alignment of the fibers should occur along the principal stress directions of
the structure [59]. As expected, the number of optimization iterations and CPU time, shown in Table 1
(CPU time reported for an Intel i7-4930K CPU at 3.4 GHz and 64 GB random-access memory (RAM)),
increased with mesh size and the number of design variables.
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Table 1. Continuous fiber angle optimization (CFAO) Messerschimitt–Bölkow–Blohm (MBB)
optimization results for various mesh sizes. CPU—central processing unit.

Mesh Size Number of
Design Variables

Number of
Iterations

CPU
Time (s)

Minimum
Compliance

60 × 10 1200 78 188 13.6
90 × 15 2700 151 847 11.8
120 × 20 4800 169 2094 12.1
150 × 25 7500 241 6415 12.6
180 × 30 10,800 341 17,681 13.2

3.2. 2D CFAO Beam Experimental Verification of Computed Results

To further demonstrate the effectiveness of the CFAO method, optimized MBB beams from
Section 3.1 were printed with varying fiber orientations using carbon-fiber-reinforced polylactic acid
(PLA) marketed as 3DXMax CFR-PLA by 3DxTECH (3DXTECH, Byron Center, MI, USA). The filament
contained approximately 15% carbon fiber by weight (with measured weight-averaged fiber length
and aspect ratio of 72.8 µm and 9.4, respectively) in a 1.77-mm-diameter filament and had a published
tensile strength of 47.9 MPa and a tensile modulus of 4.791 GPa. Our MBB beam structures were
printed with a MakerBot Replicator 2.0 3D FFF printer with a hardened steel 0.6-mm-diameter nozzle.
Nozzle temperature during printing was 220 ◦C and print bed heating was not used. Characterization
of the same CFR-PLA including fiber length distribution, tensile strength for various print orientations,
and micro structural analysis may be found in Jiang and Smith [19]. The geometry of the printed MBB
beams was taken from the optimized result appearing in Figure 5e. The FFF structures were printed
with 100% infill to reduce interbead voids within the material, and the 2D topologies were printed with
a total part thickness of 5.5 mm with multiple identical layers having a thickness of 0.2 mm. We note
that other CFR filaments such as CFR-ABS could have been used in this work; however, CRF-PLA is
easier to print and provides the necessary structural attributes for verifying our topology results.

To produce a printable format of the topology optimizations, the code Top3dSTL_v3.m was used
to convert the physical array of elemental densities to stl file format [60]. We used Top3dSTL_v3.m
to translate the optimal density distributions to an STL file where each element represents a unit
cube. The two-dimensional information for the planar MBB beam was retained while the thickness
out-of-plane is modified to adjust for scaling of the part dimensions in the plane. Autodesk MeshMixer
(AutoDesk, San Rafael, CA, USA) was used to smooth the edges of the CFAO structures prior to
printing. This smoothing helped facilitate a printed part that had beads such as those appearing in
Figure 6 with a primary orientation parallel to the edge of the truss-like members that resulted from the
CFAO optimizations. To realize print paths that remained mostly parallel to the edge of the structure,
a contour-parallel deposition strategy was employed. In this case, the strategy was implemented by
specifying a high number of shell layers in the MakerBot Desktop software to ensure that all printed
beads approximately aligned with the edges, particularly within the structural members that formed.
Higher-quality print beads would likely result by developing more advanced methods for translating
topology fiber angle to print path data; however, the method employed here proved sufficient for
comparing the CFAO results to other optimal topologies. Figure 6 shows the model data (left half
of beam only) at various stages during the processing of data for printing which includes the CFAO
optimized topology and fiber angle, the smoothed image obtained with Autodesk MeshMixer, and the
bead pattern print path as specified by the MakerBot Desktop. The resulting printed beam appears in
Figure 7a. Figure 7b,c show similar optimized beams where the print direction was constrained to
only horizontal and only vertical, respectively, as described elsewhere [45].
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Figure 7. Printed optimized MBB beams: (a) CFAO optimized beam from Figure 4, (b) optimized for
fixed horizontal print direction (θe = 0) (Adapted from Reference [45]), and (c) optimized for fixed
vertical print direction (θe = 90◦) (Adapted from Reference [45]).
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Printed CFAO optimized MBB beams were tested in three-point bending as shown in Figure 8
using an Instron (Instron, Norwood, MA, USA) tensile test machine with a 2-kN load cell. The load
was applied to the top center of the printed beam in the same manner as that used in the CFAO
optimization. The structural stiffness was computed from force and displacement data that were
collected using the Bluehill 3 (Instron, Norwood, MA, USA) software. Loading was performed in the
linear force–displacement range for the sample and testing was ended prior to sample failure.
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Figure 8. Mechanical test set up for CFAO optimized MBB beam.

Three samples of each of the three topologies in Figure 7 were printed and tested to obtain the
stiffness results given in Table 2. Also shown in Table 2 are results from similar tests (three samples
each) where optimal topologies were computed assuming a fixed horizontal bead path (i.e., θe = 0)
and a fixed vertical bead path (i.e., θe = 90◦) that appear in Figure 7b,c, respectively, as described
in Reference [45]. Note that, in these structures with a fixed fiber angle, each element has a single
density design variable, which simplifies the calculations and the process for creating the print file.
The fixed angle optimizations provide a point of comparison to illustrate the effectiveness of the CFAO
method. As shown in Table 2, samples optimized and printed with a horizontal bead were 15.5%
stiffer than samples optimized and printed with a predominant vertical bead. This result is to be
expected since horizontal stiffening is more efficient than vertical stiffening under the given bending
load. Table 2 also shows that CFAO optimized MBB beams performed better than either horizontal or
vertical optimized and printed beams. It is seen that the CFAO beam was 29.9% stiffer than the vertical
optimized and printed structure and 12.4% stiffer than the horizontal optimized and printed structure.
More information on details of the optimization and testing may be found in Hoglund [56].

Table 2. Measured stiffness (average of three samples each) of printed CFAO optimized beams with
other horizontal (θe = 0) and vertical (θe = 90◦) beams (cf. Reference [45]) included for comparison.

MBB Sample Average Stiffness (N/m) Standard Deviation (N/m) Coefficient of Variation

Horizontal bead [45] 2.90 × 105 0.12 × 105 0.042
Vertical bead [45] 2.51 × 105 0.052 × 105 0.021

CFAO 3.26 × 105 0.015 × 105 0.0047

3.3. 3D CFAO Topology Optimization Example

In the 3D example problems presented here, material constants in Equation (6) were taken from
the work by Heller et al. [25], who presented a computational method for predicting fiber orientation
in a FFF nozzle. They investigated how die-swell affects fiber orientation and the polymer composite
non-isotropic elastic properties after the fiber-filled polymer composite emerges from the nozzle during
printing. Therefore, the elastic properties of the polymer composites within the extrudate swell region
from Heller were used for constructing the C matrix in Equation (6) for our work. The examples
below are based on FFF polymer composite filament having 15% fiber volume, with E f = 240 GPa,
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v f = 0.2, Em = 2 GPa, and vm = 0.4. The aspect ratio of the fiber was 15. These composite material
properties were used with fiber orientation data from Heller et al. [25] to obtain the bead elastic
constants appearing in Table 3 where the x-direction was along the axis of the bead (i.e., fiber direction
in the topology optimization), and the y-direction was normal to the bead axis.

Table 3. Elastic properties from the extrudate swell region [25].

Ex (GPa) Ey (GPa) Gxy (GPa) υxy υyz

7.34 3.43 1.39 0.42 0.47

The three-dimensional example considered here was a cantilever beam with a unit load applied
to its tip as shown in Figure 9. Topology optimizations were performed for each of three different
print planes defined by the three sets of xy Cartesian planes appearing in Figure 9. The topology
optimization was first performed assuming that AM deposition occurred from the back to the front
face (labeled Case 1). A second optimization was then performed assuming that printing was done
from the bottom to the top face (labeled Case 2). Finally, a third separate optimization was performed
assuming that printing occurred from the left to right face (labeled Case 3). The definition of the
density design variables for these optimizations was the same; however, the axis about which the
material direction design variable θe was defined differed for each problem. It is well understood that
the elastic response of a structure is significantly affected by print orientation. The examples shown
here not only quantify the difference, but also demonstrate how print direction influences the optimal
topology and optimal bead direction of a 3D printed structure.

Fibers 2019, 7, x FOR PEER REVIEW 14 of 20 

Table 3. Elastic properties from the extrudate swell region [25]. 𝑬𝒙 (GPa) 𝑬𝒚 (GPa) 𝑮𝒙𝒚 (GPa) 𝝊𝒙𝒚 𝝊𝒚𝒛 
7.34 3.43 1.39 0.42 0.47 

The three-dimensional example considered here was a cantilever beam with a unit load applied 
to its tip as shown in Figure 9. Topology optimizations were performed for each of three different 
print planes defined by the three sets of xy Cartesian planes appearing in Figure 9. The topology 
optimization was first performed assuming that AM deposition occurred from the back to the front 
face (labeled Case 1). A second optimization was then performed assuming that printing was done 
from the bottom to the top face (labeled Case 2). Finally, a third separate optimization was performed 
assuming that printing occurred from the left to right face (labeled Case 3). The definition of the 
density design variables for these optimizations was the same; however, the axis about which the 
material direction design variable 𝜃 was defined differed for each problem. It is well understood 
that the elastic response of a structure is significantly affected by print orientation. The examples 
shown here not only quantify the difference, but also demonstrate how print direction influences the 
optimal topology and optimal bead direction of a 3D printed structure. 

 
Figure 9. Cantilever beam with point load, printed in three different directions. 

The finite elements in these optimizations were hexahedral having a size of 1 m × 1 m × 1 m. The 
finite element model used in the topology optimizations for Cases 1, 2, and 3 had 20 × 10 × 6, 20 × 6 × 
10, and 10 × 6 × 20 elements (i.e., length × width × height), respectively, yielding a total of 2400 design 
variables (1200 density and 1200 material angle design variables) for each optimization problem. A 
volume fraction of 𝑓 = 0.4 was assigned for the volume constraint in all optimizations, and the initial 
densities and material angles were assigned 0.4 and 0 radians, respectively, where the all element 
material angles 𝜃 were measured in the xy plane as positive counter-clockwise from the positive x-
axis. Loading and boundary conditions were the same for all three optimizations.  

Figures 10 through 16 show the optimized topology and element material angles computed for 
each of the three print plane directions described above. Output is presented in isometric, top, and 
front views. Figure 10 shows the isometric perspectives of the optimization result for Case 1, Case 2, 
and Case 3, printed in each of the directions shown in Figure 9. The optimal structures for all 
optimizations formed a shape in the form of an I-beam regardless of the print direction. In all cases, 
material was redistributed to the wider sides of the I-beam shape during the optimization, as 
indicated by the higher density (i.e., darker color) in each figure. This extra material gave the I-beam 
the needed stiffness to support the bending load.  

In addition to the 3D isometric plots, the optimized structure appears in a view that is orthogonal 
to the print plane to better illustrate the material distribution and material angle for each layer of the 
structure. Figures 11 and 12 show each layer of material distribution and material angle for Case 1. 
In Figure 11, the material angles all appear horizontal as expected since the view is sideways into the 
print plane. The optimal result was symmetric about the beam’s mid plane which was expected since 

Figure 9. Cantilever beam with point load, printed in three different directions.

The finite elements in these optimizations were hexahedral having a size of 1 m × 1 m × 1 m.
The finite element model used in the topology optimizations for Cases 1, 2, and 3 had 20 × 10 × 6,
20 × 6 × 10, and 10 × 6 × 20 elements (i.e., length × width × height), respectively, yielding a total of
2400 design variables (1200 density and 1200 material angle design variables) for each optimization
problem. A volume fraction of f = 0.4 was assigned for the volume constraint in all optimizations,
and the initial densities and material angles were assigned 0.4 and 0 radians, respectively, where the
all element material angles θe were measured in the xy plane as positive counter-clockwise from the
positive x-axis. Loading and boundary conditions were the same for all three optimizations.

Figures 10–16 show the optimized topology and element material angles computed for each of
the three print plane directions described above. Output is presented in isometric, top, and front
views. Figure 10 shows the isometric perspectives of the optimization result for Case 1, Case 2, and
Case 3, printed in each of the directions shown in Figure 9. The optimal structures for all optimizations
formed a shape in the form of an I-beam regardless of the print direction. In all cases, material was
redistributed to the wider sides of the I-beam shape during the optimization, as indicated by the higher
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density (i.e., darker color) in each figure. This extra material gave the I-beam the needed stiffness to
support the bending load.
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In addition to the 3D isometric plots, the optimized structure appears in a view that is orthogonal
to the print plane to better illustrate the material distribution and material angle for each layer of the
structure. Figures 11 and 12 show each layer of material distribution and material angle for Case 1.
In Figure 11, the material angles all appear horizontal as expected since the view is sideways into
the print plane. The optimal result was symmetric about the beam’s mid plane which was expected
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since the load was applied at the center of the right bottom edge, as shown in Figure 9. It is clear from
Figure 12 that density and material angle appeared to be the same for layers 1 and 6, layers 2 and
5, and layers 3 and 4. Material angle plots in Figure 12 show that the optimal material orientation
followed the outer contour of the structure for each layer where the dense material was distributed,
which is very similar to 2D results given above and by Nomura et al. [44].
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Figure 13 shows the front view of the optimized shape including the optimal layout of the
structure and the orientation of the material angle for Case 2. Figure 14 shows a layer-by-layer plot
for the material distribution and material angle for the Case 2 optimal result. Note that the direction
of material angle tended to point toward the applied load, which was expected as the structure was
modified during the optimization to support the tip load carried by the beam.

Figure 15 shows the front view of the optimized shape for the Case 3 optimization. Again, a
cantilever beam structure was revealed as before. Figure 16 shows the material distribution and
material orientation for each layer, where layer 1 is at the bottom and layer 20 at the top of the
optimized structure. Fiber orientation symmetry existed in each layer by comparing the first three
layers counting from the top to the three layers counting from the bottom.

Table 4 presents the initial design compliance for each case, and provides output to compare the
CPU time, the number of iterations, and the compliance for the three topology optimization cases
presented above. All cases had dramatic improvement in stiffness design after the optimization process.
The CPU time required to solve Case 1 was 48.8% and 70.8% more than Case 2 and Case 3, respectively.
Similarly, Case 1 required 24 and 31 more optimization iterations than Cases 2 and 3, respectively.
Case 1 yielded 23% and 63% lower optimal compliance than Case 2 and Case 3, respectively. In Case 1,
material angle design variables allowed the preferred material direction to rotate in a plane that had a
larger effect on the structure’s minimum compliance. However, for Case 2 and Case 3, the plane of
material angle was normal to the direction of the force, resulting in an optimization that yielded less
improvement in terms of the compliance. These results show that the relationship between the applied
loads and print plane orientation has a significant effect on the outcome of the topology optimization.

Table 4. Topology result comparisons between Case 1, Case 2, and Case 3.

Case Study Initial
Compliance (Nm) CPU Time (s) Iterations Optimized

Compliance (Nm)

Case 1 30.27 246.3 78 3.48
Case 2 30.27 165.5 54 4.28
Case 3 37.86 144.2 47 5.66
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4. Conclusions

This paper presented a topology optimization approach for non-isotropic microstructures
produced with fiber-filled polymer composite AM techniques. Special attention was given to the
unique properties for material orientation offered by AM as it relates to the layer-by-layer process
of building structures. Our approach enhances the traditional SIMP approach by including fiber
angle as a design variable and using the Matlab fmincon optimization tool to solve 2D and 3D
finite-element-based topology optimization design problems. We considered the common topology
optimization design problem of compliance minimization with a constraint on material usage. Design
sensitivities were obtained using the adjoint variable method, and a sensitivity filter was implemented
to avoid checkerboarding. Our optimization scheme was shown to compute design with oriented
microstructures for planar problems and also more general 3D domains. In addition, a procedure was
described to physically realize the optimized 2D planar structures. Static load testing showed that
structures obtained using our CFAO technique performed better than those derived from a sub-optimal
design space. The 3D example problems illustrated the significant difference in minimum compliance
that can be obtained based on print direction. It was also shown that the case where the plane of
material alignment was parallel with force direction gave the lowest compliance. Furthermore, printing
the structure at different plane directions gave very different compliance results, which is important for
designers when considering the potential loading scenarios. In our example, the minimum compliance
was reduced by 63% by selecting a different print orientation. Finally, fiber orientation generally
followed the outer contour of the dense material region for each layer. This work offers a starting point
for future work on topology optimization with AM structures. Extending the design space to include
more general shapes should be done, as well as incorporating print deformation into the topology
optimization process. The addition of stress-based constraints and optimal support structures would
also be valuable extensions of the work presented here.
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