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Abstract: Melt spinning is an efficient platform to continuously produce fiber materials with
multifunctional and novel properties at a large scale. This paper briefly reviews research works
that reveal the morphology development of immiscible polymer blend fibers during melt spinning.
The better understanding of the formation and development of morphology of polymer blend fibers
during melt spinning could help us to generate desired morphologies and precisely control the final
properties of fiber materials via the melt spinning process.
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1. Introduction

The blend method has been considered a promising way to achieve an in situ composite by simply
mixing different components. The addition of the second component not only brings the original
properties of the additive to the polymer blend but also creates new properties by tuning the structure
of the polymer blend. The final properties of polymer materials rely on the morphology produced
under the action of hydrodynamic and interfacial tension during melt processing. The strategy of
tailoring the morphology of polymer blends aims to create a dispersed phase or second component at
the desired scale and to distribute it in the desired position [1–6]. Melt spinning is a simple and efficient
way to produce polymer blend fibers. However, the rheological behavior, heat transmission, force
equilibrium, dynamics and crystallization of polymers are quite complex during the melt spinning of
fibers. So far, the precise control of the morphology of polymer blend fibers is still a challenge.

The purpose of this paper is to review studies related to the morphology development of immiscible
polymer blend fibers during melt spinning. The formation mechanism of the disperse-matrix
morphology of blend fibers during melt spinning, regarding droplet deformation, break-up and
coalescence, is also briefly addressed. In this case, the microrheological behavior and an extensive
overview are given by Janssen [7]. Since most commonly used commercial polymers are not miscible,
the situation becomes more complicated when the strong interaction between components is taken
into consideration [8,9]. Therefore, we only consider fully immiscible polymer–polymer mixtures in
this review.

The supramolecular structure evolution, regarding the crystal structure and orientation of polymer
fibers during melt spinning, has been systemically studied by researchers based on on-line small-angle
and wide-angle X-ray scattering techniques [10–21]. As far as we know, the effect that the second
phase has on the supramolecular structure evolution during melt spinning is not yet fully understood;
however, is beyond the scope of this review.
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2. Morphology Development along the Spinning Line

Once the polymer melt is removed from the spinneret, it is quenched in cooling media (e.g., water
and air), where the morphology of fibers is mainly controlled by the elongational force of the take-up
action during the melt spinning process. The temperature of running filament decreases gradually
along the spinning line, and the variation of temperature and temperature-related parameters (e.g.,
viscosity) play a vital role in the development of morphology during spinning [22]. Fundamental
equations (1-D model), describing the axial distributions of diameter, velocity, temperature, stress
and structures of the fiber during the melt spinning process, was proposed by Ziabicki [22], Kase et
al. [23] and Han et al. [24–27] in the 1960s, and was later developed further and modified by other
authors [28,29].

To study the evolution of the morphology and structure of polymer blend fibers, it is necessary
to detect the second phase inside the fiber matrix, which is not easy due to the limitation of on-line
measurement methods. Thus, a high-speed camera was used to record the flow of biphasic fluid
and monitor the morphology evolution in a transparent tube [30]. However, optical recognition of
the second phase in a polymeric matrix is not possible when the matrix is not transparent, which is
common in most fiber materials. Furthermore, this technique is quite limited to the concentration of the
second phase and the reflection index between polymer components. Therefore, in most research, the
evaluation of the morphology development of polymer blend fibers is executed by collecting samples
from the original position (usually by quenching extrudate in a low-temperature bath, and once
removed, the capillary die) and take-up position. Recently, our group [31] and Tran et al. [32] both used
a self-made fiber capturing device (see Figure 1), which allowed the capture of the running filament at
different spinning line positions and quenched the structure of the filament at a low temperature. This
was done in order to study the morphology development of blend fibers at a high resolution.
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Figure 1. Schematic diagram of the capture device made by our group.

The initial morphology of polymer blend fibers usually comes from melt extrusion. The melting
and mixing process can generate morphologies ranging from dispersed drops to fibers to lamella to
co-continuous structures [33], see Figure 2. The initial morphology of immiscible polymer blend fibers
is usually represented as a droplet-matrix or fibril-matrix morphology [31,32,34–52]. The strategy to
produce lamellae and other morphologies is more difficult than that required for the droplet-matrix
morphology since the interfacial tension tends to minimize the surface of the second phase [7].
Moreover, the formation mechanism of such a morphology during processing is not yet clear.
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Figure 2. Schematic of morphologies which can produced by polymer–polymer melt blending [33].
Reused with permission from W. Macosko Christopher, Macromolecular Symposia; published by John
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The morphology development of polymer blend fibers during melt spinning is controlled by
dynamic factors (e.g., elongational force and strain rate, which are mainly dependent on the take-up
action) and thermal conditions (e.g., cooling system, which affects the heat conduction and transfer of
polymer blend melts) [22]. Dynamic simulation studies [22,53,54] have shown that the axis velocity
and stress of the filament increase gradually along the spinning line and continue until they almost
reach the point of solidification, where the polymer blend fiber is converted from the molten to the
solid state. This indicates that the second phase undergoes a gradually increased elongational force in
the region between the spinneret and the solidification point. Ultimately, the morphology evolution
of the second phases are strongly affected by the elongational force in the fiber formation region.
Experimental studies [31,32,35,36,55] have shown that the second phase is continuously stretched along
the spinning line and the diameter of the second phase decreases with increasing the take-up speed
due to the increasing elongational stress. A sphere or rod-like second phase can be easily stretched
into a fibril-like morphology under this elongational flow field. Tran and co-authors reported the
morphology development of a poly (vinyl alcohol) (PVA) and poly (lactic acid) (PLA) blend filament
(the weight ratio of PVA to PLA was 70/30, the zero shear viscosity ratio of PVA to PLA was 13.3)
taken-up at 50 m/min during melt spinning [32]. Figure 3 presents the morphology of the PLA phase
after removing the PVA matrix at different spinning line locations. The spherical/ellipsoidal PLA
domains were gradually formed into long continuous nanofibrillar structures due to the gradually
increased elongational force along the spinning line. The formation of fibrillar structures is essential
for the improvement of the mechanical properties of polymer blend fibers [35]. Precise morphology
studies—performed in our previous studies [31,36,50]—based on the morphology analysis of cross
and longitudinal sections of blend fibers revealed that the dispersed phase deformed from ellipse
to nano-scale fibrils along the spinning line, as shown in Figure 4. The break-up phenomenon was
observed when the interfacial tension was not strong enough to maintain the dispersed phase under
the equilibrium with viscous force [36,56].
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permission from Tran, N.H.A.; Brünig, H.; Boldt, R.; Heinrich, G., Polymer; published by Elsevier, 2014.
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Figure 4. SEM micrographs of polypropylene (PP)/polystyrene (PS) extrudate fiber and blend fiber
taken at 500 m/min from (a1 and a2) a longitudinal section and (b1 and b2) a cross section after
removing the dispersed PS phased in solvent. The dark spots on the cross section represent PS phases.
The weight percent of PS phase in blend fiber is 8%; the zero-shear viscosity ratio of PS/PP is 10.8 [31].
Reproduced with permission from He, H.; Chen, L.; Zhang, Y.; Hong, S.; Zhou, Y.; Zhu, M., Fibers and
Polymers; published by Springer Nature, 2014.

During melt spinning, the polymer melt flow presents as an unsteady flow with a shrinking fiber
matrix. In some cases, the shrinking matrix compresses the droplets to enable them to migrate from
the surface to the center of the matrix fiber [31]. Meanwhile, the shrinking boundary also makes the
coalescence of the dispersed phase much more frequent. He and co-authors [31,57] found that there
is a coalescence region combined with the droplet deformation region under the condition of high
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take-up velocity, as shown in Figures 5 and 6. In this coalescence region, the diameter of polystyrene
(PS) dispersed phases in polypropylene (PP)/PS blend fibers increased along the spinning line. This
indicates that the diameter of the second phase is not always decreasing along the spinning line under
elongational flow. The increase in the diameter of the dispersed phase due to the coalescence also
make the elongation of the dispersed phase more pronounced and facilitates fibril formation [31,58].
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The equilibrium between the break-up and coalescence of droplets makes the morphology and
its development along the spinning line more complicated, especially in high concentrations and
particle–particle interaction systems [9,58–60]. Tran and co-authors [32] showed that the dispersed
phase tends to coalesce with the adjacent dispersed phase in order to form continuous long micro- or
nanofibrils. When they investigated the morphological evolution of thermoplastic PVA/PLA blend
filaments along the spinning line, a random morphology of the dispersed PLA phase was observed in
the earlier stage, when the equilibrium between the break-up and coalescence of droplets was in a
delicate balance status, which may be due to the not fully developed morphology in the extrusion
capillary. Furthermore, this irregularly dispersed PLA was also stretched into micro- or nanofibrils.
Yang’s study [40] showed that the fibrils or droplets at the surface of polymer blend fibers can
coalesce into a continuous layer or network during melt spinning when the drawdown ratio (DDR) is
high enough.
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Despite the axis temperature difference, it is known that there is a non-uniform distribution
of temperature along the radial direction in the melt spinning of fibers due to the heat transfer
from the molten fiber to the surrounding medium [50]. The radial temperature difference in turn
affects the radial viscosity and stress fields in the running filament, which can generate a hierarchical
structure—such as a skin–core structure [61,62]. Furthermore, the temperature difference also influences
the microrheological behavior of the second phase in polymer blend fibers [31,36,50]. Our previous
research [36,38,50,63,64] found that, if a polymer blend fiber with gradient structures was produced
by using this radial gradient temperature during melt spinning, it could be achieved with great ease.
The gradient morphology of PP/PS blend fibers could be tailored by tuning the take-up speed and
the viscosity ratio (p) of the polymer blend, as shown in Figure 7. Gradient structures with large
droplets near the surface region of PP/PS blend fibers and small droplets in the center can be produced
in PP/PS blend fibers with high viscosity ratios, and was found to accelerate the dye absorption
of PP fiber [36]. However, a relatively uniform morphology was obtained in a matched viscosity
ratio system (p ≈ 1) [64]. The dynamics of the melt spinning of PP/PS blend fibers showed that the
polymer melt jets exit the spinneret at uniform temperatures [53]. As the polymer melt jets were
drawn down, the polymer melt jets were cooled, with a temperature gradient in the radial direction of
fiber. The transition from the central region with high temperatures to the surface region with low
temperatures is shown in Figure 8. The maximum radial temperature gradients varied from 5.6 × 104

to 12.4 × 104 ◦C/m at the spinning line positions from 11.4 to 32.7 cm with regard to the various take-up
velocities. The PS droplets, with higher viscosity than the PP matrix, in the center region tended to have
smaller diameters than those in the surface region [31]. This radial diameter gradient was found to be a
result of the radial temperature gradient since the droplets in the center region with high temperatures
have a higher possibility and more time to deform into more stretched droplets or fibrils [50]. This
radial diameter gradient was strengthened along the spinning line and slightly strengthened by the
increasing take-up speed. However, the drastic coalescence of droplets in the center of fibers at a high
take-up speed results in a weakening of the radial gradients of droplets. The dispersed phases near the
surface region can act as a functional additive to improve the surface properties of normal fibers. Dan
and co-authors [6] showed that PS dispersed phases near the fiber surface were aligned along the fiber
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axis and formed nano-channels after removing said PS phases, as shown in Figure 9. This could be a
possible way to produce a functional fiber with good surface properties and novel optical properties.Fibers 2019, 7, x FOR PEER REVIEW 7 of 14 
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1 
 

 
Figure 9. Atom force microscopy images of the surface patterns of PP/PS gradient fibers after
hot-drawing, before (left column) and after (right column) dissolving PS. The upper and lower rows
show the surfaces of the fibers processed with v = 30 m/min and aspect ratio of capillary AR = 2 and 57,
respectively. The weight percent of PS is 20% and the viscosity ratio of PS/PP is 2.45. Arrows indicate
the fiber axis [6]. Reused with permission from Pan, D.; Hufenus, R.; Qin, Z.; Chen, L.; Gooneie, A.,
Macromolecular Materials and Engineering; published by John Wiley and Sons, 2018.

3. Mechanism of Morphology Development

An essential aspect of the formation mechanism of a dispersed-matrix morphology in polymer
blends is the dispersion of one liquid in another. The morphology of polymer blend fibers highly
depends on the microrheological behavior of the second phase, including deformation, break-up,
coalescence and migration under the action in elongational flow. In particular, the time scales of the
distinct microrheological processes have to be considered to verify whether the available process time
suffices for a specific event to occur [7].

The deformation of a dispersed droplet is governed by the viscosity ratio p, the ratio of the
viscosity of dispersed phase ηd to the viscosity of matrix ηm and the capillary number Ca, which
expresses the ratio between viscous force and interfacial tension, according to Taylor’s theory [65,66].

Ca =
ηm

.
εR0

α
, (1)

where
.
ε is the elongational rate, R0 is the radius of the initial droplet and α the interfacial tension

between two polymers. The deformation degree of the dispersed phase is usually defined as:

D =
L− B
L + B

, (2)
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where L is the length of the major axis, B is the length of the minor axis. Taylor presented two cases of
the deformation expressions—when interfacial forces dominate and when viscous effects dominate.
Cox [67] then extended Taylor’s theory to the full range of the viscosity ratio under elongational flow:

D = A·Ca
19p + 16
16p + 16

, (3)

where A is the flow type constant, A = 2 in plane hyperbolic flow fields, A = 1 in the uniaxial
elongational flow field. However, Taylor and Cox’s theories are limited to small deformation cases
with medium or high viscosity ratio systems. When discussing low viscosity ratio polymer blends,
the dispersed phases can be stretched into fine fibrils. Meanwhile, the small deformation theory
cannot predict the deformation and break-up of fibrils precisely [68]. In 1964, Taylor proposed a large
deformation theory intended to describe a slender droplet in four roller axisymmetric extension fields.
However, this large deformation theory is limited to low viscosity ratio and low Ca cases. Acrivos et
al. [69] extended the large deformation theory into droplet deformation in uniaxial elongational flow,
for which the relation between Ca and droplet deformation can be expressed as:

Ca(p1/6) =
1
√

20

( L
2R0

p1/3)
1/2

1 + s( L
2R0

p1/3)
3 , s = 0.8. (4)

When the droplet deformation is similar to the deformation of the matrix, as shown in Figure 10,
the affine deformation of droplet can be described as:

L
2R0

= eε,
B

2R0
= e−ε/2, D =

e3ε/2
− 1

e3ε/2 + 1
, (5)

where ε (ε =
.
ε·t) is the elongation stress.
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Figure 10. Schematic representation of the affine deformation of a single drop in matrix before and
after deformation. L0 and λL0 are the initial and final lengths of the specimen, respectively. D0 is the
initial drop diameter and λD0 is the major axis of the elongated droplet.

Above a critical number, Cac, the viscous force overrules the interfacial tension and no stable
equilibrium droplet shape exists. The droplet is stretched and finally breaks apart. Cac can be
experimentally determined by increasing the elongational rate to evaluate whether or not the droplet
shape remains stable for a considerable period of time [7]. The Cac of the droplet in the elongational
flow is a function of the viscosity ratio and can be expressed as Equation (6) according to Grace’s
study [70].

log Cac = −0.64853− 0.02442 lg p + 0.02221(lg p)2
−

0.00056
lg p− lg 0.98526

. (6)

There are three types of break-up that can be found in experimental studies: stepwise, transient, and
edge break-up mechanisms as shown in Figure 11 [71,72]. Stepwise break-up usually happens in the
case of low Ca, wherein the mother droplet break-up converts into two same droplets when Ca > Cac.
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The deformation and break-up of droplets can be predicted when the reduced capillary number
(see Equation (7)) based on Huneault’s criteria [73] is taken into account. According to Huneault’s
certificate, droplets cannot deform in the case of Ca∗ < 0.1. Droplets deform but not break-up in the
case of 0.1 < Ca∗ < 1; droplets deform and then split into two primary droplets for 1 < Ca∗ < 4; and
droplets deform into fibrils and disintegration when 4 < Ca∗.

Ca∗ =
Ca
Cac

, (7)

During the break-up of extended fibrils, the waves of distorted interfacial surfaces are continuously
stretched. Break-up occurs as soon as the amplitude of a disturbance of interface is magnified to such
an extent that it equals the continuously decreasing mean thread radius [7]. The total break-up time t∗b
is expressed as:

t∗b = t∗c + t∗g =
1
e f

(
23/2ln

(R0

Rc

)
+ e f t∗g

)
, (8)

where t∗c is the critical time where the thread radius has decreased to the critical radius Rc of break-up
and t∗g is the growth time from critical time to the moment break-up occurs. e f is the stretching
efficiency, e f =

√
1/2 in 2-D elongational flow and e f =

√
2/3 in 3-D elongational flow.

.
γ, Rc and e f t∗g

can be determined by using the method described in Reference [7].
The above models suggest that the morphology of polymer blend fibers could be predicted based

on the melt spinning dynamics simulated under some simple conditions [50,56,68,74]. The droplet
deformation theory was first adopted by Padsalgikar et al. [68] to simulate the diameter of dispersed PP
droplets along the spinning line in PS/PP blend fibers based on Taylor and Cox’s theories. The simulated
values correlated with the measured values at the low take-up speed range from 125 to 250 m/min.
Song et al. [56] adopted similar methods and predicted the diameter of Liquid crystalline polymer
(LCP) droplets in polyester (PET)/LCP blend fibers. The simulated values were found to be about 12%
to 33% smaller than the measured diameter. Pan et al. [50] studied the PS droplet deformation in a
PP matrix during melt spinning. Delaby’s affine deformation model [75–77] was selected to simulate
the diameter of the dispersed PS phase, based on Huneault’s certificate, and again displayed signs
of correlation between predicted and measured values at relatively low take-up velocities. However,
the prediction of the morphology of polymer blend fibers becomes much more challenging when the
strong interaction between the dispersed phases is taken into consideration. He et al. [74] also studied
the deformation, coalescence and breakup of thermotropic liquid-crystalline polymer (TLCP) drops
in poly(ethylene naphthalate) (PEN)/TLCP Vectra A950 blend at the take-up speed of 300 m/min by
using affine deformation theory. However, neither the degree of TLCP droplets deformation nor the
fundamental question of the difference between simulated and measured morphology was further
illustrated. From the existing few papers related to the simulation of the morphology of polymer blend
fibers, droplet deformation theory enables the prediction of the diameter of the dispersed phase at
low take-up velocities. However, when the coalescence effect is non-negligible, the precise predict of
droplet morphology is not possible.

The flow-induced coalescence of droplets is a complex phenomenon and is mostly studied in
shear flow, where droplets with different coordinates in the direction of the velocity gradient collide [9],
as shown in Figure 12. The course of coalescence usually has three steps: (1) the approach and collision
of droplets; (2) the rupture of the matrix film between two approaching droplets; (3) the drainage of
the matrix film. It is difficult to find further research on the coalescence of droplets in elongational
flow. However, the current coalescence theory of droplets is limited to a low shear rate range and
low concentration blends. Many problems have not yet been studied, and most theories focus on the
coalescence between sphere droplets, which is not common in the elongational flow. Most research
neglects the effect of other droplets on the collision droplet pairs [9].
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4. Conclusions and Outlooks

In this brief and introductory review, we have expressed current understandings of the morphology
development of polymer blend fibers during melt spinning. Yet, current studies do not supply sufficient
knowledge to cover all conditions, e.g., the full range of the viscosity ratio and the volume fraction, or
the wide range of the take-up speed, due to the limitations of the precise characterization of morphology.
In order to gain more insight into the formation mechanisms of morphology during melt spinning,
we have drawn attention to the microrheological behavior of the second phase in elongational flow.
Current research demonstrates that the microrheological theory will continue to evolve and become
more popular in morphology simulation during melt processing. However, for more concentrated
systems and high strain rate conditions, a complete understanding of morphology development in
elongational flow has not yet been obtained. That being said, with the progress in theoretical and
experimental techniques, it will perhaps be possible to design polymer materials with novel structures
at desired scales and positions in the future.
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