Grinding Test on Tremolite with Fibrous and Prismatic Habit
Abstract
:1. Introduction
- “Asbestiform habit” is associated with a crystalline structure characterized by thin crystals similar to the morphology of organic fibers (hair; the resemblance is not in the width, 10−6 m for asbestos fibers vs 10−5 m for hair) or as a crystalline aggregation consisting of parallel fibers (bundles with indented extremities). The fibers are thin, long, and similar to needle-shaped elements with a unidirectional growth [8].
- “Non-asbestiform” refers to a structure characterized by tiny or “elongated prisms with a lozenge-shaped cross section” [4]. The crystalline growth is not unidirectional.
2. Materials and Methods
2.1. Material
2.2. Phase Contrast Optical Microscope (PCOM)
2.3. Scanning Electron Microscope (SEM)
2.4. Methodology
2.4.1. Sample Preparations for Microscopic Observation
2.4.2. Grinding
2.4.3. Decision-Making Processes for Counting and Measurement of Particles
- Fibrous: long and thin fibers;
- Prismatic: elements with a significant thickness and flatness (resulting from planar rupture) or acicular extremities;
- Acicular: long and thin fibers with at least one needle-shaped end;
- Bundle of fibers: indistinguishable elements inside a bundle, where one exists.
- A range of aspect ratios ranging from 20:1 to 100:1 or higher for fibers longer than 5 μm;
- The capability of splitting into very thin fibrils;
- Two or more of the following:
- −
- Parallel fibers occurring in bundles;
- −
- Fiber bundles displaying frayed ends;
- −
- Fibers in the form of thin needles;
- −
- Matted masses of individual fibers; and/or
- −
- Fibers showing curvature.”
2.4.4. Closing Remarks on the Counting and Measurement of Particles
- Only crystalline elements falling within the outline of the microscopic reticle, and not the particles exceeding this area, have been considered, as shown in Figure 6;
- The fields of observation are casually selected inside the coverslip, more precisely following a grid and each field is not repeatable;
- During the measurement, fiber and/or fragment elements having length > 5 μm, without any restriction in the diameter, have been included; 5 μm is a threshold coming from the regulated fibers definition (>5 μm in length, ≤3 μm in diameter width, length/diameter (aspect) ratio ≥ 3:1) according to the World Health Organization and adopted in the Italian Minister Decree 06.09.94 [13,29]. It was chosen to not use the diameter threshold because we needed to measure the width of prismatic components, which are much greater than 3 μm;
- Particles are individually counted but, in the case of a bundle of crystalline elements, where these touch or cross each other it was counted as one fiber;
- In a prismatic fragment, which appears acicular or irregular at one or more point of its length, the diameter is measured along the section. This chosen section must not be influenced by breakage;
- A sufficient number of fields to reach the hundreds of elements were observed.
3. Results
4. Discussion
4.1. Granulometric Analysis
4.2. Dimensional Analysis Based on the Health and Safety Executive Definition
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock Forming Minerals, 1st ed.; Longman Group Limited: London, UK, 1966. [Google Scholar]
- Gamble, J.F.; Gibbs, G.W. An evaluation of the risks of lung cancer and mesothelioma from exposure to amphibole cleavage fragments. Regul. Toxicol. Pharmacol. 2008, 52, S154–S186. [Google Scholar] [CrossRef] [PubMed]
- Roggli, V.L.; Vollmer, R.T.; Butnor, K.J.; Sporn, T.A. Tremolite and mesothelioma. Ann. Occup. Hyg. 2002, 45, 447–453. [Google Scholar]
- Addison, J.; McConnell, E.E. A review of carcinogenicity studies of asbestos and non-asbestos tremolite and other amphiboles. Regul. Toxicol. Pharmacol. 2008, 52, S187–S199. [Google Scholar] [CrossRef] [PubMed]
- Ilgren, E.B.; Penna, B.M. The biology of cleavage fragments: A brief synthesis and analysis of current knowledge. Indoor Built Environ. 2014, 13, 343–356. [Google Scholar] [CrossRef]
- Ross, M.; Langer, A.M.; Nord, G.L.; Nolan, R.P.; Lee, R.J.; Orden, D.V.; Addison, J. The mineral nature of asbestos. Regul. Toxicol. Pharmacol. 2008, 52, S26–S30. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Asbestiform Fibers: Nonoccupational Health Risks; National Academies Press: Washington, DC, USA, 1984. [Google Scholar]
- Dana, S.D.; Ford, W.E. A Textbook of Mineralogy; Wiley and Sons: New York, NY, USA, 1932. [Google Scholar]
- Dorling, M.; Zussman, J. Characteristics of asbestiform and non-asbestiform calcic amphiboles. Lithos 1987, 20, 469–489. [Google Scholar] [CrossRef]
- Ministero della Salute Italiana. Sintesi delle conoscenze relative all’esposizione e al profilo tossicologico-Amianto. Available online: http://www.salute.gov.it/imgs/C_17_pubblicazioni_2570_allegato.pdf (accessed on 27 May 2019).
- IARC. Some inorganic and organometallic compounds. IARC Monogr. Eval. Carcinog. Risk Chem. Man. 1973, 2, 1–181. [Google Scholar]
- Gualtieri, A.F.; Gandolfi, N.B.; Pollastri, S.; Rinaldi, R.; Sala, O.; Martelli, G.; Bacci, T.; Paoli, F.; Viani, A.; Viglituro, R. Assessment of the potential hazard represented by natural raw materials containing minerals fibers—The case of the feldspar from Orani, Sardinia (Italy). J. Hazard. Mater. 2018, 350, 76–87. [Google Scholar] [CrossRef]
- International Programme on Chemical Safety & WHO Task Group on Asbestos and other Natural Mineral Fibers. Asbestos and Other Natural Mineral Fibers/Published under the Joint Sponsorship of the United Nations Environment Programme; World Health Organization: Geneva, Switzerland, 1986; Available online: http://www.who.int/iris/handle/10665/37190 (accessed on 27 May 2019).
- Timbrell, V.; Griffiths, D. Pooley, Possible importance of fiber diameters of South African Amphiboles. Nature 1971, 232, 55–56. [Google Scholar] [CrossRef]
- Wylie, A.; Mossman, B. Mineralogical features associated with cytotoxic and proliferative effects of fibrous talc and asbestos on tracheal epithelial and pleural mesothelial cells. J. Toxicol. Appl. Pharmacol. 1997, 147, 143–150. [Google Scholar] [CrossRef]
- Wagner, J.C.; Chamberlain, M.; Brown, R.; Berry, G.; Pooley, F.; Davies, R.; Griffiths, D. Biological effect of tremolite. Br. J. Cancer 1982, 45, 352–371. [Google Scholar] [CrossRef]
- Davis, J.M.G.; Addison, J.; Bolton, R.E.; Donaldson, K.; Jones, A.D.; Miller, B.G. Inhalation studies on the effects of tremolite and brucite dust in rats. Carcinogenesis 1985, 6, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.C.; Slegs, C.; Marchands, P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br. J. Ind. Med. 1960, 17, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.; Hubert, D.; Sobel, H.; Marquet, E. Biologic tests of tremolite in hamsters. In Dust and Disease, proceedings of the Conference on Occupational Exposures to Fibrous and Particulate Dust and Their Extension into the Environment, Washington, DC, USA, 1977; Pathotox Publishers: Park Forest South, IL, USA, 1979; pp. 335–339. [Google Scholar]
- Davis, J.M.G.; Addison, J.; McIntosh, C.; Miller, B.; Niven, K. Variations in the carcinogenicity of tremolite dust samples of differing morphology. Ann. N. Y. Acad. Sci. 1991, 643, 473–483. [Google Scholar] [CrossRef]
- Stanton, M.; Layard, M.; Tegeris, A.; Miller, E.; May, M.; Morgan, E.; Smith, A. Relation of particle dimension to carcinogenicity in amphibole asbestos and other fibrous minerals. J. Natl. Cancel Inst. 1981, 67, 965–975. [Google Scholar]
- Bloise, A.; Kusiorowski, R.; Gualtieri, A. The effect of grinding on tremolite asbestos and anthophyllite asbestos. Minerals 2018, 8, 274. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Pollastri, S.; Gandolfi, N.B.; Ronchetti, F.; Albonico, C.; Cavallo, A.; Zanetti, G.; Marini, P.; Sala, O. Minerals in the human body—Determination of the concentration of asbestos minerals in highly contaminated mine tailings: An example from abandoned mine waste of Crètaz and Èmarese (Valle d’Aosta, Italy). Am. Mineral. 2014, 99, 1233–1247. [Google Scholar] [CrossRef]
- Health and Safety Executive. Asbestos: The Analysts’ Guide for Sampling, Analysis and Clearance Procedures; HSE Books: Norwich, UK, 2005. [Google Scholar]
- Baietto, O.; Marini, P. Naturally occurring asbestos: Validation of PCOM quantitative determination. Resour. Policy 2018, 59, 44–49. [Google Scholar] [CrossRef]
- Clerici, C.; Morandini, A.; Occela, E.; Visetti, A. L’impiego del contrasto di fase in microscopia. Boll. dell’associ. Miner. Subalp. 1975, 12, 268–298. [Google Scholar]
- Niskanen, L.; Räty, J.; Peiponen, K.E. Determination of the refractive index of microparticles by utilizing light dispersion properties of the particle and an immersion liquid. Talanta 2013, 115, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.G. Die phasenkontrastmikroskopie in der staubtechnik. Staub 1955, 41, 436. [Google Scholar]
- Marconi, A. L’identificazione delle fibre di asbesto per mezzo della tecnica microscopica della dispersione cromatica. Ann. dell’Ist. Super. Della Sanità 1982, 18, 911–914. [Google Scholar]
- Decreto del Ministero della Sanità 6 settembre 1994: Normative e metodologie tecniche di applicazione dell’art. 6, comma 3, e dell’art. 12, comma 2, della legge 27 marzo 1992, n. 257, relativa alla cessazione dell’impiego dell’amianto. (GU Serie Generale n.220 del 20-09-1994 - Suppl. Ordinario n. 129. Available online: https://www.unipd-org.it/rls/pericolirischi/Pericoli/.../d.m._06.09.94.pdf (accessed on 28 May 2019).
- Bozzola, J.J.; Russell, L.D. Electron. Microscopy: Principles and Techniques for Biologists, 2nd ed.; Jones & Bartlett Learning: Burlington, MA, USA, 1992. [Google Scholar]
Test Subjects | Procedure | Authors | |
---|---|---|---|
Workers | Exposure to non-asbestiform tremolite | Gamble et al. [2] | |
In vitro | Test by a variety of cellular endpoints | Timbrell et al. [14] Wylie & Mossman [15] Wagner et al. [16] | |
In vivo (such as rat) | Experiment: | Inhalation | Davis et al. [17] |
Intraperitoneal or intrapleural injection | Wagner et al. [18] Smith et al. [19] Davis et al. [20] | ||
Intrapleural implant | Stanton et al. [21] |
Sample Nomenclature | Natural Sample (mg) | Ground Sample (mg) |
---|---|---|
Bracchiello | 0.6 | 0.3 |
Monastero | 0.2 | 0.3 |
Caprie | 0.3 | 0.3 |
Verrayes | 0.3 | 0.3 |
Sample Nomenclature | Original Sample | Ground Sample | ||
---|---|---|---|---|
Number of Fields Examined | Number of Particles Counted | Number of Fields Examined | Number of Particles Counted | |
Bracchiello | 100 | 240 | 36 | 331 |
Monastero | 10 | 2929 | 25 | 358 |
Caprie | 100 | 669 | 25 | 288 |
Verrayes | 25 | 562 | 25 | 458 |
Original samples | Sample nomenclature | Bracchiello | Monastero | Caprie | Verrayes |
Weight on slide (mg) | 0.6 | 0.2 | 0.3 | 0.3 | |
PCOM objective | 10× | 10× | 10× | 10× | |
Refractive index of oil | 1550 | 1600 | 1600 | 1600 | |
Fields of observation | 100 fields (20 × 5 strips) | 20 | 100 fields (20 × 5 strips) | 25 | |
Coverslip area (mm2) | 25 × 25 | 34 × 40 | 25 × 25 | 25 × 25 | |
Number of particles analyzed | 240 | 2929 | 669 | 526 | |
Ground samples | Sample nomenclature | Bracchiello | Monastero | Caprie | Verrayes |
Weight on slide (mg) | 0.3 | 0.3 | 0.3 | 0.3 | |
PCOM objective | 40× | 40× | 40× | 40× | |
Refractive index of oil | 1600 | 1600 | 1600 | 1600 | |
Fields of observation | 25 | 25 | 25 | 25 | |
Coverslip area (mm2) | 25 × 25 | 25 × 25 | 25 × 25 | 25 × 25 | |
Number of particles analyzed | 331 | 358 | 288 | 458 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baietto, O.; Diano, M.; Zanetti, G.; Marini, P. Grinding Test on Tremolite with Fibrous and Prismatic Habit. Fibers 2019, 7, 52. https://doi.org/10.3390/fib7060052
Baietto O, Diano M, Zanetti G, Marini P. Grinding Test on Tremolite with Fibrous and Prismatic Habit. Fibers. 2019; 7(6):52. https://doi.org/10.3390/fib7060052
Chicago/Turabian StyleBaietto, Oliviero, Mariangela Diano, Giovanna Zanetti, and Paola Marini. 2019. "Grinding Test on Tremolite with Fibrous and Prismatic Habit" Fibers 7, no. 6: 52. https://doi.org/10.3390/fib7060052
APA StyleBaietto, O., Diano, M., Zanetti, G., & Marini, P. (2019). Grinding Test on Tremolite with Fibrous and Prismatic Habit. Fibers, 7(6), 52. https://doi.org/10.3390/fib7060052