Borosilicate Based Hollow-Core Optical Fibers
Abstract
:1. Introduction
2. Borosilicate Glass Fiber Properties
3. Near-Infrared Spectral Range
3.1. Attenuation
3.2. Bending Loss
4. Mid-Infrared Spectral Range
4.1. Mid-IR Attenuation
4.2. Mid-IR Bending Loss
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Belardi, W. Hollow-core optical fibers. Fibers 2019, 7, 50. [Google Scholar] [CrossRef]
- Bufetov, I.A.; Kosolapov, A.F.; Pryamikov, A.D.; Gladyshev, A.V.; Kolyadin, A.N.; Krylov, A.A.; Yatsenko, Y.P.; Biriukov, A.S. Revolver Hollow Core Optical Fibers. Fibers 2018, 6, 39. [Google Scholar] [CrossRef]
- Pryamikov, A.D.; Biriukov, A.S.; Kosolapov, A.F.; Plotnichenko, V.G.; Semjonov, S.L.; Dianov, E.M. Demonstration of a waveguide regime for a silica hollow-core microstructured optical fiber with a negative curvature of the core boundary in the spectral region >3.5 μm. Opt. Express 2011, 19, 1441. [Google Scholar] [CrossRef] [PubMed]
- Kolyadin, A.N.; Kosolapov, A.F.; Pryamikov, A.D.; Biriukov, A.S.; Plotnichenko, V.G.; Dianov, E.M. Light transmission in negative curvature hollow core fiber in extremely high material loss region. Opt. Express 2013, 21, 9514. [Google Scholar] [CrossRef] [PubMed]
- Debord, B.; Amrani, F.; Vincetti, L.; Gérôme, F.; Benabid, F. Hollow-Core Fiber Technology: The Rising of “Gas Photonics”. Fibers 2019, 7, 16. [Google Scholar] [CrossRef]
- Belardi, W.; Knight, J.C. Negative curvature fibers with reduced leakage loss. Opt. Soc. Am. 2014, Th2A.45. [Google Scholar] [CrossRef] [Green Version]
- Belardi, W.; Knight, J.C. Hollow antiresonant fibers with reduced attenuation. Opt. Lett. 2014, 7, 1853. [Google Scholar] [CrossRef] [PubMed]
- Van Putten, L.D.; Fokoua, E.N.; Mousavi, S.M.A.; Belardi, W.; Chaudhuri, S.; Badding, J.V.; Poletti, F. Exploring the Effect of the Core Boundary Curvature in Hollow Antiresonant Fibers. IEEE Photonics Technol. Lett. 2016, 2, 263. [Google Scholar] [CrossRef]
- Belardi, W.; De Lucia, F.; Poletti, F.; Sazio, P.J. Composite material hollow antiresonant fibers. Opt. Lett. 2017, 13, 2535. [Google Scholar] [CrossRef] [PubMed]
- Bateman, S.A.; Belardi, W.; Yu, F.; Webb, C.E.; Wadsworth, W.J. Gain from helium-xenon discharge in hollow optical fibres at 3 to 3.5 µm. Opt. Soc. Am. 2014, STh5C. [Google Scholar] [CrossRef]
- Abu Hassan, M.R.; Yu, F.; Wang, Z.; Belardi, W.; Wadsworth, W.J.; Knight, J.C. Synchronously pumped mid-IR hollow core fiber gas laser. In Proceedings of the 2015 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 10–15 May 2015. [Google Scholar]
- Gattass, R.R.; Rhonehouse, D.; Gibson, D.; McClain, C.C.; Thapa, R.; Nguyen, V.Q.; Bayya, S.S.; Weiblen, R.J.; Menyuk, C.R.; Shaw, L.B.; et al. Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion. Opt. Express 2016, 24, 25697. [Google Scholar] [CrossRef] [PubMed]
- Cruz, A.L.S.; Cordeiro, C.M.B.; Franco, M.A.R. 3D Printed Hollow-Core Terahertz Fibers. Fibers 2018, 6, 43. [Google Scholar] [CrossRef]
- Yu, F.; Knight, J.C. Spectral attenuation limits of silica hollow core negative curvature fiber. Opt. Express 2013, 21, 21466. [Google Scholar] [CrossRef] [PubMed]
- Continental Trade. Available online: https://www.continentaltrade.com.pl/borosilicate-glass (accessed on 1 August 2019).
- Schott. Available online: https://www.schott.com/advanced_optics (accessed on 1 August 2019).
- Humbach, O.; Fabian, H.; Grzesik, U.; Haken, U.; Heitmann, W. Analysis of OH absorption bands in synthetic silica. J. Non-Cryst. Solids 1996, 203, 19. [Google Scholar] [CrossRef]
- Mendez, A.; Morse, T.F. Specialty Optical Fibers Handbook; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Kitamura, R.; Pilon, L.; Jonasz, M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 2007, 33, 8118. [Google Scholar] [CrossRef] [PubMed]
- Gladyshev, A.V.; Kosolapov, F.; Astapovich, M.S.; Kolyadin, A.N.; Pryamikov, A.D.; Khudyakov, M.M.; Likhachev, M.E.; Bufetov, I.A. Revolver Hollow-Core Fibers and Raman Fiber Lasers. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition, San Diego, CA, USA, 11–15 March 2018. [Google Scholar]
- Belardi, W. Design and Properties of Hollow Antiresonant Fibers for the Visible and Near Infrared Spectral Range. J. Lightwave Technol. 2015, 21, 21–4497. [Google Scholar] [CrossRef]
- Belardi, W.; Knight, J.C. Hollow antiresonant fibers with low bending loss. Opt. Express 2014, 22, 10091. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belardi, W.; Sazio, P.J. Borosilicate Based Hollow-Core Optical Fibers. Fibers 2019, 7, 73. https://doi.org/10.3390/fib7080073
Belardi W, Sazio PJ. Borosilicate Based Hollow-Core Optical Fibers. Fibers. 2019; 7(8):73. https://doi.org/10.3390/fib7080073
Chicago/Turabian StyleBelardi, Walter, and Pier John Sazio. 2019. "Borosilicate Based Hollow-Core Optical Fibers" Fibers 7, no. 8: 73. https://doi.org/10.3390/fib7080073
APA StyleBelardi, W., & Sazio, P. J. (2019). Borosilicate Based Hollow-Core Optical Fibers. Fibers, 7(8), 73. https://doi.org/10.3390/fib7080073