Dissolution and Diffusion-Based Reactions within YBa2Cu3O7−x Glass Fibers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Results and Characterization of As-Drawn YBCO Glass Fibers
3.1.1. Vacuum As-Drawn YBCO Glass Fibers
3.1.2. Oxygen As-Drawn YBCO Glass Fibers
3.1.3. Phase Separation Analysis of As-Drawn YBCO Glass Fibers
3.2. Results and Characterization of Heat-Treated Vacuum As-Drawn YBCO Glass Fibers
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taylor, G.F. A Method of Drawing Metallic Filaments and a Discussion of their Properties and Uses. Phys. Rev. 1924, 23, 655–660. [Google Scholar] [CrossRef]
- Grodkiewicz, W. Fused silica fibers with metal cores. Mater. Res. Bull. 1975, 10, 1085–1090. [Google Scholar] [CrossRef]
- Morris, S.; Hawkins, T.; Foy, P.; Ballato, J.; Martin, S.W.; Rice, R. Cladding Glass Development for Semiconductor Core Optical Fibers. Int. J. Appl. Glass Sci. 2012, 3, 144–153. [Google Scholar] [CrossRef]
- Ballato, J.; Hawkins, T.; Foy, P.; Stolen, R.; Kokuoz, B.; Ellison, M.; Mcmillen, C.; Reppert, J.; Rao, A.M.; Daw, M.; et al. Silicon optical fiber. Opt. Express 2008, 16, 18675–18683. [Google Scholar] [CrossRef]
- Zheng, S.; Li, J.; Yu, C.; Zhou, Q.; Chen, D. Preparation and characterizations of Nd: YAG ceramic derived silica fibers drawn by post-feeding molten core approach. Opt. Express 2016, 24, 24248–24254. [Google Scholar] [CrossRef]
- Morris, S.; Ballato, J. Molten-core fabrication of novel optical fibers. Am. Ceram. Soc. Bull. 2013, 92, 24–29. [Google Scholar]
- Ballato, J.; Mcmillen, C.; Hawkins, T.; Foy, P.; Stolen, R.; Rice, R.; Zhu, L.; Stafsudd, O. Reactive molten core fabrication of glass-clad amorphous and crystalline oxide optical fibers. Opt. Mater. Express 2012, 2, 153–160. [Google Scholar] [CrossRef]
- Ballato, J.; Hawkins, T.; Foy, P.; Kokuoz, B.; Stolen, R.; Mcmillen, C.; Daw, M.; Su, Z.; Tritt, T.M.; Dubinskii, M.; et al. On the fabrication of all-glass optical fibers from crystals. J. Appl. Phys. 2009, 105. [Google Scholar] [CrossRef] [Green Version]
- Auguste, J.L.; Humbert, G.; Leparmentier, S.; Kudinova, M.; Martin, P.O.; Delaizir, G.; Schuster, K.; Litzkendorf, D. Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers. Materials 2014, 7, 6045–6063. [Google Scholar] [CrossRef] [Green Version]
- Ballato, J.; Hawkins, T.; Foy, P.; Yazgan-Kokuoz, B.; Mcmillen, C.; Burka, L.; Morris, S.; Stolen, R.; Rice, R. Advancements in semiconductor core optical fiber. Opt. Fiber Technol. 2010, 16, 399–408. [Google Scholar] [CrossRef]
- Morris, S.; Hawkins, T.; Foy, P.; Hudson, J.; Zhu, L.; Stolen, R.; Rice, R.; Ballato, J. On loss in silicon core optical fibers. Opt. Mater. Express 2012, 2, 1511–1519. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Wen, J.; Lv, S.; Xiao, X.; Ma, Z.; Yang, L.; Bi, G.; Guo, H.; Qiu, J. Investigation on the formation and regulation of yttrium aluminosilicate fiber driven by spontaneous element migration. Ceram. Int. 2019, 45, 19182–19188. [Google Scholar] [CrossRef]
- Cavillon, M.; Dragic, P.; Faugas, B.; Hawkins, T.W.; Ballato, J. Insights and Aspects to the Modeling of the Molten Core Method for Optical Fiber Fabrication. Materials 2019, 12, 2898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyl, H.; Homa, D.; Pickrell, G. Reaction of YBa2Cu3O7−x (YBCO) and fused silica in YBCO glass fibres. Bull. Mater. Sci. 2019, 42, 1–10. [Google Scholar] [CrossRef] [Green Version]
- CrysAlisPro Software System; v1.171.40.53; Rigaku Corporation: Oxford, UK, 2019.
- Cupid, D.M.; Seifert, H.J. Thermodynamic Calculations and Phase Stabilities in the Y-Si-C-O System. J. Phase Equilib. Diffus. 2007, 28, 90–100. [Google Scholar] [CrossRef]
- Frantz, J.D.; Mysen, B.O. Raman spectra and structure of BaO-SiO2, SrO-SiO2 and CaO-SiO2 melts to 1600 °C. Chem. Geol. 1995, 121, 155–176. [Google Scholar] [CrossRef]
- Xia, L.; Liu, Z.; Taskinen, P.A. Equilibrium study of the Cu–O–SiO2 system at various oxygen partial pressures. J. Chem. Thermodyn. 2016, 98, 126–134. [Google Scholar] [CrossRef]
- James, P.F. Liquid-phase separation in glass-forming systems. J. Mater. Sci. 1975, 10, 1802–1825. [Google Scholar] [CrossRef]
- Seward, T.P.; Uhlmann, D.R.; Turnbull, D. Development of Two-Phase Structure in Glasses, with Special Reference to the System BaO-SiO2. J. Am. Ceram. Soc. 1968, 51, 634–643. [Google Scholar]
- Seward, T.P.; Uhlmann, D.R.; Turnbull, D. Phase Separation in the System BaO-SiO2. J. Am. Ceram. Soc. 1968, 51, 278–285. [Google Scholar] [CrossRef]
- Gueguen, Y.; Houizot, P.; Célarié, F.; Chen, M.; Hirata, A.; Tan, Y.; Allix, M.; Chenu, S.; Roux-Langlois, C.; Rouxel, T. Structure and viscosity of phase-separated BaO-SiO2 glasses. J. Am. Ceram. Soc. 2017, 100, 1982–1993. [Google Scholar] [CrossRef]
- Haller, W. Rearrangement Kinetics of the Liquid—Liquid Immiscible Microphases in Alkali Borosilicate Melts. J. Chem. Phys. 1965, 42, 686–693. [Google Scholar] [CrossRef]
- James, P.F.; Mcmillan, P.W. Quantitative measurements of phase separation in glasses using transmission electron microscopy. Part 2. A study of lithia-silica glasses and the influence of phosphorus pentoxide. Phys. Chem. Glasses 1970, 11, 64–70. [Google Scholar]
- Gadalla, A.M.M.; Ford, W.F.; White, J. Equilibrium Relationships in the System CuO-Cu2O-SiO2. Trans. Br. Ceram. Soc. 1963, 62, 45–66. [Google Scholar]
- Toropov, N.A.; Bondar, I.A. Silicates of the rare earth elements. Russ. Chem. Bull. 1961, 10, 502–508. [Google Scholar] [CrossRef]
- Hageman, V.B.M.; Oonk, H.A.J. Liquid immiscibility in the SiO2+MgO, SiO2+SrO, SiO2+L2O3, and SiO2+Y2O3 systems. Phys. Chem. Glasses 1986, 27, 194–198. [Google Scholar]
- Burnett, D.G.; Douglas, R.W. Liquid-liquid phase separation in the soda-lime-silica system. Phys. Chem. Glasses 1970, 11, 125–135. [Google Scholar]
- Mao, H.; Selleby, M.; Fabrichnaya, O. Thermodynamic reassessment of the Y2O3–Al2O3–SiO2 system and its subsystems. Calphad 2008, 32, 399–412. [Google Scholar] [CrossRef]
- Murakami, M. Melt Processed High-Temperature Superconductors; World Scientific Publishing Co., Pte Ltd.: Singapore, 1992; pp. 21–42. [Google Scholar]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: the RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Liu, Z.; Carlberg, T. Reactions between liquid silicon and vitreous silica. J. Mater. Res. 1991, 7, 352–358. [Google Scholar] [CrossRef]
Diameter of YBCO Core | Average Silicon Content Inside the Core (at.-%) |
---|---|
15 µm | 27.6 ± 2.1 |
115 µm | 20.6 ± 1.3 |
237 µm | 20.2 ± 1.2 |
Atmosphere (Region) | Silicon Content (at.-%) | Oxygen Content (at.-%) |
---|---|---|
Vacuum (center of the core) | 20.6 ± 1.3 | 57.5 ± 0.7 |
Vaccum (interface) | 23.2 ± 0.7 | 59.3 ± 0.3 |
O2 (center of the core) | 24.7 ± 1.4 | 61.2 ± 1.1 |
O2 (interface) | 26.4 ± 1.8 | 61.9 ± 1.1 |
O2 (at the interface edge towards the cladding) | 28.2 ± 0.9 | 63.6 ± 0.1 |
RT Vacuum Core | RT Vacuum Interface | RT Oxygen Core | RT Oxygen Interface | RT Oxygen Interface Edge | |
SiO2 | 60.7 ± 3.7 mol-% | 68.6 ± 2.2 mol-% | 74.9 ± 4.2 mol-% | 79.4 ± 5.3 mol-% | 85.5 ± 2.8 mol-% |
Cu2O | 15.2 ± 1.5 mol-% | 12.1 ± 0.8 mol-% | 12.3 ± 1.2 mol-% | 10.5 ± 1.9 mol-% | 7.7 ± 0.5 mol-% |
BaO | 13.2 ± 0.8 mol-% | 12.4 ± 0.1 mol-% | 8.5 ± 0.8 mol-% | 7.0 ± 1.0 mol-% | 5.0 ± 0.8 mol-% |
Y2O3 | 11.0 ± 1.2 mol-% | 6.9 ± 0.8 mol-% | 4.4 ± 0.5 mol-% | 3.1 ± 0.6 mol-% | 1.8 ± 0.2 mol-% |
decrease in SiO2 content | |||||
Morphology interpretation | Outside the miscibility gap (solid solution) | Inside the binodal region (nucleation and growth) | Inside the binodal region (nucleation and growth) | Close to spinodal line or coalescence of silica-rich precipitations | Close or inside the spinodal line or coalescence of silica-rich precipitations |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heyl, H.; Yang, S.; Homa, D.; Slebodnick, C.; Wang, A.; Pickrell, G. Dissolution and Diffusion-Based Reactions within YBa2Cu3O7−x Glass Fibers. Fibers 2020, 8, 2. https://doi.org/10.3390/fib8010002
Heyl H, Yang S, Homa D, Slebodnick C, Wang A, Pickrell G. Dissolution and Diffusion-Based Reactions within YBa2Cu3O7−x Glass Fibers. Fibers. 2020; 8(1):2. https://doi.org/10.3390/fib8010002
Chicago/Turabian StyleHeyl, Hanna, Shuo Yang, Daniel Homa, Carla Slebodnick, Anbo Wang, and Gary Pickrell. 2020. "Dissolution and Diffusion-Based Reactions within YBa2Cu3O7−x Glass Fibers" Fibers 8, no. 1: 2. https://doi.org/10.3390/fib8010002
APA StyleHeyl, H., Yang, S., Homa, D., Slebodnick, C., Wang, A., & Pickrell, G. (2020). Dissolution and Diffusion-Based Reactions within YBa2Cu3O7−x Glass Fibers. Fibers, 8(1), 2. https://doi.org/10.3390/fib8010002