Influence of Cooling Methods on the Behavior of Reactive Powder Concrete Exposed to Fire Flame Effect
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Compressive Strength
3.2. Splitting Tensile Strength
3.3. Flexural Strength and Absorbed Energy
4. Conclusions
- The greatest modified behavior for specimens burned at 300 °C can be gained using steel fiber volume fraction 1.5%, regardless of the cooling method.
- Gradual-cooling method caused less negative effect upon the considered properties (compressive strength, splitting tensile strength, flexural strength, and absorbed energy) than the other cooling methods (sudden and foam).
- The largest negative influence upon the studied mechanical properties was detected in the case of sudden cooling compared to gradual cooling, while the effect of foam cooling was in between.
- Regarding sudden-cooling method, steel volume fraction 1.0% presented the perfect choice for burning temperatures exceeding 400 °C. It reduces the damage influence in the original properties after exposure to fire effect.
- The case of no steel fiber volume fraction presents the worst case regarding all burning temperatures compared to other percentages of steel fiber volume fraction used.
- RPC specimens of no steel fiber volume fraction spalled when burning over 500 °C.
Funding
Acknowledgments
Conflicts of Interest
References
- Wasan, Z.M.; Nesreen, B.N.; Shatha, D.M.; Nada, M.F. Attenuation Coefficient of Reactive Powder Concrete Using Different Energies. Int. J. Adv. Res. 2016, 4, 72–82. [Google Scholar]
- Shatha, D.M.; Wasan, Z.M.; Nesreen, B.N.; Nada, M.F. Investigating the influence of gamma ray energies and steel fibre on attenuation properties of reactive powder concrete. Nucl. Sci. Technol. 2017, 28, 153. [Google Scholar]
- Kodur, V.K.R. Fire resistance design guidelines for high strength concrete columns. In Proceedings of the ASCE/SFPE Specialty Conference of Designing Structures for Fire and JFPE, Baltimore, MD, USA, 30 September–1 October 2003; pp. 1–11. [Google Scholar]
- Lau, A.; Anson, M. Effect of high temperatures on high performance steel fiber reinforced concrete. Cem. Concr. Res. 2006, 36, 1698–1707. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Sfiri, E.F. Shear Performance of Steel Fibrous Concrete Beams. Procedia Eng. 2011, 14, 2064–2068. [Google Scholar] [CrossRef] [Green Version]
- Chalioris, C.E.; Panagiotopoulos, T.A. Flexural analysis of steel fiber—Reinforced concrete members. Comput. Concr. 2018, 22, 11–25. [Google Scholar] [CrossRef]
- Chalioris, C.E.; Kosmidou, P.K.; Karayannis, C.G. Cyclic Response of Steel Fiber Reinforced Concrete Slender Beams; an Experimental Study. Materials 2019, 12, 1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rungrawee, W.; Daniel, N.R.; Withit, P.; Thuc, N.N.; Phoonsak, P. Fire Resistance Performance of Reactive Powder Concrete Columns. Eng. J. 2018, 22, 67–82. [Google Scholar]
- Rawaa, K.A.; Hadeel, K.A.; Shatha, D.M. Fire flame effect on the compressive strength of reactive powder concrete using different methods of cooling. In Proceedings of the 2nd International Conference on Sustainable Engineering Techniques, Baghdad, Iraq, 6–7 March 2019. [Google Scholar]
- Gai-Fei, P.; Yi-Rong, K.; Yan-Zhu, H.; Xiao-Ping, L.; Qiang, C. Experimental Research on Fire Resistance of Reactive Powder Concrete, Hindawi Publishing Corporation. Adv. Mater. Sci. Eng. 2012, 2012, 860303. [Google Scholar] [CrossRef] [Green Version]
- Samir, A.M.; Farah, A.A. Behavior of Reactive Powder Concrete Slabs Exposed to Fire Flame. Int. J. Civ. Eng. Technol. 2015, 6, 126–138. [Google Scholar]
- Liu, J.; Renbo, Z.; Guoqin, D.; Xiuli, D. Fire resistance of steel fiber reinforced concrete beams after low—Velocity impact loading. Fire Saf. J. 2018, 98, 24–37. [Google Scholar]
- Augusto, C.S.; Priscila, S.M.; Elaine, C.S.; Paulo, R.R.; Maria, T.P.; Paulo, R.C. Effect of High Temperature on the Mechanical Properties of Steel Fiber-Reinforced Concrete. Fibers 2019, 7, 100. [Google Scholar] [CrossRef] [Green Version]
- Hasanain, A.S.; Nameer, A.A. The Fire Exposure Effect on Hybrid Reinforced Reactive Powder Concrete Columns. Civ. Eng. J. 2020, 6, 363–374. [Google Scholar]
- Zainab, S.R.; Jariah, M.J.; Mohd, R.M.; Mohammed, M.K. Density and Spalling behavior of Reactive Powder Concrete after Exposure to Fire Flame. In Proceedings of Innovative Research and Industrial Dialogue; University Teknikal Malaysia Melaka—UTeM: Melaka, Malaysia, 2018. [Google Scholar]
- Al-Attar, A.A.; Abdulrahman, M.B.; Hamada, H.M.; Tayeh, B.A. Investigating the behavior of hybrid fiber-reinforced reactive powder concrete beams after exposure to elevated temperatures. J. Mater. Res. Technol. 2019. [Google Scholar] [CrossRef]
- Iraq Standard Specification (IQS) No.5-1984. Portland Cement; Central Agency for Standardization and Quality Control: Baghdad, Iraq, 1984.
- American Society for Testing and Materials (ASTM) C150-2007. Standard Specification for Portland Cement; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Iraq standard specification (IQS) No.45-1984. Aggregate from Natural Sources for Concrete and Building Construction; Central Agency for Standardization and Quality Control: Baghdad, Iraq, 1984.
- American Society for Testing and Materials (ASTM) C1240-2003. Standard Specification for Use of Silica Fume as a Mineral Admixture in Hydraulic Cement Concrete, Mortar, and Grout; ASTM International: West Conshohocken, PA, USA, 2003. [Google Scholar]
- American Society for Testing and Materials (ASTM) C494/C494M–2005. Standard Specification for Chemical Admixtures for Concrete; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- British Standard Institution, B.S.1881: Part 116-1983. Methods for Determination of Compressive Strength of Concrete Cubes; British Standards Institution: London, UK, 1983. [Google Scholar]
- American Society for Testing and Materials (ASTM) C496-/C496M-2011. Standard Test Method for Splitting Tensile Strength for Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- American Society for Testing and Materials (ASTM) C293-11. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center—Point Loading); ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Tai, Y.S.; Pan, H.H.; Kung, Y.N. Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800 °C. Nucl. Eng. Des. 2011, 241, 2416–2424. [Google Scholar] [CrossRef]
- Muhammad, A.; Xiaomeng, H.; Wenzhong, Z.; Raja, R.H. Effect of Fibers on High-Temperature Mechanical Behavior and Microstructure of Reactive Powder Concrete. Materials 2019, 12, 329. [Google Scholar] [CrossRef] [Green Version]
- Alaa, A.B. Influence of Elevated Temperatures on the Behavior of Economical Reactive Powder Concrete. J. Civ. Eng. Res. 2013, 3, 89–97. [Google Scholar] [CrossRef]
- Wenzhong, Z.; Haiyan, L.; Ying, W. Compressive behavior of hybrid fiber-reinforced reactive powder concrete after high temperature. Mater. Des. 2012, 41, 403–409. [Google Scholar]
Properties | Result | Iraqi Specification No. 5 [17] Limits | ASTM C150 [18] Limits | |
---|---|---|---|---|
Chemical composition (%) | CaO | 61.63 | - | |
SiO2 | 21.34 | - | ||
Al2O3 | 4.29 | - | ||
Fe2O3 | 3.80 | - | ||
SO3 | 2.11 | ≤2.8 If C3A ≥ 5% | ≤3.0 if C3A ≤ 8% | |
MgO | 2.35 | ≤5.0% | ≤6.0% | |
L.O.I. | 2.20 | ≤4.0% | ≤3.0% | |
I.R. | 0.61 | ≤1.5% | ≤0.75% | |
L.S.F. | 0.49 | 0.66–1.02 | ||
C3S | 54.40 | - | ||
C2S | 20.92 | - | ||
C3A | 4.94 | - | ||
C4AF | 11.56 | - | ||
Setting time (Vicat′s method) Initial setting (min.) | 1:25 | ≥45 min | ≥45 min | |
Final setting (hrs.) | 5:49 | ≤10 h | ≤375min | |
Compressive strength (MPa) 3 days | 17.3 | ≥15 | ≥12 | |
7 days | 24.9 | ≥23 | ≥19 | |
Blaine surface area (m2/kg) | 301 | ≥230 | ≥280 | |
Soundness (Auto clave Method) (%) | 0.5 | ≤0.8 |
Property | Result | Iraq Specification No.45/1984 [19] |
---|---|---|
Specific gravity | 2.63 | - |
Material finer than 0.075 mm | 2.8 | ≤5 |
Sulphate SO3 (%) | 0.19 | ≤0.5 |
Absorption (%) | 1.09 | - |
Soluble salts (%) | 0.06 | ≤0.1 |
Composition | Content % | ASTM C1240-03 [20] Limits | |
---|---|---|---|
SiO2 | 92.6 | ≥85% | |
Al2O3 | 0.21 | ||
Fe2O3 | 0.04 | ||
MgO | 0.03 | ||
CaO | 0.81 | ||
SO3 | 0.35 | ||
K2O | 0.06 | ||
L.O.I. | 3.7 | ≤6% | |
Physical Properties | |||
Physical form | Powder | ||
Fineness | 16,000 m2/kg | ||
Specific gravity | 2.17 | ||
Color | Gray |
Form | Basis | Appearance | Relative Density |
---|---|---|---|
Viscous liquid | Aqueous solution of modified polycarboxylate | Turbid liquid | 1.08 g/1 t ± 0.005 |
Concrete Mix Symbol | W/b | Cement (kg/m³) * | Fine Aggregate (kg/ m³) * | Silica Fume (kg/ m³) * | Vf% |
---|---|---|---|---|---|
S | 0.2 | 860 | 1020 | 205 | 0 |
S1 | 0.2 | 860 | 1020 | 205 | 1 |
S2 | 0.2 | 860 | 1020 | 205 | 1.5 |
Type of Cooling | Burning Temperature (°C) | Compressive Strength MPa | ||
---|---|---|---|---|
S 0% | S1 1.0% | S2 1.5% | ||
Gradual | 25 | 90.3 | 109.09 | 115.64 |
300 | 81.00 | 112.50 | 123.36 | |
400 | 70.22 | 106.13 | 117.50 | |
500 | 60.04 | 95.45 | 105.23 | |
Foam | 25 | 90.30 | 109.09 | 115.64 |
300 | 76.20 | 109.71 | 119.28 | |
400 | 59.40 | 100.41 | 109.45 | |
500 | 51.80 | 91.72 | 99.75 | |
Sudden | 25 | 90.30 | 109.09 | 115.65 |
300 | 71.40 | 100.45 | 108.70 | |
400 | 42.04 | 91.81 | 91.02 | |
500 | 32.6 | 83.77 | 82.45 |
Type of Cooling | Burning Temperature (°C) | Percentage Reduction | ||
---|---|---|---|---|
S 0% | S1 1.0% | S2 1.5% | ||
Gradual | 300 | 10.30 | −3.13 | −6.67 |
400 | 22.23 | 2.71 | −1.60 | |
500 | 33.50 | 12.50 | 9.00 | |
Foam | 300 | 15.61 | −0.57 | −3.14 |
400 | 34.22 | 7.96 | 5.36 | |
500 | 42.64 | 15.92 | 13.74 | |
Sudden | 300 | 20.93 | 7.92 | 6.61 |
400 | 53.44 | 15.83 | 21.29 | |
500 | 63.90 | 23.10 | 28.70 |
Type of Cooling | Burning Temperature (°C) | Splitting Tensile Strength (MPa) | ||
---|---|---|---|---|
S 0% | S1 1.0% | S2 1.5% | ||
Gradual | 25 | 9.22 | 10.08 | 10.57 |
300 | 7.99 | 10.40 | 11.01 | |
400 | 6.05 | 8.67 | 9.69 | |
500 | 4.93 | 6.29 | 6.97 | |
Foam | 25 | 9.22 | 10.08 | 10.57 |
300 | 7.61 | 10.09 | 10.69 | |
400 | 5.61 | 8.05 | 8.73 | |
500 | 4.50 | 5.79 | 6.38 | |
Sudden | 25 | 9.22 | 10.08 | 10.57 |
300 | 7.44 | 9.63 | 10.11 | |
400 | 5.10 | 7.14 | 6.54 | |
500 | 4.08 | 5.27 | 4.93 |
Type of Cooling | Burning Temperature (°C) | Percentage Reduction | ||
---|---|---|---|---|
S 0% | S1 1.0% | S2 1.5% | ||
Gradual | 300 | 13.37 | −3.17 | −4.15 |
400 | 34.39 | 14.03 | 8.38 | |
500 | 46.55 | 37.63 | 34.10 | |
Foam | 300 | 17.43 | −0.07 | −1.10 |
400 | 39.18 | 20.18 | 17.44 | |
500 | 51.16 | 42.53 | 39.68 | |
Sudden | 300 | 19.31 | 4.42 | 4.36 |
400 | 44.71 | 29.20 | 38.12 | |
500 | 55.77 | 47.74 | 53.39 |
RPC Mix | Burning Temperature (°C) | Absorbed Energy (kN·mm) |
---|---|---|
Gradual -S2 1.5% | 300 | 7.19 |
400 | 4.32 | |
500 | 3.28 | |
Gradual -S1 1.0% | 300 | 6.13 |
400 | 3.92 | |
500 | 2.94 | |
Foam -S2 1.5% | 300 | 5.69 |
400 | 3.55 | |
500 | 2.59 | |
Foam -S1 1.0% | 300 | 4.76 |
400 | 3.29 | |
500 | 2.29 | |
Sudden -S2 1.5% | 300 | 4.79 |
400 | 2.79 | |
500 | 1.80 | |
Sudden -S1 1.0% | 300 | 3.96 |
400 | 2.93 | |
500 | 2.11 |
Type of Cooling | Burning Temperature (°C) | Flexural Strength (MPa) | ||
---|---|---|---|---|
S 0% | S1 1.0% | S2 1.5% | ||
Gradual | 25 | 10.78 | 13.60 | 14.00 |
300 | 10.15 | 14.10 | 14.98 | |
400 | 8.81 | 12.20 | 12.74 | |
500 | 7.58 | 9.85 | 10.28 | |
Foam | 300 | 9.61 | 13.70 | 14.53 |
400 | 7.46 | 11.01 | 11.69 | |
500 | 6.50 | 8.96 | 9.29 | |
Sudden | 300 | 8.87 | 12.18 | 13.23 |
400 | 5.51 | 10.49 | 9.80 | |
500 | 4.23 | 8.62 | 7.65 |
Type of Cooling | Burning Temperature (°C) | Percentage Reduction % | ||
---|---|---|---|---|
S 0% | S1 1.0% | S2 1.5% | ||
Gradual | 300 | 5.84 | −3.68 | −7.00 |
400 | 18.27 | 10.29 | 9.00 | |
500 | 29.68 | 27.57 | 26.57 | |
Foam | 300 | 10.85 | −0.74 | −3.79 |
400 | 30.79 | 19.04 | 16.50 | |
500 | 39.70 | 34.12 | 33.64 | |
Sudden | 300 | 17.72 | 10.44 | 5.50 |
400 | 48.89 | 22.87 | 30.00 | |
500 | 53.80 | 36.62 | 45.36 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, H.K. Influence of Cooling Methods on the Behavior of Reactive Powder Concrete Exposed to Fire Flame Effect. Fibers 2020, 8, 19. https://doi.org/10.3390/fib8030019
Awad HK. Influence of Cooling Methods on the Behavior of Reactive Powder Concrete Exposed to Fire Flame Effect. Fibers. 2020; 8(3):19. https://doi.org/10.3390/fib8030019
Chicago/Turabian StyleAwad, Hadeel K. 2020. "Influence of Cooling Methods on the Behavior of Reactive Powder Concrete Exposed to Fire Flame Effect" Fibers 8, no. 3: 19. https://doi.org/10.3390/fib8030019
APA StyleAwad, H. K. (2020). Influence of Cooling Methods on the Behavior of Reactive Powder Concrete Exposed to Fire Flame Effect. Fibers, 8(3), 19. https://doi.org/10.3390/fib8030019