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Abstract: The efficiency of chemoinformatics methods based on a fragment approach for the analysis
of relationships between the chemical structure of textile dyes and colour fastness of the dyeings
have been shown by examining a large set of properties, including the light fastness of acid dyes
on wool and polyamide fibres, the sensitivity of acid dyes on wool to oxygen bleaching, the wash
fastness of acid dyes on wool, the adsorption of direct dyes on cotton, and the photodegradation
of azo dyes in solution. An analysis of the developed regression models depicted the contribution
of ten substructural molecular fragments for each indicator of the colour fastness properties of acid
and direct azo dyes on textile materials. The similarity of several individual multi-atomic fragments
for acid and direct azo dyes was found for wool, polyamide, and cotton fibres, which indicates the
coinciding mechanisms of the physicochemical processes that accompany the destruction of dyes
while testing the light fastness and sensitivity of the dyeings to oxygen bleaching, as well as their
adsorption/desorption with the wash fastness and dyeability of wool and cotton.

Keywords: acid dyes; direct dyes; cotton; wool; polyamide fibres; light fastness; wash fastness;
chemoinformatics analysis

1. Introduction

The study of structure–property relationships was essential for textile chemistry re-
search in previous years. It was based on a detailed study of the physicochemical aspects of
dye coloration and the properties of dyes that were adsorbed by the fibres [1–9]. Currently,
QSPR/QSAR research (QSPR/QSAR-quantitative structure–property/activity relation-
ships) and chemoinformatics analysis cover almost every fundamental and applied field in
chemical studies.

Presently, 27,000 individual products under 13,000 generic names are incorporated in
the Colour Index [10]. A lot of information regarding the properties of commercial textile
dyes for all the technical groups of dyes is provided on the website, World Dye Variety [11].
Water-soluble dyes contribute to about 50% of the total amount of dyes. The Max Weaver
Dye Library [12] at Eastman Kodak Company represents a collection of 98,000 vials of
custom-made water-soluble dyes. As a part of this collection, temporary, water-soluble
hair dyes were collected and analysed for this research [13,14]. Some results from recent
research on the bio-elimination of large groups of commercial acids indicates that direct
and reactive dyes [15–17] are suitable for the discussion about dye affinity for cellulose.
A chemometric analysis of different classes of dyes was performed through a series of
research studies. The different dye classes studied included: acid dyes for silk [18–20], acid
dyes for wool and nylon [21], and disperse dyes for synthetic fibres [22–24]. One of the
early examples of software for QSPR analysis was the software, SPARC, which was widely
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used up to now for predicting the ionization constants, pKa, and hydrophobicity, LogP, of
organic compounds—such as azo dyes and their related compounds [25].

The problem with QSPR analysis of the dye affinity for textile fibres and the physic-
ochemical properties of dyeings became a key point in the development of new ideas
during the eve of 2000. A fundamental contribution to the problem was provided through
the research of S. Timofei and co-authors [26]. A review cited above makes reference to
14 papers from their research published since 1994 that were based on the application of
the comparative molecular field analysis method. The beginning of their research started
directly with vat, disperse, acid, and direct dyes. Later on, the authors continued the
modification of the method for acid dyes, which is represented in their recent research [27].
Their results and a database for anionic dyes are used in this research [28–31]. Recent
studies [32,33] have continued the development of the chemoinformatics approach based
on the experimental data that showed the affinity of anionic dyes for cellulose fibres, which
were collected in the abovementioned research [26,27].

A wide variety of empirical properties of water-soluble dyes are covered by chemoin-
formatics research, for example, the tinctorial properties of acid dyes on cellulose fibres in
the domestic washing of mixed cellulose/polyamide/wool materials [34], the photodegra-
dation [35] and catalytic elimination [36] of dyes in wastewater, the behavior of dyes during
the advanced oxidation process [37,38], the ecotoxicity of dyes [39–41], etc.

Acid and direct dyes as anionic water-soluble dyes play an important role in fun-
damental research on colour fading properties [42–45] and adsorption on fibrous materi-
als [2,3,34,46–50]. Reactive dyes are a special class of anionic dyes due to their irreversible
chemical fixation on the fibres, therefore their wash fastness properties could not be anal-
ysed within a single concept for anionic dyes. Studies on the substantivity of the hydrolysed
forms of reactive dyes [51] do not provide information about the chemical structure of these
dyes. On the other hand, fundamental research on the colour fading properties of reactive
dyes by peroxide [52] and the light fastness of the dyeings [53] does not contain sufficient
information for the application of the statistical tools of chemoinformatics.

Recent advances in QSPR methods are analysed in several reviews [54–57]. The partic-
ular problems with the chemoinformatics of dyes are reviewed in Refs. [58,59]. Analysis of
the chemical structure and property relationships of dyes usually applies multiple linear
regression models or neuro-models based on chemoinformatics software, the most typical
of which are listed below in Table 1.

Table 1. Examples of modern software for structure–property analysis of organic compounds.

Software Number of Descriptors

SPARC, by L.A. Carreira et al., ARChem, USA, 1994 [60] not specified

CODESSA, by A.R. Katritzky, M. Karelson, R. Petrukhin,
University of Florida USA, 2001-2005 [61] about 1500

DRAGON, by Kode Chemoinformatics, R. Todecini
et al., Pisa, Italy, 1994 [62] 5270

NASAWIN, by I.I. Baskin et al., Moscow State
University, Russia, 1995 [63–66] unlimited

CORAL, Mario Negri Institute, E. Benfenati, A.A.
Toropov, A.P. Toropova, Italy, 2010 [67] unlimited

OCHEM, I.I. Tetko, et al., International project, 2011 [68] unlimited

Different kinds of descriptors are represented by the physicochemical parameters,
functional groups, topology and geometry of the molecules, fragments of a different kind,
etc. Those descriptors are collected, and the databases are arranged through the use of
chemoinformatics software—for example, ChemAxon [69].

The fragment approach mentioned above [30,63–66] explores the descriptors based on
the chemical structure of the molecule through the defragmentation of the molecule on the
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substructures of chains, branches, and cycles of atoms. The idea of the fragment approach
was used in the research done by Refs. [70–72], which focused on the problems in textile
chemistry and the photophysics of fluorescent BODIPY dyes.

Current research aims to develop a database of acid and direct dyes for textile col-
oration and QSPR analysis using the fragment approach and the software, NASAWIN. This
is a universal method of calculating atomic fragments without any reference to the physico-
chemical properties of the molecule, meeting the clear understanding of the chemists and
providing an easy interpretation of the results, which are useful for developing the different
chemical and physicochemical properties of dyed fabrics. Each database of dyes is charac-
terised by multiple linear regression models with substructural fragments that describe dye
sorption in terms of the fibres, wash fastness, and light fastness of anionic dyes adsorbed
on cotton, wool, and polyamide fibres. The results of the analysis provide new insight into
dye structure–property relationships and the role of the nature of fibres in textile coloration,
which is useful for developing new dyes and dyeings on high-performance textile materials.
Several results for the prediction of a series of dyes demonstrate the robustness of the
developed models.

2. Materials and Methods
2.1. Database for Colour Fastness of Wool, Polyamide, and Cotton Fibres Dyed with Acid and
Direct Dyes

The experimental data for the chemoinformatics analysis of colour fastness properties
of textiles are provided in various sources of information.

The data for the light fastness, oxygen bleaching sensitivity, and wash fastness of
commercial azo dyes on wool are taken from the World Dye Variety [11]. The information
reported by different companies corresponds to the ISO standards. Validation of data
presented on the web is performed by comparing the selected entries for the properties of
the dyeings with those published in the literature. Data for the oxygen bleaching of azo dye
on polyamide and cotton are not available on the web or in the literature. In general, this
topic is discussed in systematic research for both cotton [24–29] and nylon fibres [32,33],
however, detailed information for various dyes is not reported.

The data for the research on light fastness in acid azo dyes on polyamide fibres
(Nylon 6.6) were collected from the following publications: Grecu and Pieroni 1981 [73];
Carpignano et al. 1983, 1985 [74,75]; Barni et al. 1984 [76]; De Giorgi et al. 1994, 1997 [19,21];
Kraska 1984 [77]; Blus 1992, 1993, 2005 [78–81]; Kraska and Blus 1996 [82]. In total, the
database includes acid dyes with azobenzene, azonaphthalene, and azopyrazolone structures.

The data representing the adsorption of direct dyes on cotton were collected from
Refs. [83,84] for the different initial concentrations of dye in the dyebath: 0.1%, 0.5%, 1.0%,
and 2.5% of the weight of the fabric. Such information is suitable for the discussion of
the mechanism of adsorption of newly synthesised disazo and trisazo direct dyes, which
were studied by one group of researchers. The abovementioned experimental data for the
affinity of direct dyes are less reliable due to the various approaches used to evaluate the
physicochemical quantity in the collected research papers. The data for the wash fastness
of direct dyes that were reported in scientific research have been omitted due to the low
statistical reliability of the chemoinformatics results.

As a whole, the database explored in the research serves as an example of the collection
of miscellaneous properties that reflect the colour fastness of anionic azo dyes on fibres of
various natures.

2.2. Chemoinformatics Tools

The database was prepared using JChem for Office software [69], implementing tools
for drawing dye molecules, checking their chemical structure, and generating an sdf-file.
Further analysis of the database by NASAWIN [66] makes it possible to decompose the
whole database of dyes into sub-molecular descriptors without the calculation of any special
physicochemical parameters of the molecules. Originally, the total amount of fragment
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descriptors for the database of about 130 dye molecules, as an example, counts around
6000 descriptors, which yields a so-called underdetermined system of linear equations.
Further calculation procedures, including the partial square regression (PLS) method, and
removing the correlated parameters yield an overestimated matrix for the determination of
the regression coefficients of the multiple linear regression model. Finally, the single-step
procedure of eliminating the regression coefficients based on Student-criteria, Fischer-
criteria, and the regression coefficient yields a multiple linear regression model with a
limited number of descriptors (usually about ten), thereby characterising the properties of
the database with appropriate precision.

Statistical parameters attributed to the model are represented by the following quan-
tities: N–total amount of compounds included in the database; R–regression coefficient,
which shows how close the data points are to fitting a curve or line; R—adj-adjusted re-
gression coefficient, which indicates how well the terms fit a curve or line but adjusts for
the number of terms in a model; RMSE–root-mean-square error, i.e., square root of mean
square error, a measure of the differences between the values predicted by a model and
the values observed; MAE–mean absolute error, a measure of the average vertical distance
between each point and the Y = X line; s–standard deviation, a measure of how much the
data is spread out; F–Fischer number, which characterises how small the dispersion of the
predicted data is related to the average dispersion of the data; T-stat–Student number for
each regression coefficient of the model.

3. Results and Discussion
3.1. Light Fastness of Commercial Acid Azo Dyes on Wool

The results of the chemoinformatics analysis of the database for the light fastness
of commercial acid azonaphthalene dyes are shown below in Figure 1. Table 2 shows
the molecular fragments for the exemplified dye congeners along with the values of the
regression coefficients for the multiple linear regression model and corresponding Student
numbers T-stat. The sign of the regression coefficient characterises the positive or negative
impact of the correspondent fragment on the light fastness of dyed fabrics, and the absolute
value of the coefficient shows the impact of the descriptor on the light fastness. Student
number T-stat characterises the reliability of the coefficient; the standard deviation of the
coefficient could be evaluated as the relation coeff/T-stat. The results represented below
display the high statistical quality of the regression coefficients.
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Table 2. Coefficients of multiple linear regression model for light fastness of wool dyed with com-
mercial azo acid dyes and fragments of exemplified dye congeners.

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Coeff0 = 3.161944, T-stat = 18.3618 Coeff1 = 0.414375, T-stat = 8.8966
LF-W-1
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Analysis shows that the chemical fragments of the dye molecules increase the light
fastness of acid azo dyes on wool, including the nitrogen atoms for all the compounds
(fragment 1); the azo-bond connecting aromatic chain, an aromatic chain with m-methoxy-
or o-ethoxy-groups (fragment 5 and 6); and the azo group connecting the aromatic chain
and the aromatic chain with a sulphonic group (fragment 7). The fragments that decrease
the light fastness are exemplified by the aromatic chain with primary amino- or substituted
amino groups (fragments 3 and 4). Another two examples are the branch or chain fragments
of the aromatic carbon atoms with nitrogen in an sp3-hybridisation form (nitrogen of double
azo-bond or nitrogen of pyrazolone cycle) (fragments 2 and 10).

3.2. Colour Fastness to Oxygen Bleaching of Commercial Acid Azo Dyes on Wool

The chemoinformatics analysis of the database for the oxygen bleaching sensitivity of
acid azonaphthalene dyes is represented in Figure 2 and Table 3.
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Figure 2. Correlation between calculated and experimental values of oxygen bleaching sensitivity of
commercial azo acid dyes on wool fibres.

Oxygen bleaching sensitivity is explained by dye destruction in the domestic washing
treatment of textiles, therefore it is quite reasonable that some fragments, which decrease
light fastness, increase oxygen beaching sensitivity—for example, the aromatic chain with
a primary amino-group or an azo-bond connecting two aromatic chains of carbon atoms
from both sides (fragments 3, 4, 7, 9). There is a high negative impact on sensitivity when
there is a branch fragment connecting the aliphatic carbon atom and the two aromatic ones
(fragment 10). There is a stabilizing effect on OB-sensitivity when there are two azo-bonds
in disazo acid dyes with an aliphatic ethyl-group (fragments 5 and 10). Some of the results
correlate with common knowledge, for example, polyazo dyes, which were found to be
more stable during biodegradation than monoazo dyes in early QSPR analysis [85].

Table 3. Coefficients of multiple linear regression model for oxygen bleaching sensitivity of wool
dyed with commercial azo acid dyes and fragments of exemplified dye congeners.

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Coeff0 = −0.714316, T-stat = −2.9669 Coeff1 = 0.065831, T-stat = 10.1430
OB-W-1

Colorants 2022, 1, FOR PEER REVIEW 7 
 

 

Table 3. Coefficients of multiple linear regression model for oxygen bleaching sensitivity of wool 
dyed with commercial azo acid dyes and fragments of exemplified dye congeners. 

Regression Coefficient, Molecular Frag-
ment 

Regression Coefficient, Molecular Frag-
ment 

Regression Coefficient, Molecular Frag-
ment 

Coeff0 = −0.714316, T-stat = −2.9669 Coeff1 = 0.065831, T-stat = 10.1430 
OB-W-1 

 

Coeff2 = −0.938693, T-stat = −4.1047 
OB-W-2 

 
Coeff3 = 1.477873, T-stat = 4.8356 

OB-W-3 

 

Coeff4 = 2.706476, T-stat = 7.3958 
OB-W-4 

 

Coeff5 = −1.376763, T-stat = −5.2326 
OB-W-5 

 

Coeff6 = 0.101659, T-stat = 4.6905 
OB-W-6 

 

Coeff7 = 1.20228, T-stat = 6.8330 
OB-W-7 

 

Coeff8 = 0.492824, T-stat = 5.1165 
OB-W-8 

 

Coeff9 =−1.134224, T-stat = −5.6996 
OB-W-9 

 

Coeff10 = 2.800875, T-stat = 7.3944 
OB-W-10 

 

Oxygen bleaching sensitivity is explained by dye destruction in the domestic wash-
ing treatment of textiles, therefore it is quite reasonable that some fragments, which de-
crease light fastness, increase oxygen beaching sensitivity—for example, the aromatic 
chain with a primary amino-group or an azo-bond connecting two aromatic chains of car-
bon atoms from both sides (fragments 3, 4, 7, 9). There is a high negative impact on sensi-
tivity when there is a branch fragment connecting the aliphatic carbon atom and the two 
aromatic ones (fragment 10). There is a stabilizing effect on OB-sensitivity when there are 
two azo-bonds in disazo acid dyes with an aliphatic ethyl-group (fragments 5 and 10). 
Some of the results correlate with common knowledge, for example, polyazo dyes, which 

HO

N

NSHO

O

O

any atom

Coeff2 = −0.938693, T-stat = −4.1047
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Table 3. Cont.

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Coeff6 = 0.101659, T-stat = 4.6905
OB-W-6
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3.3. Wash Fastness of Commercial Acid Azo Dyes on Wool

The results of the analysis of the database for the wash fastness of acid azonaphthalene
dyes on wool fibres are shown in Figure 3 and Table 4.
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Table 4. Coefficients of multiple linear regression model for wash fastness of wool dyed with
commercial azo acid dyes and fragments of exemplified dye congeners.

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Coeff0 = 0.963902, T-stat = 4.9380 Coeff1 = 0.058948, T-stat = 12.5825
WF-W-1
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Wash fastness is a property that reflects the affinity of the dyes to fibres. A simple
correlation analysis demonstrated the properties of disperse dyes on acetate fibres [86,87],
which proves this statement directly.

In our case, wash fastness reflects the intermolecular bonding of acid dyes with wool
keratin. Several fragments exhibit positive effects, such as any atom of the molecule (i.e., all
atoms of any nature) (fragment 1), the 12- and 15-atom fragment containing two azo-bonds
(fragments 5 and 9), as well as the 12- and 13-atomic fragments containing an azo-bond
and hydrophobic methyl group (fragment 6). On the other hand, a negative effect is
demonstrated when there is a chain of conjugated double bonds containing an azo-bond
and hydrophilic hydroxy-group (fragment 7), as well as the four fragments containing
sulphonic groups (fragments 3, 4, 8, 10).
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3.4. Light Fastness of Acid Dyes on Polyamide (Nylon) Fibres

The database includes acid dyes with azobenzene, azonaphthalene, and azopyrazolone
structures. The results of the computational analysis of the database are shown in Figure 4
and Table 5.
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Figure 4. Correlation between calculated and experimental values of light fastness of dyeings on
polyamide fibres.

The light fastness of polyamide fibres dyed with acid dyes demonstrates the similarity
of several descriptors that are responsible for the light fastness of wool. For example,
fragments containing primary amino- (fragment 2) or nitrogen atoms with azo-bonds
(fragment 6) decrease the light fastness of dyed polyamide fibres. The same role is demon-
strated by the substituted amino group in a chain with a nitro-group (fragment 7) and
a tri-substituted amino-group in a fragment with an azo group and o-methoxy-group
(fragment 8). On the other hand, fragments containing aromatic carbons (fragment 4) as
well as azo-bonds with aromatic carbons without other substituents (fragment 5) demon-
strate a positive impact.

This positive role is demonstrated by a short C(ar)-S(vi) fragment (fragment 1); a
long fragment including a tri-substituted nitrogen atom, azo-bond, and o-sulphonic group
(fragment 9); as well as a longer fragment including, in addition, a substituted acetamide
group and aromatic carbon atoms (fragment 10).
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Table 5. Coefficients of multiple linear regression model for the light fastness of dyeing on polyamide
fibres and fragments of exemplified dye congeners with a 1:1 concentration of dye.

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Coeff0 = 4.930911, T-stat =
30.6418

Coeff1 = 0.43608, T-stat =
7.3894

LF-PA-1
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3.5. Adsorption Properties of Direct Dyes on Cotton Fibres

A dataset of direct dyes on cotton was selected from Refs. [83,84] for four different
initial concentrations of dye in a dyebath from 0.1–2.5% of the weight of the fabric. The
results for the joint model reflecting the different concentrations in solution are shown in
Figure 5. The coefficients of the multiple linear regression model are provided in Table 6
along with the coefficients of the T-statistics.
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Figure 5. Correlation between calculated and experimental values of dye adsorption on cotton.

It is quite natural that fragments including sulphonic groups exhibit a negative im-
pact that demonstrates a repulsion from the negatively-charged carboxylic end-groups of
cellulose fibres, which appeared in the fibres due to the application of different kinds of
oxidizing agents during the pre-treatment processes. However, a negative impact from
non-ionic polar groups, such as –OH, –NH2, or –NH- groups, disproves the traditional
point of view about their significant role in hydrogen bonding with macromolecules of cel-
lulose. Those bonds with polar groups of dyes could be easily destroyed by polar solvents
like water.

It was found that only one 13-atom fragment that included a conjugated system of
nitrogen with a carbonyl group, azo-bond, and sequence of aromatic bonds was charac-
terised by a positive regression coefficient, Coeff8, which is responsible for the increasing
amount of dye adsorption. The other six fragments exhibit a negative effect on direct dye
adsorption in cellulose fibres. High coefficient values for T-statistics characterise the high
level of reliability of each regression coefficient. As for the total robustness of the regres-
sion model, the regression coefficient and Fischer number are extremely high: R = 0.9979,
F = 5095. Finally, a standard deviation of the Log (adsorption, g/kg) of direct dyes by
cotton is rather low: s = 0.03, which is expressed in the units of Log (g/kg).
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Table 6. Coefficients of multiple linear regression model for adsorption of direct dyes on cotton and
fragments of exemplified dye congeners.

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

N = 225, R = 0.9979, R_adj = 0.9978, F = 5095, s = 0.0338, RMSE_t = 0.00330, MAE_t = 0.0259
Coeff0 = 0.824114, T-stat = 70.9156

Coeff1(C=1%) = 0.421999, T-stat = 53.6620
Coeff2 (C=0.5%) = −0.21474, T-stat = −27.3063

Coeff3 (C=0.1%) = −0.88427, T-stat = −112.4455

Coeff4 = −0.13195, T-stat = −11.8450
A-C-4
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3.6. Photodegradation of Azo Dyes in Solution

Studies of dye photolysis in solution are useful for understanding the fundamental
basis for dye destruction as well as the applied aspects of photochemistry of dye removal
from wastewater. A small dataset of 22 azo dyes [35], including acid, direct, and disperse
dyes, which are characterised by the first-order kinetics constant of photodestruction
at different pH levels of the solution, is used as a short example. The results of the
chemoinformatics analysis of the process are shown in Table 7 for pH 6.

It is noteworthy that one regression coefficient, Coeff6, has a large positive impact on
the rate of photolysis, which indicates the significant role of the unsubstituted benzene
ring of the naphthol residue in photofading; other regression coefficients exhibit a negative
impact. The highest level of the photostabilisation effect is demonstrated by fragment 4,
which is characterised by a long aromatic chain and a sulphonic group. Another fragment
that decreases the rate of photodestruction, fragment 5, includes two conjugated aromatic
chains connected by an azo-bond.
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Table 7. Coefficients of multiple linear regression model for photodegradation of azo dyes in solution
at pH 6.

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

Regression Coefficient,
Molecular Fragment

N = 22, R = 0.9814, R_adj = 0.9726, F = 65.43, s = 0.111, RMSE_t = 0.0917, MAE_t = 0.0774
Coeff0 = −2.2095; T-stat = −30.6200

Coeff1 = −0.0509; T-stat = −3.4380
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3.7. Comparative Analysis of Fragment Descriptors of Regression Models for Different Kinds of
Fibres and Colour Fastness Tests

A combination of the models proposed above for various fibres and colour fastness
tests is of interest for the comparative analysis of the physicochemical mechanism of dye
destruction and their interaction with the fibres. Tables 8–11 demonstrate several molecular
fragments of similar chemical nature that indicate the coinciding physicochemical routes of
dye destruction and adsorption regardless of the nature of the fibre.

Table 8. Comparison of fragments responsible for the destruction of dyes in light fastness and
sensitivity of dyeings to oxygen bleaching tests.

The Primary or Substituted Amino
Group

Azo-Bond and the Primary or
Substituted Amino Group

Aromatic Chain and Nitrogen of Azo
Group

Coeff3 = −1.037494, T-stat = −6.3766
LF-W-3, Table 2

Coeff10 = −0.55531, T-stat = −6.5707
LF-W-10, Table 2

Coeff3 = 1.477873, T-stat = 4.8356
OB-W-3, Table 3

Coeff4 = 2.706476, T-stat = 7.3958
OB-W-4, Table 3

Coeff2 = −2.4247, T-stat = −17.7498
LF-PA-2, Table 5

Coeff8 = −0.42405, T-stat = −5.5203
LF-PA-8, Table 5

Coeff6 = −1.66501, T-stat = −19.3869
LF-PA-6, Table 5

Table 9. Comparison of fragments responsible for stabilization of dyes in light fastness and sensitivity
of dyeings to oxygen bleaching tests.

Azo Group in a Chain of Conjugated
Double Bonds

Azo Group in a Chain of Conjugated
Double Bonds and Sulphonic Group

Azo-Bond in a Chain of Conjugated Double
Bonds and Carbamide Group

Coeff7 = 0.288798, T-stat = 4.1107
LF-W-7, Table 2

Coeff9 = −1.134224, T-stat = −5.6996
OB-W-9, Table 3

Coeff5 = 0.758169, T-stat = 8.1588
LF-PA-5, Table 5

Coeff9 = 0.416039, T-stat = 7.6620
LF-PA-9, Table 5

Coeff10 = 0.552282, T-stat = 4.6392
LF-PA-10, Table 5
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Table 10. Comparison of fragments responsible for positive impact on wash fastness and sorption of
dyes on wool and cotton.

Two Azo-Bonds in a Chain of Conjugated
Double Bonds

Azo-Bond in a Chain of Conjugated
Double Bonds and Terminal Hydrophobic

Terminal Group

Coeff5 = 0.199498, T-stat = 3.3687
WF-W-5, Table 4

Coeff6 = 0.511187, T-stat = 4.1279
WF-W-6, Table 4

Coeff8 = 0.002434, T-stat = 5.8381
A-C-8, Table 6

Table 11. Comparison of fragments responsible for negative impact on wash fastness and adsorption
of dyes on wool and cotton.

Sulphonic Group Azo-Bond and Hydrophilic Terminal Group

Coeff3 = −0.335361, T-stat = −3.8736
WF-W-3, Table 4

Coeff7 = −0.532824, T-stat = −3.5236
WF-W-7, Table 4

Coeff10 = −0.01152, T-stat = −6.5432
A-C-10, Table 6

Coeff9 = −0.06541, T-stat = −4.0627
A-C-9, Table 6

A negative (destructive) effect on dye chromophore was observed in the tests for
the light fastness of dyeings on wool and polyamide, as well as the sensitivity of the
dyeings on wool for oxygen bleaching, which are controlled by the fragments shown in
Table 8, including primary or substituted amino groups, an azo-bond as a part of a chain of
conjugated double bonds with primary or substituted amino groups, a chain of aromatic
carbon atoms, and the nitrogen atom of an azo-bond.

A positive (stabilizing) effect on the dye chromophore was observed in the tests for
the light fastness of dyes on wool and polyamide fibres as well as the sensitivity of the
dyes on wool to oxygen bleaching, which is explained by the fragments shown in Table 9,
including an azo group as a part of a chain of conjugated double bonds, an azo group as a
part of a chain of conjugated double bonds and a sulphonic group, and an azo-bond as a
part of a chain of conjugated double bonds and a carbamide group.

A comparison of the molecular fragments controlling the light fastness of dyed textiles
demonstrates the similarity of several fragments during the photolysis of azo dyes in solu-
tion. For instance, in the case of polyamide fibres, molecular fragment 4’s (LF-PA-4, Table 5)
decrease of the light fastness of azo acid dye is comparable to fragment 6’s (Table 7) in-
crease of the rate of dye photodestruction in water. On the other hand, the high stabilising
effect of the sulphonic group on light fastness is demonstrated by molecular fragment 1
(LF-PA-1, Table 5), which corresponds with fragment 4’s (Table 7) decrease in the rate of
dye photodestruction. Similarly, the positive role of the sulphonic group for dyed wool
fibres is displayed by fragment 7 (LF-W-7, Table 2)

The fragment shown in Table 10 has a positive effect on the wash fastness of the
dyeings on wool and the adsorption on cotton fibres, including two azo groups as a part of
a chain of conjugated double bonds and a chain of conjugated double bonds containing an
azo group and hydrophobic substituent.

Both chain fragments play the role of a bulky hydrophobic fragment.
In contrast to the above, the fragments presented in Table 11 decrease the wash fastness

of acid dyes on wool and the adsorption of direct dyes on cotton. These fragments include
an aromatic chain with a terminal sulfonic group or an azo group as a part of a chain of
conjugated double bonds with hydrophilic substituents such as –NH2 or –OH.

4. Conclusions

The application of chemoinformatics tools for the analysis of large databases of dyes
demonstrated the efficiency of the method for analyzing the dye chemical structure–
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property relationships in several case studies that explored: the light fastness of acid
dyes on wool and acid dyes on polyamide, the sensitivity of acid dyes on wool to oxygen
bleaching, the wash fastness of acid dyes on wool, the adsorption of direct dyes on cot-
ton, and the photodestruction of azo dyes in solution. The fragment approach of QSPR
depicts several substructural descriptors that reflect the mechanism of destruction and the
dye–fibre interaction.

The similarity of the fragments for acid and direct azo dyes on fibres of different natures
is shown; furthermore, this indicates the coinciding mechanisms of the physicochemical
destruction of dyes in light fastness tests and the adsorption/desorption in wash fastness
and dyeability tests. It is found that the light fastness of dyeings on wool and polyamide,
as well as the sensitivity of dyes on wool fiber to oxygen bleaching, is decreased in the
presence of molecular fragments, such as fragments that contain primary or substituted
amino groups, an azo-bond and primary or substituted amino group, and a chain of
conjugated double bonds with a nitrogen atom on the azo group. The positive (stabilising)
effect on dye chromophore is demonstrated by the fragments with an azo group as a part of
a chain of conjugated double bonds and the sulfonic group as a substituent or an azo group
as a part of conjugated double bonds with a carbamide group. The fragment represented
by two azo groups as a part of a chain of conjugated double bonds has a positive effect on
the wash fastness on wool and the sorption on cotton fibres. On the contrary, a negative
effect is demonstrated by the fragments with a chain of conjugated double bonds with a
terminal sulfonic group or azo groups as a part of a chain of conjugated double bonds with
hydrophilic substituents such as –NH2 or –OH.
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