Tackling Colorants Sustainability Combining Disruptive Science and Sustainable Leadership: A Review Article
Abstract
:1. Introduction
2. Traditional Knowledge and Modern Biotechnologies
3. Colorants and Biotech-Assisted Sustainability
4. Entrepreneurial Future
Supply Chain Part | Example | Reference |
---|---|---|
Raw material | Colorants from plants such as sweet cane and hibiscus | [15,51,52,53,54,55,56,57,58,59] |
Colorants from microbial sources | ||
Colorants from genetically engineered microbes | ||
Colorants from waste products and byproducts such as food or forestry, even treated wastewater | ||
Manufacturing | Dyeing with water-based colorant solutions | [60,61,62,63,64] |
Natural mordents | ||
Enzymatic technologies | ||
Identification of biomordants | ||
Reduction of the use of harsh chemicals | ||
Disposal | Use of renewable materials for the adsorption of colorant molecules from effluents | [65,66,67,68,69] |
Biotechnological removal of colorants using microorganisms such as mesophilic bacteria, fungi, algae, and others |
5. The Leadership Perspective
6. A Paradigm Shift: Sustainable Leadership
- Full commitment. Environmental, social, and governance (ESG) criteria have been increasingly part of companies’ agendas, but policies and strategies are often fragmented and only focus on limited aspects of an organization. To adopt processes and techniques that are less harmful for the environment, the consumer, and the wider society, it is essential for leaders to encourage a full commitment of financial, human, and cultural resources across all business units and functions, from procurement and production to finance and reporting.
- A clear strategy and actionable plans. It is equally important that there be clarity on short- and long-term objectives, as well as the action plans necessary to implement them successfully within an organization. This requires the engagement of employees at all company levels, and leaders play a key role in fostering the right mindset and level of commitment to combine the change process with a culture shift.
- Communication. Both within and outside an organization, it is critical to devise an effective communication strategy. Employees and customers demand high levels of transparency when it comes to the nature of the raw materials used as well as their sourcing and manufacturing. It is therefore key for leaders to manage expectations and provide a consistent, clear message on the strategy adopted and how it will impact customers and products.
7. Can a Start-Up Mindset Offer an Effective Alternative?
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huebner, K. 150 Jahre Mauvein. Chiu Z. 2006, 40, 274–275. [Google Scholar]
- Allied Market Research. Colorants Market by Type (Dyes and Pigments) and End-Use Industry (Packaging, Building & Construction, Automotive, Textiles, Paper & Printing, and Others): Global Opportunity Analysis and Industry Forecast 2021–2030. 2022. Available online: https://www.alliedmarketresearch.com/colorants-market (accessed on 23 November 2022).
- Schumacher, K.; Forster, A. Facilitating a Circular Economy for Textiles Workshop Report; Special Publication (NIST SP), National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. [CrossRef]
- European Commission. Circular Action Plan 2015. Available online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_objectives (accessed on 23 November 2022).
- Sajn, N. Environmental Impact of the Textile and Clothing Industry: What Consumers Need to Know. Think Tank. EPRS, European Parliamentary Research Service. 2019. Available online: https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2019)633143 (accessed on 23 November 2022).
- UN. Putting the Brakes on Fast Fashion. 2018. Available online: https://www.unep.org/news-and-stories/story/putting-brakes-fast-fashion (accessed on 23 November 2022).
- CosIng. Public Web Application for Searching and Consulting the EU Cosmetic Ingredient and Substance Database. 2018. Available online: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm (accessed on 23 November 2022).
- Little, B. Killer Clothing Was All the Rage In the 19th Century. National Geographic. 2016. Available online: https://www.nationalgeographic.com/culture/article/dress-hat-fashion-clothing-mercury-arsenic-poison-history (accessed on 23 November 2022).
- Caple, M.B.; Chow, H.; Strouse, C.E. Photosynthetic Pigments of Green Sulfur Bacteria. J. Biol. Chem. 1978, 253, 6730–6737. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Benson, C.C. Sustainability and Competitive Advantage: An Empirical Study of Value Creation. Compet. Forum. 2012, 9, 1. [Google Scholar]
- Flint, D.J.; Golicic, S. Searching for competitive advantage through sustainability: A qualitative study in the New Zealand wine industry. IJPDLM 2009, 39, 10. [Google Scholar] [CrossRef]
- Agbahoungbata, M. Elements of Flair and Fashion. Chem. Int. 2019, 41, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.; Li, T.; Qin, Y.; Liu, Y.; Huang, Y. Ethnobotanical study on plants used to dye traditional costumes by the Baiku Yao nationality of China. J. Ethnobio. Ethnomed. 2022, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Teron, R.; Borthakur, S.K. Traditional Knowledge on Herbal Dyes and Cultural Significance of Colors among the Karbis, an Ethnic Tribe in Northeast India. Ethnobot. Res. Appl. 2012, 10, 593–603. [Google Scholar]
- Raza, A.; Iqbal, N.; Mahmood, S.; Parvee, S.; Azeem, M.; Nawaz, M.; Jarved, M.T.; Noman, A. Harnessing Natural Colorants for Sustainable Textile Dyeing an Eco-Friendly Approach Using Sweet Cane (Saccharum Bengalense Retz.) Inflorescence. Env. Sci. Braz. Arch. Biol. Tech. 2018, 61. [Google Scholar] [CrossRef] [Green Version]
- Liman, M.L.R.; Islama, M.T.; Repon, M.R.; Hossain, M.M.; Sarker, P.A. Comparative dyeing behavior and UV protective characteristics of cotton fabric treated with polyphenols enriched banana and watermelon biowaste. Sustain. Chem. Pharm. 2021, 21, 100417. [Google Scholar] [CrossRef]
- De Luca, E.; Redaelli, M.; Zaffino, C.; Bruni, S. A SERS and HPLC study of traditional dyes from native Chinese plants. Vib. Spectrosc. 2018, 95, 62–67. [Google Scholar] [CrossRef]
- Lesellier, E.; West., C. Supercritical fluid chromatography for the analysis of natural dyes: From carotenoids to flavonoids. J. Sep. Sci. 2021, 45, 382–393. [Google Scholar] [CrossRef]
- Angelini, L.G.; Tozzi, S.; Bracci, S.; Quercioli, F.; Radicati, B.; Picollo, M. Characterization of Traditional Dyes of The Mediterranean Area by Non-Invasive UV-Vis-NIR Reflectance Spectroscopy. Stud. Cons. 2013, 55 (Suppl. 2), 184–189. [Google Scholar] [CrossRef]
- Ma, Y.; Rosson, L.; Wang, X.; Byrne, N. Upcycling of waste textiles into regenerated cellulose fibres: Impact of pretreatments. J. Tex. Inst. 2020, 111, 630–638. [Google Scholar] [CrossRef]
- Kandasamy, N.; Kaliappan, K.; Palanisamy, T. Upcycling sawdust into colorant: Ecofriendly natural dyeing of fabrics with ultrasound assisted dye extract of Pterocarpus indicus Willd. Ind. Crops Prod. 2021, 171, 113969. [Google Scholar] [CrossRef]
- Scarano, P.; Naviglio, D.; Prigioniero, A.; Tartaglia, M.; Postiglione, A.; Sciarrillo, R.; Guarino, C. Sustainability: Obtaining Natural Dyes from Waste Matrices Using the Prickly Pear Peels of Opuntia ficus-indica (L.) Miller. Agronomy 2020, 10, 528. [Google Scholar] [CrossRef] [Green Version]
- Botteri, L.; Miljković, A.; Glogar, M.I. Influence of Cotton Pre-Treatment on Dyeing with Onion and Pomegranate Peel Extracts. Molecules 2022, 27, 4547. [Google Scholar] [CrossRef]
- Adeel, S.; Ahmad, T.; ur-Rehman, F.; Kamran, M.; Sultan, M.; Amin, M.; Hassan, A. Recent Advances in Developing Ecofriendly Cost-Effective Textile Processing. In Textile Dyes and Pigments: A Green Chemistry Approach; Pandit, P., Singha, K., Maity, S., Ahmed, S., Eds.; Wiley: Hoboken, NJ, USA, 2022; Chapter 18. [Google Scholar]
- Islam, M.T.; Repon, M.R.; Rahman, M.L.; Hossain, M.M.; AlMamun, M.A. Functional modification of cellulose by chitosan and gamma radiation for higher grafting of UV protective natural chromophores. Rad. Phys. Chem. 2021, 183, 109426. [Google Scholar] [CrossRef]
- Lara, L.; Cabral, I.; Cunha, J. Ecological Approaches to Textile Dyeing: A Review. Sustainability 2022, 14, 8353. [Google Scholar] [CrossRef]
- Shukla, C.A.; Kute, M.S.; Kulkami, A.A. Towards sustainable continuous production of azo dyes: Possibilities and techno-economic analysis. Green Chem. 2021, 23, 6614–6624. [Google Scholar] [CrossRef]
- Baaka, N.; El Ksibi, I.; Mhenni, M.F. Optimisation of the recovery of carotenoids from tomato processing wastes: Application on textile dyeing and assessment of its antioxidant activity. Nat. Prod. Res. 2017, 31, 196–203. [Google Scholar] [CrossRef]
- Parshetti, G.; Saraale, G.; Telke, A.; Govindwar, S. Biodegradation of hazardous triphenylmethane dye methyl violet by Rhizobium radiobacter (MTCC 8161). J. Basic Microb. 2009, 49, S36–S42. [Google Scholar] [CrossRef] [PubMed]
- Madhuri, R.J.; Vijayalakshmi, G. Biodegradation of diazodye, trypan blue by Aspergillus species from dye contaminated sites. Semant. Sch. 2014, 19092983. [Google Scholar]
- Jamee, R.; Siddique, R. Biodegradation of Synthetic Dyes of Textile Effluent by Microorganisms: An Environmentally and Economically Sustainable Approach. Eur. J. Microb. Imm. 2019, 9, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.C.; Biswas, S.K.; Saha, A.K.; Sikdar, B.; Rahman, M.; Roy, A.K.; Prodhan, Z.H.; Tang, S.S. Biodegradation of Crystal Violet dye by bacteria isolated from textile industry effluents. PeerJ 2018, 6, e5015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morsy, S.A.G.Z.; Tajudin, A.A.; Ali, M.S.M.; Shariff, F.M. Current Development in Decolorization of Synthetic Dyes by Immobilized Laccases. Front. Microbiol. 2020, 11, 572309. [Google Scholar] [CrossRef] [PubMed]
- Bello-Gil, D.; Roig-Molina, E.; Fonseca, J.; Sarmiento-Ferrández, M.D.; Ferrándiz, M.; Franco, E.; Mira, E.; Maestro, B.; Sanz, J.M. An enzymatic system for decolorization of wastewater dyes using immobilized CueO laccase-like multicopper oxidase on poly-3-hydroxybutyrate. Microbiol. Biotech. 2018, 11, 881–892. [Google Scholar] [CrossRef]
- Svetozarevića, M.; Šekuljica, N.; Onjia, A.; Barać, N.; Mihajlović, M.; Knežević-Jugović, Z.; Mijin, D. Biodegradation of synthetic dyes by free and cross-linked peroxidase in microfluidic reactor. Environ. Technol. Innov. 2022, 26, 102373. [Google Scholar] [CrossRef]
- Kamarudin, W.F.W.; Rahman, M.N.A.; Rahamat, N.B.; Irwan, Z.; Yaafar, M.R. Microbial degradation of food dye by Pseudomonas aeruginosa. AIP Conf. Proc. 2022, 2454, 050029. [Google Scholar]
- Sarnaik, S.; Kanebar, P. Bioremediation of color of methyl violet and phenol from a dye-industry waste effluent using Pseudomonas spp. isolated from factory soil. J. Appl. Bacteriol. 1995, 79, 459–469. [Google Scholar] [CrossRef]
- Gudelj, I.; Hrenović, J.; Hrenović, J.; Landeka, T.; Dragičević, F.; Šoljan, V.; Gudelj, H. Azo dyes, their environmental effects, and defining a strategy for their biodegradation and detoxification. Arh. Hig. Rada. Toksikol. 2011, 62, 91–101. [Google Scholar] [CrossRef]
- Lade, H.; Kadam, A.; Paul, D.; Govindwar, S. A Low-Cost Wheat Bran Medium for Biodegradation of the Benzidine-Based Carcinogenic Dye Trypan Blue Using a Microbial Consortium. Int. J. Environ. Res. Public Health 2015, 12, 3480–3505. [Google Scholar] [CrossRef] [Green Version]
- Sosa-Martínez, J.D.; Balagurusamy, N.; Montañez, J.; Peralta, R.A.; de Fátima Peralta Muniz Moreira, R.; Bracht, A.; Peralta, R.M.; Morales-Oyervides, L. Synthetic dyes biodegradation by fungal ligninolytic enzymes: Process optimization, metabolites evaluation and toxicity assessment. J. Haz. Mat. 2020, 400, 123254. [Google Scholar] [CrossRef]
- Garg, V.K.; Amita, M.; Kumar, R.; Gupta, R. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: A timber industry waste. Dyes Pigm. 2004, 63, 243–250. [Google Scholar] [CrossRef]
- Hameed, B.H. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J. Haz. Mat. 2004, 154, 204–212. [Google Scholar] [CrossRef]
- Mowbray. Over 30 New Textile Chemicals to Be Restricted By EU. 2001. Available online: https://www.ecotextile.com/2018121323921/dyes-chemicals-news/over-30-new-textile-chemicals-to-be-restricted-by-eu.html (accessed on 23 November 2022).
- D’Ulivo, A. Naturalised dyes replacing commercial colorants for environmentally friendly leather dyeing and water recycle. BioNAD Eur. Proj. 2016. Available online: https://webgate.ec.europa.eu/life/publicWebsite/project/details/3717 (accessed on 23 November 2022).
- Galdino, C.J., Jr.; Medeiros, A.D.; Amorim, J.D.; Nascimento, H.A.; Henrique, M.A.; Costa, A.F.; Sarubbo, L.A. The Future of Sustainable Fashion: Bacterial Cellulose Biotextile Naturally Dyed. Chem. Eng. Trans. 2021, 86, 1333–1338. [Google Scholar]
- Ul-Islam, S.; Mohammad, F. Natural Colorants in the Presence of Anchors So-Called Mordants as Promising Coloring and Antimicrobial Agents for Textile Materials. ACS Sustain. Chem. Eng. 2015, 3, 2361–2375. [Google Scholar] [CrossRef]
- Faccio, G. Plant Complexity and Cosmetic Innovation. iScience 2020, 23, 101358. [Google Scholar] [CrossRef] [PubMed]
- Brudzyńska, P.; Sionkowska, A.; Grisel, M. Leather Dyeing by Plant-Derived Colorants in the Presence of Natural Additives. Materials 2022, 15, 3326. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.M.P.; Xiao, M.; Li, W.J. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications. Front. Microbiol. 2017, 8, 1113. [Google Scholar]
- Polak, J.; Jarosz-Wilkołazka, A. Whole-cell fungal transformation of precursors into dyes. Microb. Cell Fact. 2019, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Venil, C.K.; Velmurugan, P.; Dufossé, L.; Renuka Devi, P.; Veera Ravi, A. Fungal Pigments: Potential Coloring Compounds for Wide Ranging Applications in Textile Dyeing. J. Fungi. 2020, 6, 68. [Google Scholar] [CrossRef]
- Prabowo, C.P.S.; Eun, H.; Yang, D.; Huccetogullari, D.; Jegadeesh, R.; Kim, S.J.; Lee, S.Y. Production of natural colorants by metabolically engineered microorganisms. Trend. Chem. 2022, 4, 608–626. [Google Scholar] [CrossRef]
- Santos-Ebinuma, V.C.; Roberto, I.C.; Teixeira, M.F.S.; Pessoa, A., Jr. Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnol. Prog. 2013, 29, 778–785. [Google Scholar] [CrossRef]
- Dabai, A.I.; Mohammed, K. Pigments extraction of treated hybrid microalgae-activated sludge. Niger. J. Technol. 2021, 40, 3. [Google Scholar] [CrossRef]
- Cassani, L.; Marcovich, N.E.; Gomez-Zavagliac, A. Valorization of fruit and vegetables agro-wastes for the sustainable production of carotenoid-based colorants with enhanced bioavailability. Food Res. Int. 2021, 152, 110924. [Google Scholar] [CrossRef]
- ul-Islam, S.; Rather, L.J.; Shabbir, M.; Bukhari, M.N.; Shahid, M.; Khan, M.A.; Mohammad, F. Bi and Tri Metal Salt Combinations plus Colorants Extracted from Timber Industry Waste as Effective Dyeing Materials to Produce Novel Shades on Wool. J. Nat. Fib. 2016, 14, 4. [Google Scholar]
- Wathon, M.H.; Beaumont, N.; Benohoud, M.; Blackburn, R.S.; Rayner, C.M. Extraction of anthocyanins from Aronia melanocarpa skin waste as a sustainable source of natural colorants. Color. Technol. 2019, 135, 5–16. [Google Scholar] [CrossRef]
- Montero, H.; Moura, B. Life cycle energy and carbon emissions of colorants extraction from Hibiscus sabdariffa. Ener. Rep. 2022, 8, 277–283. [Google Scholar] [CrossRef]
- Hladnik, L.; Vicente, F.A.; Grilc, M.; Likozar, B. β-Carotene production and extraction: A case study of olive mill wastewater bioremediation by Rhodotorula glutinis with simultaneous carotenoid production. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Batool, F.; Iqbal, N.; Azeem, M. Sustainable Dyeing of Cotton Fabric Using Black Carrot (Daucus carota L.) Plant Residue as a Source of Natural Colorant. Pol. J. Environ. Stud. 2019, 28, 3081–3087. [Google Scholar] [CrossRef]
- Shen, J.; Smith, E. Enzymatic treatments for sustainable textile processing. In Sustainable Apparel; Woodhead Publishing: Sawston, UK, 2015; pp. 119–133. [Google Scholar]
- Pinheiro, L.; Kohan, L.; Duarte, L.O.; de Paula Eduardo Garavello, M.E.; Baruque-Ramos, J. Biomordants and new alternatives to the sustainable natural fiber dyeings. SN Appl. Sci. 2019, 1, 1356. [Google Scholar] [CrossRef] [Green Version]
- Rehman, F.U.; Rafi, S.; Zia, K.M.; Zuber, M. Environmentally Friendly Plant-Based Natural Dyes: Extraction Methodology and Applications. In Plant and Human Health; Ozturk, M., Hakeem, K., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Bomgardner, M.M. These New Textile Dyeing Methods Could Make Fashion More Sustainable. 2018. Available online: https://cen.acs.org/business/consumer-products/new-textile-dyeing-methods-make/96/i29 (accessed on 23 November 2022).
- Bhattacharya, S.; Mazumder, A.; Sen, D.; Bhattacharjee, C. Bioremediation of Dye Using Mesophilic Bacteria: Mechanism and Parametric Influence. In Dye Biodegradation, Mechanisms and Techniques. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Muthu, S.S., Khadir, A., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Nachiyar, C.V.; Karthick Raja Namasivayam, S.; Rajesh Kumar, R.; Sowjanya, M. Bioremediation of textile effluent containing Mordant Black 17 by bacterial consortium CN-1. J. Water Process. Eng. 2014, 4, 196–200. [Google Scholar] [CrossRef]
- Prabhakar, Y.; Gupta, A.; Kaushik, A. Using indigenous bacterial isolate Nesterenkonia lacusekhoensis for removal of azo dyes: A low-cost ecofriendly approach for bioremediation of textile wastewaters. Environ. Dev. Sust. 2022, 5344–5367. [Google Scholar] [CrossRef]
- Liang, D.; Petersons, L. Nature’s Sustainable Filter: The Bioremediation Potential of Sea Lettuce: Remediating Textile Dye-Contaminated Seawater with Ulva lactuca Macroalgae. 2021. Available online: http://hdl.handle.net/2429/78628 (accessed on 23 November 2022).
- Rani, B.; Kumar, V.; Singh, J.; Bisht, S.; Teotia, P.; Sharma, S.; Kela, R. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability. Braz. J. Microbiol. 2014, 45, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- KPMG. Russia-Ukraine War Impact on Supply Chains and Inflation. Econ. Anal. 2022. Available online: https://www.kpmg.us/insights/2022/russia-ukraine-war-impact-supply-chains-inflation.html (accessed on 23 November 2022).
- Kilpatrick, J. Supply chain implications of the Russia-Ukraine Conflict. Deloitte 2022. Available online: https://www2.deloitte.com/xe/en/insights/focus/supply-chain/supply-chain-war-russia-ukraine.html (accessed on 23 November 2022).
- Lee, K. Opportunities for green marketing: Young consumers. Mark. Intell. Plan. 2008, 26, 573–586. [Google Scholar] [CrossRef]
- Vătămănescu, E.M.; Dabija, D.C.; Gazzola, P.; Cegarro-Navarro, J.G.; Buzzi, T. Before and after the outbreak of COVID-19: Linking fashion companies’ corporate social responsibility approach to consumers’ demand for sustainable products. J. Clean. Prod. 2021, 321, 128945. [Google Scholar] [CrossRef]
- Riverblue. 2017. Available online: https://riverbluethemovie.eco/ (accessed on 23 November 2022).
- Edie Newsroom. Report: 60% of Sustainability Claims by Fashion Giants are Greenwashing. 2021. Available online: https://www.edie.net/report-60-of-sustainability-claims-by-fashion-giants-are-greenwashing/ (accessed on 23 November 2022).
- Hallinger, P.; Suriyankietkaew, S. Science Mapping of the Knowledge Base on Sustainable Leadership, 1990–2018. Sustainability 2018, 10, 4846. [Google Scholar] [CrossRef]
- Iqbal, Q.; Ahmad, N.H. Sustainable development: The colors of sustainable leadership in learning organization. Sustain. Dev. 2020, 29, 108–119. [Google Scholar] [CrossRef]
- Brydges, T.; Henninger, C.E.; Hanlon, M. Selling sustainability: Investigating how Swedish fashion brands communicate sustainability to consumers. Sustain. Sci. Pract. Policy 2022, 18, 357–370. [Google Scholar] [CrossRef]
- Walsh, R. Cleaning pollution the synthetic biology way. AXIOS Energy Environ. 2021. Available online: https://www.axios.com/2021/03/17/allonnia-synthetic-biology-bioremediation-pollution (accessed on 23 November 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenzon, V.; Faccio, G. Tackling Colorants Sustainability Combining Disruptive Science and Sustainable Leadership: A Review Article. Colorants 2022, 1, 400-410. https://doi.org/10.3390/colorants1040025
Lorenzon V, Faccio G. Tackling Colorants Sustainability Combining Disruptive Science and Sustainable Leadership: A Review Article. Colorants. 2022; 1(4):400-410. https://doi.org/10.3390/colorants1040025
Chicago/Turabian StyleLorenzon, Valentina, and Greta Faccio. 2022. "Tackling Colorants Sustainability Combining Disruptive Science and Sustainable Leadership: A Review Article" Colorants 1, no. 4: 400-410. https://doi.org/10.3390/colorants1040025
APA StyleLorenzon, V., & Faccio, G. (2022). Tackling Colorants Sustainability Combining Disruptive Science and Sustainable Leadership: A Review Article. Colorants, 1(4), 400-410. https://doi.org/10.3390/colorants1040025