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Abstract: Advancements in cellular imaging have significantly enhanced our understanding of
membrane potential and Ca2+ dynamics, which are crucial for various cellular processes. Voltage-
sensitive dyes (VSDs) are pivotal in this field, enabling non-invasive, high-resolution visualization of
electrical activity in cells. This review discusses the various types of VSDs, including electrochromic,
Förster Resonance Energy Transfer (FRET)-based, and Photoinduced Electron Transfer (PeT)-based
dyes. VSDs are essential tools for studying mitochondrial activity and neuronal function and are
frequently used in conjunction with Ca2+ indicators to elucidate the complex relationship between
membrane potential and Ca2+ fluxes. The development of novel dyes with improved photostability
and reduced toxicity continues to expand the potential of VSDs in biomedical research. This review
underscores the importance of VSDs in advancing our understanding of cellular bioenergetics,
signaling, and disease mechanisms.
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1. Introduction

Cells maintain a crucial biophysical trait known as membrane potential, a fundamental
aspect of cellular function. Specialized cells, such as neurons, release chemical neurotrans-
mitters in response to rapid shifts in membrane potential [1]. This potential is generated by
the movement of ions like sodium, potassium, and chloride through ion-specific channels
in the plasma membrane, following concentration gradients [2]. Electrically excitable cells,
including neurons and cardiomyocytes, undergo activation triggered by swift alterations
in membrane potential, enduring for hundreds of milliseconds [3]. Conversely, slower
fluctuations in resting membrane potential mark various cellular processes such as cell
cycle progression, differentiation, insulin secretion, and the circadian firing cycles of SCN
neurons [4,5]. To monitor membrane potential changes during specific events, genetically
encoded voltage indicators with voltage-dependent fluorescence are commonly employed.
Peterka et al. demonstrates that dyes can provide a non-invasive means to observing
electrical activity, allowing crucial insights into neuronal function and communication [6].

The three types of VSDs are electrochromic, Förster Resonance Energy Transfer (FRET)-
based, and Photoinduced Electron Transfer (PeT)-based dyes, each with distinct mecha-
nisms and applications [3]. Electrochromic VSDs are operated by altering their optical
properties in response to variations in the electric field, which lead to rapid and precise
detection of membrane potential changes [7]. Gonzalez et al., 1995, revealed that changes
in voltage modulate the energy transfer efficiency between two fluorescent molecules in
FRET-based VSDs, which results in high sensitivity and specificity [8]. PeT-based VSDs
use an electron transfer mechanism to change the fluorescence of the dye, enabling the
detection of subtle voltage shifts [9].

VSDs are useful for studying the bioenergetics and dynamics of mitochondria, which
are important for both cellular metabolism and apoptosis [10]. Rhodamine 123 and TMRM
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are commonly used to measure mitochondrial membrane potential, which provides insights
into mitochondrial health and function [11]. The relationship between VSDs and calcium
(Ca2+) dynamics is another important field of study. VSDs are frequently used with Ca2+

indicators to explore the intricate link between membrane potential and intracellular Ca2+

levels, which are important for numerous cellular processes, including muscle contraction
and neurotransmitter release [12]. Fluo-4 and Fura-2 dyes are frequently used in Ca2+

imaging, providing high-resolution temporal and spatial data on Ca2+ dynamics [13]. Two-
photon microscopy, linked with VSDs, has altered the capacity for electrical activity in deep
tissue sections with low photodamage and high spatial resolution [14].

Common challenges related to the application of VSDs include photobleaching, where
constant exposure to light decreases dye fluorescence, and autofluorescence, which can
interfere with signal detection [15]. Recent advancements include the development of new
dyes with enhanced sensitivity, better photostability, and reduced toxicity, expanding the
potential of VSDs in various fields [16].

2. Types of Voltage Sensitive Dyes

Voltage-sensitive dyes (VSDs) are applied to the cell membrane externally and change
their optical properties with transmembrane potential, providing direct measurements
of neuronal activity at sub-millisecond temporal resolution. In combination with high-
magnification microscopy, VSD can image neuronal activity in single cells. Confocal and
two-photon technology can further increase the effective spatial resolution [17]. The basic
principle is to employ voltage-sensitive dyes to transform the change in membrane potential
into a fluorescent signal, and then detect the change in fluorescence signal intensity to
reflect the change in the electrical signal [18]. Previous reports discovered that, after
opening the skull and the dura mater of the animal, the dye molecules are applied on the
surface of the cortex [19]. They bind to the external surface of the membranes of all cells
without interrupting their normal function and act as molecular transducers that transform
changes in membrane potential into optical signals. More precisely, once excited with
the appropriate wavelength, VSDs emit instantaneously an amount of fluorescent light
that changes membrane potential, thus allowing for an excellent temporal resolution for
neuronal activity imaging. The fluorescent signal is proportional to the membrane area of
all stained elements under each measuring pixel. Voltage-sensitive dyes are fluorescent
molecules capable of detecting changes in membrane potential. The next generation of
direct dyes, which exhibit enhanced sensitivities and temporal resolutions due to molecular
electronic changes, can be classified into three types: (i) Electrochromic dyes, (ii) Förster
resonance energy transfer (FRET)-based dyes, and (iii) Photoinduced electron transfer
(PeT)-based dyes [19].

(A) Electrochromic Dyes:

Electrochromic dyes, often referred to as ‘fast’ dyes, present an optimal solution
for detecting swift neuronal voltage fluctuations owing to their rapid response rate [20].
In the electronic ground state, the chromophore’s asymmetry results in an asymmetric
electron system, with delocalized electrons at the anilino group, and the pyridyl group
at the center bearing a positive charge [21]. When a molecule binds to a membrane, the
positively charged pyridine ring is positioned near the extracellular space, with its long
axis perpendicular to the membrane surface [22]. Upon photoexcitation, the positive charge
center undergoes movement during the absorption process from pyridine to aniline and
reverses during the emission process back to pyridine. The energy required for excitation
and emission fluctuates in the presence of charge transfer in an external electric field,
depending on whether the process occurs parallel to or perpendicular to the electric field
direction. Electrochromic dyes offer the advantage of ultrafast fluorescence response
to voltage alterations, enabling researchers to observe processes with sub-millisecond
temporal resolution (Figure 1).
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Figure 1. Electrochromic dyes respond to voltage through a direct interaction between the chro-
mophore and the electric field [23].

(B) Forster Resonance Energy Transfer (FRET)-based Dyes

FRET fluorescent sensors contain both a donor and an acceptor, and those are fluo-
rescent chromophores [24]. When these chromophores are positioned within an optimal
distance from each other, typically between 2 and 10 nanometers, non-radiative energy
transfer occurs, resulting in a reduction in donor fluorescence intensity and an enhancement
in acceptor fluorescence intensity [25]. FRET technique enables the detection of various
biological phenomena such as protein–protein interactions, structural changes in proteins,
and the activity of signaling proteins like protein kinases and small GTPase [26,27]. FRET
biosensors commonly employ three main types of fluorophores: small organic dyes, flu-
orescent proteins (FPs), and quantum dots (QDs) [24]. Additionally, to ensure adequate
energy coupling between the two molecules, there must be spectral overlap between the
emission spectrum of the donor and the excitation spectrum of the acceptor, constituting the
second fundamental requirement for FRET [28]. A minimum overlap of 30% is necessary
to facilitate sufficient FRET for accurate detection [29]. When these dyes are incorporated
into the cell membrane, changes in membrane potential can alter the conformation of
the dye molecules, affecting the distance between the donor and acceptor. This results
in voltage-dependent changes in FRET efficiency, which can be measured as changes in
fluorescence [30] (Figure 2).
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(C) Photoinduced Electron Transfer (PeT)-based Dyes

Fluorescent probes often utilize photoinduced electron transfer (PeT), a classical elec-
tron transfer method [31]. In 1985, De Silva generalized the application of PeT in the
creation of systems based on molecular logic gates and fluorescence sensors [32]. Due to
their high signal-to-noise ratios, PeT-based fluorescent probes have maintained significant
interest among chemical, biological, and medical researchers for over 40 years [33]. Com-
mon PeT-based fluorescent probes are multi-component systems where an unconjugated
linker connects a fluorophore to an activating or recognition group [34]. These probes are
highly effective for cellular imaging and disease diagnosis due to their strong fluorescence
amplification towards the target and minimal fluorescence background. PeT dyes are
widely used for tracking cellular processes, visualizing protein localization, and studying
protein–protein interactions within cells [35].

PET-based VSDs show that the membrane potential affects the rate of electron transfer
between a donor and an acceptor within the dye molecule [36]. In these dyes, the donor and
acceptor are positioned such that electron transfer can occur when the molecule is excited
by light [37]. The efficiency of this electron transfer process is modulated by the membrane
potential, which in turn alters the fluorescence intensity of the dye. This mechanism allows
for the detection of voltage changes through changes in fluorescence, providing a direct
optical readout of membrane potential dynamics [21] (Figure 3).
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3. Mitochondrial Activity and Voltage-Sensitive Dyes

Adenosine triphosphate (ATP) is generated in the mitochondria through oxidative
phosphorylation, and this process is linked with electron transport chain (ETC), which
is why mitochondria are known as the powerhouse of cells [38]. Mitochondria play an
important role in reactive oxygen species (ROS) signaling, calcium homeostasis, and the
intrinsic pathway of apoptosis [39]. The mechanism of mitochondrial function depends on
the ETC, which produces proton gradients across the inner mitochondrial membrane [40].
Mitochondrial membrane potential (∆ψm), also known as an electrochemical gradient,
drives ATP synthesis via ATP synthase [41]. Various diseases such as cancer, neurodegener-
ative diseases, and metabolic disorders are associated with disruptions in mitochondrial
function [42,43]. Mitochondria serve as hubs for cellular signaling and metabolic integra-
tion [44].

VSDs are used to detect processes in living cells and give information about the activity
of mitochondria. VSDs alter their fluorescence intensity to respond to changes in membrane
potential [45]. High sensitivity to voltage changes, excellent spatial resolution, and rapid
temporal resolution are key characteristics of VSDs [46]. In the mechanism of voltage
sensitive dyes, dye molecules will be redistributed within a membrane in response to
voltage changes, which results in alteration in their fluorescence properties. VSDs allow
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real-time monitoring of cellular events without disturbing cell functions due to their non-
invasive nature [47]. In VSDs, the electron transfer mechanism includes multiple complex
phases. Initially dye molecules are integrated into the membrane of the mitochondria,
where they sense the electric field that crosses the membrane [41]. VSD molecules transform
into an excited state in light and become highly sensitive to the local electric field [48].

Zorova et al., 2018, points out the significance of the mitochondrial electron transport
chain (ETC) activity in altering VSD fluorescence [41]. The ETC develops a proton gradient
resulting in a significant membrane potential across the inner mitochondrial membrane,
detectable by VSDs, providing insights on ETC activity and overall mitochondrial health.
Genetic mutations or mitochondrial toxins can create disruptions in the ETC, which can lead
to alterations in VSD signals and a drop in membrane potential [49]. A study revealed that
the chemical targeting of VSDs to specific cells increases their use in live-cell imaging [50].
To address photostability-related concerns, Hernández-Juárez et al., 2021, developed a
fluorescent probe that can dynamically assess mitochondrial membrane potential [51].
Refer to Table 1 for an overview of voltage-sensitive dyes used in mitochondrial research.

Table 1. Voltage-sensitive dyes for mitochondrial studies.

Voltage Sensitive
Dyes Uses Drawbacks Advantages References

1. JC-1

Accumulates in
mitochondria, exhibits

red fluorescence.
Fluoresces green and

monomeric in
depolarized

mitochondria.

Aggregation-
dependent

fluorescence can lead
to quenching and

sensitivity to
experimental

condition.

Due to the color
change, it

differentiates healthy
and depolarized

mitochondria.

Sivandzade et al.,
2019 [52].

Perry S.W. et al.,
2011 [53]

2. Rhodamine 123

Used to observe
mitochondrial

membrane potential.
Aggregates in

mitochondria in a
potential-dependent

manner.

Over time due to
photobleaching,

rhodamine 123 lost its
fluorescence.

It is specific for
mitochondrial

potential.

Baracca et al., 2003 [54].
Zorova et al., 2018 [41]

3. Di-8-ANEPPS

Primarily used for
plasma membrane

potential but can be
adapted for

mitochondrial studies
due to its sensitivity to

voltage change.

Its fluorescence is
affected by changes in

the membrane
potential.

Highly sensitive to
voltage changes.

Carlo Manno et al.,
2013 [55]

Youngworth et al.,
2023 [56]

4.
TMRM Tetramethyl-
rhodamine methyl

ester)

It provides precise
measurements of

mitochondrial
membrane potential.

To avoid toxic effects
at high concentration

it requires careful
optimization.

Potential dependent
dye.

Ernst et al., 2023 [57],
Creed et al., 2019 [58].

5. MitoTracker Red
CMXRos

Exhibits red
fluorescence in active

mitochondria;
convenient for live-cell

imaging of
mitochondrial
potential and

dynamics.

It affects
mitochondrial

function.
It binds to

mitochondrial proteins
and lipids; not
dependent on
mitochondrial

potential.

Precise for live-cell
imaging.

Kholmukhamedov
et al., 2013 [59].

Buravkov S.V. et al.,
2014 [60]

Neikirk et al., 2023 [61]
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Table 1. Cont.

Voltage Sensitive
Dyes Uses Drawbacks Advantages References

6. MitoSOX Red

Analyses superoxide
production in
mitochondria,

indicating
mitochondrial

oxidative stress by
fluorescing upon

oxidation.

It becomes super
oxidized and affects

mitochondrial
functions.

It is specific for
detection of

mitochondrial
oxidative stress.

Wang Q et al.,
2018 [62],

Roelofs et al., 2015 [63]
Mali et al., 2023 [42].

7. Safranin O

Accumulates in
mitochondria in a

potential-dependent
manner; used for dual

or multi-parameter
assessments of
mitochondrial

function.

Under high-dye
concentration,

fluorescence can be
quenched.

Useful in
multi-parameter
assessments of
mitochondrial

functions.

Krumschnabel et al.,
2014 [64],

Chowdhury et al.,
2016 [65].

8. JC-10

Improved version of
JC-1 with better

solubility; used for
similar applications to
monitor mitochondrial

membrane potential
changes.

It has a higher cost
compared to JC-1.

It has better
solubility.

Nadin et al., 2022 [66],
Sakamuru et al.,

2017 [67].

9.

DASPMI (4-(4-
Diethylaminostyryl)-
N-methylpyridinium

iodide)

Stains active
mitochondria and

measures
mitochondrial

membrane potential
with high sensitivity.

It is less compatible
with live-cell imaging.

Highly sensitive for
active mitochondria.

Ramadaas et al., 2008
[68].

4. Voltage Sensitive Dyes and Ca2+ Dynamics

Voltage-sensitive dyes indirectly determine Ca2+ fluxes by identifying changes in mem-
brane potential [69,70]. Oh et al., 2015, discovered the use of VSDs in combination with Ca2+

imaging to observe Ca2+ fluxes in neuronal tissue, providing insights into synaptic activity
and plasticity [71]. Similarly, VSDs in brain slices examine neuronal circuit dynamics,
capturing rapid changes in membrane potential that are important to understanding the
temporal characteristics of Ca2+ signaling [41,72]. The use of VSDs in conjunction with Ca2+

imaging for studying dendritic functions in living animals was revealed by Grienberger
et al., 2015 [73]. They emphasized the vital role of membrane potential alteration in shaping
Ca2+ dynamics within dendrites. Scientist studied the application of optogenetics coupled
with VSDs for multicolor control and imaging of neuronal activity, enabling for precise con-
trol and monitoring of Ca2+ dynamics [74]. A method for all-optical electrophysiology was
presented by Hochbaum et al., 2014, using VSDs to assess change in membrane potential in
response to optogenetic stimulation, offering an effective way of studying Ca2+ dynamics
in response to controlled electrical activity [75]. A novel approach for evolving fluorescent
voltage reporters with enhanced properties, offers greater sensitivity and dynamic range
for better visualization of membrane potential and associated Ca2+ fluxes [76].

Aseyev et al., 2023, recorded fast neuronal activity with the help of voltage imaging,
showing the development of potentiometric probes for simultaneous recording of multiple
neurons [72]. Djemai M et al. (2023) assessed intracellular Ca2+ fluctuations and changes
in membrane potential in cardiomyocytes produced from induced pluripotent stem cells
using optical mapping. Fisher et al., 2008, revealed the advantages of two-photon excitation
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of fluorescent VSDs for monitoring membrane potential changes in mammalian nerve
terminals in situ. These studies highlight the importance of VSDs in understandinging the
intricate relationship between membrane potential and Ca2+ dynamics, leading to a better
understanding of cellular signaling and function [7,77,78]. Refer to Table 2 for an overview
of voltage-sensitive dyes used in Ca2+ imaging.

Table 2. Voltage-sensitive dyes for Ca2+ imaging.

Voltage Sensitive
Dyes Uses in Ca2+ Drawbacks Advantages References

1. Fura-2

A ratiometric dye that
binds to Ca2+ and

exhibits a shift in its
fluorescence excitation
spectrum, allowing for

quantitative
measurements of
intracellular Ca2+

concentrations.

Fura-2 requires UV
excitation, and it has

increasing risk of
phototoxicity.

Accurate ratiometric
measurements of

Ca2+ levels.

Patricia
Santofimia-castano

et al., 2016,
Tanka et al.,
2021 [79,80].

Li ES. et al., 2021 [81]

2. Fluo-4

Fluo-4 increases
fluorescence intensity
upon binding to Ca2+;
it is a non-ratiometric
dye. Used for imaging
rapid Ca2+ transients.

It’s non-ratiometric
nature can lead to
signal distortions

caused by dye
concentration and
photo bleaching.

High sensitivity to
fast Ca2+ transients.

Schneidereit D et al.,
2016,

Gee et al., 2000 [82,83]
Pydi, S.P. et al.,

2014 [84]

3. GCaMPs

Genetically encoded
calcium indicators that
combine a fluorescent

protein with a Ca2+

binding domain.

Compared to synthetic
dyes, GCaMPs have a
slower response time.

High specificity and
sensitivity.

Shen et al., 2018
Berlin et al.,
2015 [85,86]

Cho, J. et al., 2017 [87]

4. Rhod-2

This dye is particularly
useful for studying
mitochondrial Ca2+

dynamics and it has a
red fluorescence.

Cytotoxicity risk is
higher.

Due to its red
fluorescence,

effective imaging of
mitochondrial Ca2+

levels.

Drummond et al.,
2000 [88]

Grynkiewicz et al.,
1985 [89]

5. Cal-590

A red-emitting dye
that is useful for

multiplex imaging
with green and blue

fluorophores,
providing bright

fluorescence.

Limited commercially
available data on

biological
compatibility.

High signal-to-noise
ratio.

Tischbirek et al.,
2015 [90]

6. Cal-520

It is suitable for
high-throughput

screening and imaging
applications.

It is sensitive to
loading variability and

photobleaching like
other non-ratiometric

dyes.

A green, fluorescent
dye with improved

brightness and
signal-to-noise ratio
compared to Fluo-4.

Lock et al., 2015 [91]

7. Oregon Green 488
BAPTA-1 (OGB-1)

Used for detecting
rapid Ca2+ changes in

neuronal and other
excitable cells.

Non-ratiometric
nature may show

some errors in
heterogeneous tissue

environment.

A highly sensitive
dye with fast

kinetics.

Russell et al., 2011,
Tada et al., 2014 [13,92]

8. Indo-1

A ratiometric dye that
allows reducing

artifacts caused by dye
concentration or cell
thickness variations.

Indo-1 requires UV
excitation, increasing

phototoxicity risk.

Dual-emission
measurements,

providing accurate
quantification of

Ca2+ levels.

Bannwarth et al.,
2009 [93]

Ryan, J. et al., 2011 [94]
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5. Voltage-Sensitive Dyes and Two-Photon Microscopy

Two-photon microscopy and voltage-sensitive dyes are an effective combination for
developing live-cell imaging methods, offering an in-depth understanding of cellular
and neuronal processes. VSDs are important for measuring membrane potential changes
and for directly observing electrical activity in excitable cells like heart and neuronal
tissues [95]. This capability allows for a comprehensive analysis of neuronal circuits and
the study of electrophysiological phenomena with high spatial and temporal resolution [96].
When compared to conventional one-photon excitation, two-photon microscopy provides
a complementary method because it uses near-infrared light for excitation, which reduces
phototoxicity and photobleaching [97]. This technique is beneficial for imaging thick tissues
and living organisms as it allows for deeper tissue penetration and reduces out-of-focus
light, thus providing clearer and more detailed images. Homma et al., 2009, observed
that the combination of VSDs and two-photon microscopy improves the ability to monitor
dynamic processes within intact tissues, such as brain slices or even whole animals, with
minimum photodamage [98].

This dual approach is strengthened by the intrinsic benefits of two-photon excitation,
such as the ability to excite fluorescent dyes with lower energy photons, resulting in less
phototoxicity and greater tissue penetration. This ability is important for imaging highly
scattering tissues, such as in the brain where high levels of light absorption and scattering
can make it difficult to obtain clear images with one-photon microscopy [99]. Researchers
can obtain higher depth resolution and lower background noise by using two-photon
microscopy, which makes it possible to conduct accurate studies of cellular dynamics in
their natural environment [100]. VSDs with two-photon microscopy have proven valuable
tools for neuroscience research, particularly in the study of synaptic activities and network
dynamics [101]. This combination allows for simultaneous imaging of electrical activity
across multiple neurons, providing insights into how neuronal circuits process information.
Additionally, the ability to image in vivo with minimal invasiveness has opened new
avenues for studying the development and function of neuronal networks in live animals,
leading to a deeper understanding of brain function and dysfunction [102].

6. Common Issue and Solutions During Imaging
6.1. Photobleaching

When fluorescent dyes lose their capacity to emit light due to prolonged exposure to
excitation, light can lead to a reduction in signal intensity over time, compromising the data
quality, which causes photobleaching. To reduce photobleaching, researchers frequently use
anti-fade reagents that protect the fluorophores from oxidative damage [103]. Using time-
lapse imaging and optimizing laser setting can reduce light exposure intensity and duration,
preserving fluorescence signal [104]. Using fluorophores with intense photostability is
another effective strategy [105].

6.2. Autofluorescence

When a specific wavelength induces autofluorescence, biological structures emit
light naturally. This background signal may cover the fluorescence of labeled probes,
resulting in decreased sensitivity and specificity in imaging. Researchers frequently use
spectral unmixing techniques, which separate the background autofluorescence from
the fluorescence signals of interest depending on their spectral properties, to address
autofluorescence. Using near-infrared dyes is an alternative approach; these dyes usually
experience less autofluorescence interference because of the weaker background signals in
their spectral region [106]. Chemical treatments that quench autofluorescence, like Sudan
black B or sodium borohydride, can also be effective [107].
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7. Dyes and Their Application in Neuroscience and Cell Biology

Voltage-sensitive dyes (VSDs) are used in the detection and imaging of electrical activ-
ity across biological membranes, diverse applications in neuroscience, cardiology, and cell
biology. Among them, ArcLight has a tendency to observe single action potentials and sub-
threshold events in neurons, providing critical insights into cellular electrophysiology [108].
QuasAr allows all-optical electrophysiology in mammalian neurons, integrating voltage
imaging with optogenetic control for advanced neural circuit studies [75]. Ace2N-mNeon
is useful for high-speed recording of neural spikes in awake animals, enabling the real-time
investigation of brain activity [109]. Voltron offers unparalleled stability and reliability for
long-term in vivo voltage imaging [110]. Flare’s dual-color emission capability improves
its versatility through allowing the simultaneous imaging of voltage changes and other
cellular processes [111]. Near-infrared (NIR) dyes are particularly useful for imaging in live
and intact organisms due to their deep tissue penetration and reduced phototoxicity [112].
ANNINE demonstrates high sensitivity and rapid response, making it ideal for capturing
fast electrical events [87], while Di-4-ANEPPS and Di-8-ANEPPS are frequently used for
membrane potential imaging in cardiac and neural tissues, offering precise visualization of
dynamic processes [50,113,114]. Rhodamine, important for its brightness and stability, is
employed across various imaging applications, showcasing the breadth of voltage-sensitive
dye utility in modern biological research [115].

8. Synthesis of ANNINE and Chromene-Based VSDs

Hubener et al., 2003, developed the ANNINE dyes by combining four different donor
moieties (D1–D4) and two different acceptor moieties (A1–A2) [116]. Four steps were in-
volved in the synthesis of Triphenylphosphonium salt D1 from 3-aminobenzoic acid, 3-N,N-
dibutylaminobenzyl alcohol (LiAlH4), 3-N,N-dibutylaminobutyl benzoate (1-iodobutane
and K2CO3) [117], 3-N,N-butylaminobenzyl chloride (with PCl5), and lastly treatment
with PPh3. This method improves the synthesis using 3-aminobenzaldehyde dimethyl acetal
as a starting material [118]. Hubener et al. brominated 2-nitronaphthalene to synthesize 1-
bromo-6-nitronaphthalene [116] that was subsequently reduced to 6-amino-1-bromonaphthalene
(SnCl2, HCl) in order to synthesize D2. When 1-iodobutane was alkylated it led to the
formation of 1-bromo-6-N,N-dibutylaminonaphthalene. 6-N,N-dibutylaminonaphthalene-
1-carboxylic acid (NaOH) and 6-N,N-dibutylamino-1-cyanonaphthalene (CuCN) are pro-
duced by reducing 6-N,Ndibutylamino-1-hydroxymethylnaphthalene with LiAlH4 (a
direct synthesis starting from 1-bromo to 6-N, N-dibutylaminonaphthalene via the lithi-
ated intermediate and subsequent reaction with formaldehyde was less effective). After
the bromination (PBr3) of the alcohol, treatment with PPh3 resulted in D2. A Wittig
reaction was carried out to combine D1 with 2-methoxymethylbenzaldehyde to form
D3 [119]. Photocyclization of the alkenes E/Z2-(3-N,N-dibutylaminostyryl)benzylmethyl
ether yielded 7-N,Ndibutylamino-1-methoxymethylphenanthrene. 7-N,N-dibutylamino-1-
bromomethylphenanthrene was synthesized through ether cleavage, and it was combined
with triphenylphosphine to produce D3. Starting with D2, the same reaction sequence was
used to obtain D4 (Figures 4 and 5).

A previous study employed a less straightforward approach to work around the un-
stable aminochromene (3–6). Cu(I)-catalyzed [2+2] cycloaddition of o-formylaryl propargyl
ether 4 in the presence of malononitrile is the first step that produces the deeply colored
push–pull chromophore 5 [120]; in the presence of water, NaOH hydrolyses this to alde-
hyde 6. Pyrrolidine was used as a catalyst to condense the resulting aldehyde with either
fluorinated pyridinium 7 or fluorinated quinolinium 8 to provide the desired hemicyanine
colors [59]. To achieve a good balance between dye solubility and delivery in the aqueous
medium vs. persistent membrane staining for cells and biological tissues, three distinct
alkyl groups n-butyl, n-pentyl, and n-hexyl have been incorporated as lipid membrane
anchors. Compared to their isostructural amino-chromene dyes, they tend to be more water
soluble and less persistent on cells and tissues; however, this issue was readily solved by
using the dipentyl or dihexyl VSDs (Figure 6).
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9. Recent Advances in Voltage-Sensitive Dyes
9.1. Enhancements in Sensitivity and Specificity

Recent developments in VSDs have focused on increasing their sensitivity and speci-
ficity to better capture rapid changes in membrane potential. A significant development
is the release of ANNINE-6plus, a better dye that provides stronger membrane binding
and greater water solubility than ANNINE-6 dye [121]. Due to its high voltage sensitiv-
ity, this dye can be used for high-resolution imaging of neuronal activity [122]. VSDs like
QuasAr and Archon1 have been designed to supply higher signal-to-noise ratios along with
faster reaction times, allowing action potential monitoring in real-time with unprecedented
accuracy [123].

9.2. Expansion of Spectral Range

The expansion of the spectral range of VSDs is another significant development. Spec-
tral congestion is a common issue with traditional VSDs when used in combination with
other fluorescent markers [124]. Researchers have developed novel VSDs that work at dif-
ferent wavelengths to overcome spectral congestion, i.e., blue-shifted variants like CheRiff
were improved to increase their compatibility with optogenetic tools, permitting simultane-
ous optical stimulation and voltage imaging without spectral overlap [125–127]. ReaChR
and ChRmine are examples of red-shifted dyes that allow deeper tissue penetration and
minimize interference with commonly used blue light-activated optogenetic proteins [128].

9.3. Genetically Encoded Voltage Indicators (GEVIs)

Voltage imaging has experienced a paradigm shift with the development of genetically
encoded voltage indicators (GEVIs) that overcome some of the drawbacks of conventional
synthetic dyes by providing cell-type specificity and long-term expression in living [129].
Advanced GEVIs, such as ASAP3 and Voltron, have the ability to react rapidly and reverse
voltage change, allowing the continuous observation of neuronal dynamics in vivo. These
tools have created new opportunities for studying complex brain functions and network
activities with high temporal and spatial resolution [130].
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9.4. Applications in Cardiac Research

VSDs are making significant contributions to cardiac research [131]. In order to better
understand arrythmias and how electrical impulses flow through heart tissue, optical
mapping techniques using VSDs have become important. Recent studies have utilized
advanced VSDs to achieve high-resolution mapping of action potentials and Ca2+ transients
in cardiomyocytes derived from induced pluripotent stem cells (iPSCs), providing insights
into the mechanisms underlying cardiac diseases [7].

10. Future Perspectives of Voltage-Sensitive Dyes (VSDs)

Voltage-sensitive dyes (VSDs) have the potential to improve electrophysiology and
bioimaging. To detect sub-threshold voltage fluctuations and action potentials accurately,
sensitivity and signal-to-noise ratios need to be improved [132,133]. Improving deep-tissue
imaging through the development of dyes with near-infrared (NIR) fluorescence is possible
for non-invasive and phototoxicity-free in vivo applications [134]. According to Sirbu D
et al., it is expected that the combination of VSDs with modern techniques like multiphoton
microscopy and optogenetics would allow simultaneous stimulation and imaging of neural
networks, expanding their application in neuroscience [135]. These dyes are currently used
in areas other than neuroscience, such as cardiology and oncology. For example, monitoring
cellular responses or arrhythmias to therapeutic agents is now possible through improved
VSD technologies [115]. Future designs also focus on reducing cytotoxicity and improving
dye stability for long-term imaging in live tissues, facilitating translational research and
potential clinical applications [133].

11. Drawbacks of Chromene-Based and ANNINE Dyes

Chromene-based VSDs are highly recommended for their simple synthesis and high
sensitivity. Chromene-based dyes have poor photostability, limiting their effectiveness
during prolonged imaging sessions, as photobleaching could reduce signal reliability [6].
They exhibit less effective results at a physiological pH, potentially decreasing sensitivity
under biological conditions [136]. Particularly in thick tissues or in vivo imaging contexts,
chromene-based dyes have limited ability to cross lipid bilayers efficiently. This limits their
labeling efficiency and diffusion [137].

ANNINE dyes are known for their favorable signal-to-noise ratios and brighter fluo-
rescence, but ANNINE dyes have cytotoxic effects at high concentrations, which can limit
cell viability during long-term research, and are less appropriate for live-cell imaging [138].
Distorted voltage measurements and nonlinear fluorescence can be caused due to aggrega-
tion of ANNINE dyes within lipid bilayers [138]. The emission spectra of ANNINE dye
frequently overlaps with other fluorophores, limiting multi-color imaging applications and
their ionic strength, sensitivity to temperature, and other environmental factors affect their
value across experimental setups [3].

12. Conclusions

Recent developments in voltage-sensitive dyes have significantly increased our under-
standing of membrane potential dynamics, important for various cellular processes. These
dyes, through high-resolution, non-invasive imaging, have become invaluable in fields
like neuroscience and cardiac research. Recent advancements in electrochromic, Förster
Resonance Energy Transfer (FRET)-based, and Photoinduced Electron Transfer (PeT)-based
dyes has expanded their applications, allowing precise detection of membrane potential
changes. Challenges such as photobleaching and autofluorescence have been mitigated
through advancements in dye chemistry and imaging techniques, including two-photon
microscopy, which allows deeper tissue imaging with reduced photodamage. The integra-
tion of VSDs with Ca2+ imaging has revealed the intricate relationship between membrane
potential and Ca2+ dynamics. Novel dyes with improved photostability, sensitivity, and
reduced toxicity continue to expand VSDs’ potential in biomedical research. Thus, VSDs
have revolutionized cellular imaging, offering unparalleled temporal and spatial resolution,
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driving discoveries in cellular physiology, and aiding the development of diagnostic and
therapeutic strategies.
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