A Survey of Computer-Aided Tumor Diagnosis Based on Convolutional Neural Network
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. The Health Hazards of Tumor
1.2. Methods of Tumor Diagnosis
2. Background
2.1. Symptoms of Tumors
2.2. Background of Medical Facilities
2.3. Diagnostic Methods Based on Convolutional Neural Network
3. Traditional Computer-Aided Tumor Diagnosis
3.1. Feature Extraction
3.1.1. Scale Invariant Feature Transform
3.1.2. Oriented Fast and Rotated Brief
3.2. Feature Reduction
3.3. Classification
3.3.1. Support Vector Machine
3.3.2. k-Nearest Neighbors Algorithm
3.4. Disadvantages of Traditional Methods
4. Basic Knowledge of Convolutional Neural Networks
4.1. Basic Principles of Convolutional Neural Network
4.2. The Basic Structure of the Convolutional Neural Network
4.2.1. Convolutional Layer
4.2.2. Pooling Layer
4.2.3. Full Connection Layer
4.3. Activation Function and Loss Function of Convolutional Network
4.3.1. Sigmoid Function
4.3.2. Tanh Function
4.3.3. ReLU, Leaky ReLU, and Parametric ReLU
4.3.4. Loss Function
4.4. Training Methods of Convolutional Networks
4.5. Forward and Backward Propagation of Convolutional Networks
4.6. Network Architecture
4.6.1. AlexNet
4.6.2. VGGNet
4.6.3. GoogLeNet
4.6.4. ResNet
4.6.5. EfficientNet
4.7. Advantages of Tumor Diagnosis Based on Convolutional Neural Network
5. Practical Applications of Convolutional Neural Network in Tumor Diagnosis
5.1. Lung Tumor
5.2. Brain Tumor
5.3. Other Regions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stedman, T. Stedman’s Medical Dictionary; Dalcassian Publishing Company, Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1920. [Google Scholar]
- Cooper, G.M. Elements of Human Cancer; Jones & Bartlett Learning: Burlington, MA, USA, 1992. [Google Scholar]
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10) Version for 2010. 2010. Available online: https://icd.who.int/browse10/2010/en#/II (accessed on 7 May 2021).
- World Health Organization. The Overview of Cancer. 2021. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 7 May 2021).
- Li, L.; Chen, Y.; Shen, Z.; Zhang, X.; Sang, J.; Ding, Y.; Yang, X.; Li, J.; Chen, M.; Jin, C.; et al. Convolutional neural network for the diagnosis of early gastric cancer based on magnifying narrow band imaging. Gastric Cancer 2019, 23, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Menezes, A.H.; Shimizu, K.; Woodroffe, R.W.; Helland, L.C.; Hitchon, P.W.; Howard, M.A. Differences and characteristics of symptoms by tumor location, size, and degree of spinal cord compression: A retrospective study on 53 surgically treated, symptomatic spinal meningiomas. J. Neurosurg. Spine 2020, 32, 931–940. [Google Scholar] [CrossRef]
- National Cancer institute. How Cancer Is Diagnosed. 2019. Available online: https://www.cancer.gov/about-cancer/diagnosis-staging/diagnosis (accessed on 19 October 2021).
- Elliott, A. Medical imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 546, 1–13. [Google Scholar] [CrossRef]
- Gemmeke, H.; Ruiter, N.V. 3D ultrasound computer tomography for medical imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 580, 1057–1065. [Google Scholar] [CrossRef]
- Cohen, M.D. Radiation risks of medical imaging. Radiology 2013, 266, 995. [Google Scholar] [CrossRef] [PubMed]
- Erickson, B.; Bartholmai, B. Computer-Aided Detection and Diagnosis at the Start of the Third Millennium. J. Digit. Imaging Off. J. Soc. Comput. Appl. Radiol. 2002, 15, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Gatto, B.B.; Dos Santos, E.M.; Fukui, K.; Júnior, W.S.S.; Dos Santos, K.V. Fukunaga–Koontz Convolutional Network with Applications on Character Classification. Neural Process. Lett. 2020, 52, 443–465. [Google Scholar] [CrossRef]
- Yao, X.; Wang, X.; Wang, S.-H.; Zhang, Y.-D. A comprehensive survey on convolutional neural network in medical image analysis. Multimed. Tools Appl. 2020, 1–45. [Google Scholar] [CrossRef]
- Watson, L.R.; Sather, R.; Gersten, T. Grading and Staging of Cancer. Available online: https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=85&contentid=p00554 (accessed on 8 August 2021).
- Clark, W.H. Tumour progression and the nature of cancer. Br. J. Cancer 1991, 64, 631–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Vivanti, R.; Joskowicz, L.; Lev-Cohain, N.; Ephrat, A.; Sosna, J. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies. Med. Biol. Eng. Comput. 2018, 56, 1699–1713. [Google Scholar] [CrossRef]
- Khosravi, P.; Kazemi, E.; Imielinski, M.; Elemento, O.; Hajirasouliha, I. Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images. EBioMedicine 2017, 27, 317–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; IEEE: Piscataway, NJ, USA, 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Derpanis, K.G. The Gaussian Pyramid. 2005. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear discriminant analysis. In Robust Data Mining; Springer: Berlin/Heidelberg, Germany, 2013; pp. 27–33. [Google Scholar]
- Pearson, K., LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Dunteman, G.H. Principal Components Analysis; Sage: Thousand Oaks, CA, USA, 1989; no. 69. [Google Scholar]
- Izenman, A.J. Linear discriminant analysis. In Modern Multivariate Statistical Techniques; Springer: Berlin/Heidelberg, Germany, 2013; pp. 237–280. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. (In English) [Google Scholar] [CrossRef]
- Sun, S.; Huang, R. An adaptive k-nearest neighbor algorithm. In Proceedings of the 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China, 10–12 August 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 1, pp. 91–94. [Google Scholar]
- Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy K-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 580–585. [Google Scholar] [CrossRef]
- Li, B.; Yu, S.; Lu, Q. An improved k-nearest neighbor algorithm for text categorization. arXiv 2003, arXiv:cs/0306099. [Google Scholar]
- Indolia, S.; Goswami, A.; Mishra, S.; Asopa, P. Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach. Procedia Comput. Sci. 2018, 132, 679–688. [Google Scholar] [CrossRef]
- Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 1962, 160, 106–154. (In English) [Google Scholar] [CrossRef]
- Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–24 August 2017; pp. 1–6. [Google Scholar]
- Sun, M.; Song, Z.; Jiang, X.; Pan, J.; Pang, Y. Learning Pooling for Convolutional Neural Network. Neurocomputing 2017, 224, 96–104. [Google Scholar] [CrossRef]
- Giusti, A.; Ciresan, D.C.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. Fast image scanning with deep max-pooling convolutional neural networks. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 4034–4038. [Google Scholar]
- Christlein, V.; Spranger, L.; Seuret, M.; Nicolaou, A.; Král, P.; Maier, A. Deep Generalized Max Pooling. In Proceedings of the 2019 International Conference on Document Analysis and Recognition (ICDAR), Sydney, NSW, Australia, 20–25 September 2019; pp. 1090–1096. [Google Scholar]
- Ghosh, A.; Singh, S.; Sheet, D. Simultaneous localization and classification of acute lymphoblastic leukemic cells in peripheral blood smears using a deep convolutional network with average pooling layer. In Proceedings of the 2017 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 15–16 December 2017; pp. 1–6. [Google Scholar]
- Hwang, F.; Liu, Y.-C. Random Pooling Designs under Various Structures. J. Comb. Optim. 2003, 7, 339–352. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Fan, R.; Cao, G.; Zhang, Y.; Guo, T. Teeth category classification via seven-layer deep convolutional neural network with max pooling and global average pooling. Int. J. Imaging Syst. Technol. 2019, 29, 577–583. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, X.; Xin, Z.; Yang, A. Investigation on the Chinese text sentiment analysis based on convolutional neural networks in deep learning. Comput. Mater. Contin. 2019, 58, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Harrington, P. Sigmoid transfer functions in backpropagation neural networks. Anal. Chem. 1993, 65, 2167–2168. [Google Scholar] [CrossRef]
- Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In From Natural to Artificial Neural Computation; Springer: Berlin/Heidelberg, Germany, 1995; pp. 195–201. [Google Scholar]
- Anastassiou, G.A. Multivariate hyperbolic tangent neural network approximation. Comput. Math. Appl. 2011, 61, 809–821. [Google Scholar] [CrossRef] [Green Version]
- Karlik, B.; Olgac, A.V. Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 2011, 1, 111–122. [Google Scholar]
- Hara, K.; Saito, D.; Shouno, H. Analysis of function of rectified linear unit used in deep learning. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 11–16 July 2015; pp. 1–8. [Google Scholar]
- Livni, R.; Shalev-Shwartz, S.; Shamir, O. On the computational efficiency of training neural networks. arXiv 2014, arXiv:1410.1141. [Google Scholar]
- Dubey, A.K.; Jain, V. Comparative study of convolution neural network’s relu and leaky-relu activation functions. In Applications of Computing, Automation and Wireless Systems in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 873–880. [Google Scholar]
- Trottier, L.; Giguere, P.; Chaib-Draa, B. Parametric exponential linear unit for deep convolutional neural networks. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; IEEE: Piscataway, NJ, USA, 2018; pp. 207–214. [Google Scholar]
- Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv 2015, arXiv:1511.07289. [Google Scholar]
- Nguyen, T.; Sanner, S. Algorithms for direct 0–1 loss optimization in binary classification. In Proceedings of the International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 16–21 June 2013; pp. 1085–1093. [Google Scholar]
- Qi, J.; Du, J.; Siniscalchi, S.M.; Ma, X.; Lee, C.-H. Analyzing Upper Bounds on Mean Absolute Errors for Deep Neural Network-Based Vector-to-Vector Regression. IEEE Trans. Signal Process. 2020, 68, 3411–3422. [Google Scholar] [CrossRef]
- Qi, J.; Du, J.; Siniscalchi, S.M.; Ma, X.; Lee, C.-H. On Mean Absolute Error for Deep Neural Network Based Vector-to-Vector Regression. IEEE Signal Process. Lett. 2020, 27, 1485–1489. [Google Scholar] [CrossRef]
- Rosasco, L.; De Vito, E.; Caponnetto, A.; Piana, M.; Verri, A. Are Loss Functions All the Same? Neural Comput. 2004, 16, 1063–1076. [Google Scholar] [CrossRef] [Green Version]
- Painsky, A.; Wornell, G. On the universality of the logistic loss function. In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 936–940. [Google Scholar]
- James, W.; Stein, C. Estimation with quadratic loss. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 443–460. [Google Scholar]
- Wu, Y.; Liu, Y. Robust Truncated Hinge Loss Support Vector Machines. J. Am. Stat. Assoc. 2007, 102, 974–983. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Doroslovacki, M.; Loew, M.H. Approximating the Gradient of Cross-Entropy Loss Function. IEEE Access 2020, 8, 111626–111635. [Google Scholar] [CrossRef]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Zhang, J. Gradient descent based optimization algorithms for deep learning models training. arXiv 2019, arXiv:1903.03614. [Google Scholar]
- Jacobs, R. Increased rates of convergence through learning rate adaptation. Neural Netw. 1988, 1, 295–307. [Google Scholar] [CrossRef]
- Wilson, D.; Martinez, T.R. The general inefficiency of batch training for gradient descent learning. Neural Netw. 2003, 16, 1429–1451. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.; Srivastava, N.; Swersky, K. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. Cited On 2012, 14, 2. [Google Scholar]
- Khirirat, S.; Feyzmahdavian, H.R.; Johansson, M. Mini-batch gradient descent: Faster convergence under data sparsity. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia, 12–15 December 2017; IEEE: Piscataway, NJ, USA, 2018; pp. 2880–2887. [Google Scholar]
- Yuan, K.; Ying, B.; Vlaski, S.; Sayed, A.H. Stochastic gradient descent with finite samples sizes. In Proceedings of the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Salerno, Italy, 13–16 September 2016; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Mustapha, A.; Mohamed, L.; Ali, K. An overview of gradient descent algorithm optimization in machine learning: Application in the ophthalmology field. In Proceedings of the International Conference on Smart Applications and Data Analysis, Marrakesh, Morocco, 25–26 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 349–359. [Google Scholar]
- Yazan, E.; Talu, M.F. Comparison of the stochastic gradient descent based optimization techniques. In Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
- Polyak, B. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 1964, 4, 1–17. [Google Scholar] [CrossRef]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. JMLR 2011, 12, 2121–2159. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canada, 22 December 2014. [Google Scholar]
- Zhang, N.; Lei, D.; Zhao, J. An improved Adagrad gradient descent optimization algorithm. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; IEEE: Piscataway, NJ, USA, 2019; pp. 2359–2362. [Google Scholar]
- Haji, S.H.; Abdulazeez, A.M. Comparison of optimization techniques based on gradient descent algorithm: A review. PalArch’s J. Archaeol. Egypt/Egyptol. 2021, 18, 2715–2743. [Google Scholar]
- Lv, K.; Jiang, S.; Li, J. Learning gradient descent: Better generalization and longer horizons. PMLR 2017, 70, 2247–2255. [Google Scholar]
- Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–2. [Google Scholar]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef]
- Hirasawa, K.; Ohbayashi, M.; Koga, M.; Harada, M. Forward propagation universal learning network. In Proceedings of the International Conference on Neural Networks (ICNN’96), Washington, DC, USA, 3–6 June 1996; IEEE: Piscataway, NJ, USA, 1996; Volume 1, pp. 353–358. [Google Scholar]
- Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception; Elsevier: Amsterdam, The Netherlands, 1992; pp. 65–93. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. PMLR 2015, 37, 448–456. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. PMLR 2019, 97, 6105–6114. [Google Scholar]
- National Health Service. Overview of Lung Cancer. 2019. Available online: https://www.nhs.uk/conditions/lung-cancer/ (accessed on 21 September 2021).
- Zhu, W.; Liu, C.; Fan, W.; Xie, X. DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 673–681. [Google Scholar]
- Vijh, S.; Gaurav, P.; Pandey, H.M. Hybrid bio-inspired algorithm and convolutional neural network for automatic lung tumor detection. Neural Comput. Appl. 2020, 1–14. [Google Scholar] [CrossRef]
- Lu, H. Computer-Aided Diagnosis Research of a Lung Tumor Based on a Deep Convolutional Neural Network and Global Features. BioMed Res. Int. 2021, 2021, 5513746. [Google Scholar] [CrossRef]
- Rani, K.V.; Jawhar, S.J. Superpixel with nanoscale imaging and boosted deep convolutional neural network concept for lung tumor classification. Int. J. Imaging Syst. Technol. 2020, 30, 899–915. [Google Scholar] [CrossRef]
- Teramoto, A.; Yamada, A.; Kiriyama, Y.; Tsukamoto, T.; Yan, K.; Zhang, L.; Imaizumi, K.; Saito, K.; Fujita, H. Automated classification of benign and malignant cells from lung cytological images using deep convolutional neural network. Inform. Med. Unlocked 2019, 16, 100205. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, N.; Wu, X.; Zhang, Y. Multimodal lung tumor image recognition algorithm based on integrated convolutional neural network. Concurr. Comput. Pr. Exp. 2018, 32, e4965. [Google Scholar] [CrossRef]
- Hossain, S.; Najeeb, S.; Shahriyar, A.; Abdullah, Z.R.; Haque, M.A. A Pipeline for Lung Tumor Detection and Segmentation from CT Scans Using Dilated Convolutional Neural Networks. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1348–1352. [Google Scholar]
- Wang, Y.; Zhou, T.; Lu, H.; Wu, C.; Yang, P. Computer aided diagnosis model for lung tumor based on ensemble convolutional neural network. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2017, 34, 543–551. (In Chinese) [Google Scholar] [PubMed]
- Tahmasebi, N.; Boulanger, P.; Noga, M.; Punithakumar, K. A Fully Convolutional Deep Neural Network for Lung Tumor Boundary Tracking in MRI. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5906–5909. [Google Scholar]
- Lin, C.-H.; Lin, C.-J.; Li, Y.-C.; Wang, S.-H. Using Generative Adversarial Networks and Parameter Optimization of Convolutional Neural Networks for Lung Tumor Classification. Appl. Sci. 2021, 11, 480. [Google Scholar] [CrossRef]
- Nair, G.; Johnson, S.; Verma, A.; Ebenezer, M.P.A. A Fully Convolutional Deep Neural Network for Lung Tumor Identification. Int. J. Appl. Eng. Res. 2020, 15, 431–435. [Google Scholar]
- Teramoto, A.; Fujita, H.; Yamamuro, O.; Tamaki, T. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique. Med. Phys. 2016, 43, 2821–2827. [Google Scholar] [CrossRef]
- Gan, W.; Wang, H.; Gu, H.; Duan, Y.; Shao, Y.; Chen, H.; Feng, A.; Huang, Y.; Fu, X.; Ying, Y.; et al. Automatic segmentation of lung tumors on CT images based on a 2D & 3D hybrid convolutional neural network. Br. J. Radiol. 2021. [Google Scholar] [CrossRef]
- Nishio, M.; Sugiyama, O.; Yakami, M.; Ueno, S.; Kubo, T.; Kuroda, T.; Togashi, K. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS ONE 2018, 13, e0200721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moitra, D.; Mandal, R.K. Automated AJCC (7th edition) staging of non-small cell lung cancer (NSCLC) using deep convolutional neural network (CNN) and recurrent neural network (RNN). Heal. Inf. Sci. Syst. 2019, 7, 14. [Google Scholar] [CrossRef]
- DeAngelis, L.M. Brain tumors. N. Engl. J. Med. 2001, 344, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Marosi, C.; Hassler, M.; Roessler, K.; Reni, M.; Sant, M.; Mazza, E.; Vecht, C. Meningioma. Crit. Rev. Oncol. Hematol. 2008, 67, 153–171. [Google Scholar] [CrossRef] [PubMed]
- Wiemels, J.; Wrensch, M.; Claus, E.B. Epidemiology and etiology of meningioma. J. Neuro-Oncol. 2010, 99, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Toğaçar, M.; Ergen, B.; Cömert, Z. BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model. Med. Hypotheses 2020, 134, 109531. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J. Comput. Sci. 2019, 30, 174–182. [Google Scholar] [CrossRef]
- Saxena, P.; Maheshwari, A.; Maheshwari, S. Predictive Modeling of Brain Tumor: A Deep Learning Approach. In Innovations in Computational Intelligence and Computer Vision; Springer: Singapore, 2021; pp. 275–285. [Google Scholar]
- Pashaei, A.; Sajedi, H.; Jazayeri, N. Brain Tumor Classification via Convolutional Neural Network and Extreme Learning Machines. In Proceedings of the 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 25 October 2018; pp. 314–319. [Google Scholar]
- Amin, J.; Sharif, M.; Gul, N.; Yasmin, M.; Shad, S.A. Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network. Pattern Recognit. Lett. 2020, 129, 115–122. [Google Scholar] [CrossRef]
- Abiwinanda, N.; Hanif, M.; Hesaputra, S.T.; Handayani, A.; Mengko, T.R. Brain Tumor Classification Using Convolutional Neural Network. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Singapore, 3–8 June 2018; Springer: Singapore, 2019; pp. 183–189. [Google Scholar]
- Havaei, M.; Dutil, F.; Pal, C.; Larochelle, H.; Jodoin, P.-M. A Convolutional Neural Network Approach to Brain Tumor Segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Springer International Publishing: Cham, Switzerland, 2016; pp. 195–208. [Google Scholar]
- Zhao, X.; Wu, Y.; Song, G.; Li, Z.; Fan, Y.; Zhang, Y. Brain Tumor Segmentation Using a Fully Convolutional Neural Network with Conditional Random Fields. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Springer International Publishing: Cham, Switzerland, 2016; pp. 75–87. [Google Scholar]
- Hossain, T.; Shishir, F.S.; Ashraf, M.; Nasim, M.A.A.; Shah, F.M. Brain Tumor Detection Using Convolutional Neural Network. In Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019; pp. 1–6. [Google Scholar]
- Pereira, S.; Pinto, A.; Alves, V.; Silva, C. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Trans. Med Imaging 2016, 35, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Pathak, K.; Pavthawala, M.; Patel, N.; Malek, D.; Shah, V.; Vaidya, B. Classification of Brain Tumor Using Convolutional Neural Network. In Proceedings of the 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; pp. 128–132. [Google Scholar]
- Khan, H.A.; Jue, W.; Mushtaq, M. Brain tumor classification in MRI image using convolutional neural network. Math. Biosci. Eng. 2020, 17, 6203–6216. [Google Scholar] [CrossRef]
- Deng, W.; Shi, Q.; Luo, K.; Yang, Y.; Ning, N. Brain Tumor Segmentation Based on Improved Convolutional Neural Network in Combination with Non-quantifiable Local Texture Feature. J. Med Syst. 2019, 43, 152. [Google Scholar] [CrossRef]
- Barzekar, H.; Yu, Z. C-Net: A reliable convolutional neural network for biomedical image classification. Expert Syst. Appl. 2021, 116003. [Google Scholar] [CrossRef]
- Mishra, R.; Daescu, O.; Leavey, P.; Rakheja, D.; Sengupta, A. Convolutional Neural Network for Histopathological Analysis of Osteosarcoma. J. Comput. Biol. 2017, 25, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Rashwan, H.A.; Romani, S.; Akram, F.; Pandey, N.; Sarker, M.K.; Saleh, A.; Arenas, M.; Arquez, M.; Puig, D.; et al. Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Syst. Appl. 2020, 139, 112855. [Google Scholar] [CrossRef]
- Ting, F.F.; Tan, Y.J.; Sim, K.S. Convolutional neural network improvement for breast cancer classification. Expert Syst. Appl. 2019, 120, 103–115. [Google Scholar] [CrossRef]
- Bakkouri, I.; Afdel, K. Breast tumor classification based on deep convolutional neural networks. In Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017; pp. 1–6. [Google Scholar]
- Wang, X.; Guo, Y.; Wang, Y.; Yu, J. Automatic breast tumor detection in ABVS images based on convolutional neural network and superpixel patterns. Neural Comput. Appl. 2019, 31, 1069–1081. [Google Scholar] [CrossRef]
- Toğaçar, M.; Özkurt, K.B.; Ergen, B.; Cömert, Z. BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer. Phys. A Stat. Mech. Appl. 2020, 545, 123592. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Satapathy, S.C.; Guttery, D.S.; Górriz, J.M.; Wang, S.-H. Improved Breast Cancer Classification Through Combining Graph Convolutional Network and Convolutional Neural Network. Inf. Process. Manag. 2021, 58, 102439. [Google Scholar] [CrossRef]
- Zeimarani, B.; Costa, M.G.F.; Nurani, N.Z.; Filho, C.F.F.C. A Novel Breast Tumor Classification in Ultrasound Images, Using Deep Convolutional Neural Network. In XXVI Brazilian Congress on Biomedical Engineering; Springer: Singapore, 2019; pp. 89–94. [Google Scholar]
- Alom, Z.; Yakopcic, C.; Nasrin, M.S.; Taha, T.M.; Asari, V.K. Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network. J. Digit. Imaging 2019, 32, 605–617. [Google Scholar] [CrossRef] [Green Version]
- Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.; Matsuo, K.; Fujisaki, J.; et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018, 21, 653–660. [Google Scholar] [CrossRef] [Green Version]
Methods | Advantages | Drawbacks | Application |
---|---|---|---|
X-ray radiography | X-ray imaging has apparent advantages in examining dynamic and subtle lesions, especially in bone, gastrointestinal, vascular, breast, and other examinations. | X-rays are harmful to the human body due to the radiation. The contrast resolution of film X-ray images is low, and the identification ability of soft tissue is poor. | Medical X-ray diagnostic equipment is the earliest and most widely used medical imaging examination means. |
Computed tomography | CT images can show a cross-section of a part of the body, and the shape and density of organ tissues are displayed. Its density resolution is better than an X-ray image. | In examining brain tissue near the bone wall, CT imaging is not as good as MRI due to the interference of bone. | CT can be used to diagnose cancer with intracranial tumors or cardiovascular lesions without MRI. |
Magnetic Resonance Imaging | Magnetic resonance imaging is fast and carries a low risk of injury. The imaging effect of the nervous system, cartilage, and muscle tissue in the body is excellent. | The price of MRI examination is relatively high, with a long examination time, and patients feel bad during the process of MRI examination. | MRI can clearly diagnose brain tumors, bone tumors, and so on, especially for brain tumor diagnosis, and is obviously superior to CT. |
Ultrasound Color Doppler | It is low cost, convenient, and affordable, with no radiation or other adverse effects. It has an obvious accuracy advantage in the examination of dynamic and subtle lesions. | Usually, the image quality is poor, and it is difficult to obtain accurate boundaries of cancer areas and identify small nodules. | UCD detects the texture and density of body tissues. It is used for the examination and diagnosis of heart, limb blood vessels, and superficial organs, as well as abdomen and obstetrics and gynecology. |
Computer-aided diagnosis system | The computer objective classification corrects the diagnostic problems that may be caused by the limitation and influence of the knowledge level of doctors in the subjective identification process. | Human intervention is unavoidable. Most diagnostic systems are limited and can only detect a single model. | It is mainly used for breast and chest pulmonary nodular diseases, but seldom for CT diagnosis of liver disease or MRI diagnosis of brain tumor. |
Layer-Name | Kernel-Size | Kernel-Num | Padding | Stride |
---|---|---|---|---|
Conv1 | 11 | 96 | [1, 2] | 4 |
Maxpool1 | 3 | None | 0 | 2 |
Conv2 | 5 | 256 | [2, 2] | 1 |
Maxpool2 | 3 | None | 0 | 2 |
Conv3 | 3 | 384 | [1, 1] | 1 |
Conv4 | 3 | 384 | [1, 1] | 1 |
Conv5 | 3 | 256 | [1, 1] | 1 |
Maxpool3 | 3 | None | 0 | 2 |
FC1 | 2048 | None | None | None |
FC2 | 2048 | None | None | None |
FC3 | 1000 | None | None | None |
Type | Depth | Stride | Size(output) | #1 × 1 | #3 × 3 Reduce | #3 × 3 | #5 × 5 Reduce | #5 × 5 | PP | Params |
---|---|---|---|---|---|---|---|---|---|---|
Conv | 1 | 7 × 7/2 | 112 × 112 × 64 | 2.7 K | ||||||
Max pool | 0 | 3 × 3/2 | 56 × 56 × 64 | |||||||
Conv | 2 | 3 × 3/1 | 56 × 56 × 192 | 64 | 192 | 112 K | ||||
Max pool | 0 | 3 × 3/2 | 56 × 56 × 192 | |||||||
Inception (3a) | 2 | 28 × 28 × 256 | 64 | 96 | 128 | 16 | 32 | 32 | 159 K | |
Inception (3b) | 2 | 28 × 28 × 480 | 128 | 128 | 192 | 32 | 96 | 64 | 380 K | |
Max pool | 0 | 3 × 3/2 | 14 × 14 × 480 | |||||||
Inception (4a) | 2 | 14 × 14 × 512 | 192 | 96 | 208 | 16 | 48 | 64 | 364 K | |
Inception (4b) | 2 | 14 × 14 × 512 | 160 | 112 | 224 | 24 | 64 | 64 | 437 K | |
Inception (4c) | 2 | 14 × 14 × 512 | 128 | 128 | 256 | 24 | 64 | 64 | 463 K | |
Inception (4d) | 2 | 14 × 14 × 528 | 112 | 144 | 288 | 32 | 64 | 64 | 580 K | |
Inception (4e) | 2 | 14 × 14 × 832 | 256 | 160 | 320 | 32 | 128 | 128 | 840 K | |
Max pool | 0 | 3 × 3/2 | 7 × 7 × 832 | |||||||
Inception (5a) | 2 | 7 × 7 × 832 | 256 | 160 | 320 | 32 | 128 | 128 | 1072 K | |
Inception (5b) | 2 | 7 × 7 × 1024 | 384 | 192 | 384 | 48 | 128 | 128 | 1388 K | |
Avg pool | 0 | 7 × 7/1 | 1×1 × 1024 | |||||||
Dropout (40%) | 0 | 1 × 1 × 1024 | ||||||||
Linear | 1 | 1 × 1 × 1000 | 1000 K | |||||||
Softmax | 0 | 1 × 1 × 1000 |
Authors | Model | Results | ||||
---|---|---|---|---|---|---|
Accuracy | Sensitivity | Specificity | Mean Dice | Median Dice | ||
Zhu et al. [88] | Deeplung | 81.41% | - | - | - | - |
Vijh et al. [89] | WOA_APSO | 97.18% | 97% | 98.66% | - | - |
Lu [90] | DCNN | 96.4% | 97.6% | 95.2% | - | - |
Rani and Jawhar [91] | BDCNN | 97.3% | 94.9% | 100% | - | - |
Teramoto et al. [92] | DCNN | 87.0% | 89.3% | 83.3% | - | - |
Shi et al. [93] (iteration 10 times) | CNN | 94.28% | - | - | - | - |
PET-CNN | 97.43% | - | - | - | - | |
PET/CT-CNN | 95.45% | - | - | - | - | |
Integrated CNN | 99.44% | - | - | - | - | |
Hossain et al. [94] | U-Net | - | - | - | 58.48% | 62.29% |
LungNet | - | - | - | 62.67% | 66.78% | |
Dilated CNN | - | - | - | 65.77% | 70.39% | |
Wang et al. [95] (iteration 10 times) | CT-CNN | 96.67% | 96% | 97.33% | - | - |
PET-CNN | 98.67% | 99.33% | 97% | - | - | |
PET/CT-CNN | 97% | 95.33% | 98.67% | - | - | |
Ensemble CNN | 99.33% | 99.33% | 99.33% | - | - | |
Tahmasebi et al. [96] | Fully CDNN | - | - | - | 91% | - |
Lin et al. [97] | GAN-AlexNet | 99.9% | 99.9% | 100% | - | - |
Nair et al. [98] | Fully DCNN | 90.32% | 92.3% | 80% | 91% | - |
Teramoto et al. [99] | FP-reduction CNN | - | 90.1% | - | - | - |
Gan et al. [100] | Hybrid CNN | - | - | - | 72% | - |
Nishio et al. [101] | Conventional method | 55.9% | - | - | - | - |
DCNN | 62.4% | - | - | - | - | |
DCNN (TL) | 68% | - | - | - | - | |
Moitra and Mandal [102] | CNN-RNN | 97% | - | - | - | - |
Authors | Model | Results | |||
---|---|---|---|---|---|
Accuracy | Dice | ||||
Complete | Core | Enhanced | |||
Toğaçar et al. [106] | BrainMRNet | 96.05% | - | - | - |
Sajjad et al. [107] | DCNN | 90.67% | - | - | - |
Saxena et al. [108] | CNN-TL | 95% | - | - | - |
Pashaei et al. [109] | KE-CNN | 93.68% | - | - | - |
Amin et al. [110] | DWT-CNN | 99% | - | - | - |
Abiwinanda et al. [111] | CNN | 84.19% | - | - | - |
Havaei et al. [112] | CNN | - | 76% | ||
Zhao et al. [113] | FCNN-CRF | - | 86% | 73% | 62% |
Hossain et al. [114] | FCC-CNN | 97.87% | 78% | 65% | 75% |
Pereira et al. [115] | CNN | - | 88% | 83% | 77% |
Pathak et al. [116] | CNN-WA | 100% | - | - | - |
Khan et al. [117] | CNN-TL | 100% | - | - | - |
Deng et al. [118] | FCNN-DMDF | - | 91% |
Pathological Type | Authors | Model | Results | |
---|---|---|---|---|
Accuracy | Sensitivity | |||
Osteoma | Barzekar and Yu [119] | C-Net | 99.34% | - |
Mishra et al. [120] | CNN | 92.4% | - | |
Breast tumors | Singh et al. [121] | cGAN-CNN | 80% | - |
Ting et al. [122] | CNNI-BCC | 90.5% | - | |
Bakkouri and Afdel [123] | CNN-softmax | 97.28% | - | |
Wang et al. [124] | ABVS-CADe | - | 100% | |
Toğaçar et al. [125] | BreastNet | 98.8% | - | |
Zhang et al. [126] | BDR-CNN-GCN | 96.1% | 96.2% | |
Zeimarani et al. [127] | CNN-US | 92.01% | - | |
Alom et al. [128] | IRRCNN (binary) | 99.05% | - | |
IRRCNN (multi-class) | 98.59% | - | ||
Digestive tract tumors | Hirasawa et al. [129] | SSD | - | 92.2% |
Li et al. [5] | CNN-M-NBI | 90.91% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Yao, X.-J.; Wang, S.-H.; Zhang, Y.-D. A Survey of Computer-Aided Tumor Diagnosis Based on Convolutional Neural Network. Biology 2021, 10, 1084. https://doi.org/10.3390/biology10111084
Yan Y, Yao X-J, Wang S-H, Zhang Y-D. A Survey of Computer-Aided Tumor Diagnosis Based on Convolutional Neural Network. Biology. 2021; 10(11):1084. https://doi.org/10.3390/biology10111084
Chicago/Turabian StyleYan, Yan, Xu-Jing Yao, Shui-Hua Wang, and Yu-Dong Zhang. 2021. "A Survey of Computer-Aided Tumor Diagnosis Based on Convolutional Neural Network" Biology 10, no. 11: 1084. https://doi.org/10.3390/biology10111084
APA StyleYan, Y., Yao, X. -J., Wang, S. -H., & Zhang, Y. -D. (2021). A Survey of Computer-Aided Tumor Diagnosis Based on Convolutional Neural Network. Biology, 10(11), 1084. https://doi.org/10.3390/biology10111084