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Simple Summary: Minimum-joint space width (JSW) is a prevalent clinical parameter in quantifying
the joint space narrowing condition in knee osteoarthritis (KOA). In this study, we propose a novel
multiple-JSW measurement, which is estimated by a deep learning-based model in an automated
manner. The performance of the proposed automated measurement is found to be superior to the
conventionally used minimum-JSW in the severity classification and progression prediction of KOA
owing to the additional information of the joint space morphology encoded in the new approach. It is
further demonstrated that the deep learning-based approach yields comparable performance as the
measurement by radiologists. The approach presented in this work may lead to the development of
a computer-aided tool for clinical practitioners that could facilitate the KOA diagnosis and prognosis
with the fully automated, accurate, and efficient computation of the joint-space parameters.

Abstract: We compared the prediction efficiency of the multiple-joint space width (JSW) and the
minimum-JSW on knee osteoarthritis (KOA) severity and progression by using a deep learning
approach. A convolutional neural network (CNN) with ResU-Net architecture was developed for
knee X-ray imaging segmentation and has attained a segmentation efficiency of 98.9% intersection
over union (IoU) on the distal femur and proximal tibia. Later, by leveraging the image segmentation,
the minimum and multiple-JSWs in the tibiofemoral joint were estimated and then validated by
radiologist measurements in the Osteoarthritis Initiative (OAI) dataset using Pearson correlation
and Bland–Altman plots. The agreement between the CNN-based estimation and radiologist’s
measurement of minimum-JSWs reached 0.7801 (p < 0.0001). The estimated JSWs were deployed
to predict the radiographic severity and progression of KOA defined by Kellgren-Lawrence (KL)
grades using the XGBoost model. The 64-point multiple-JSWs achieved the best performance in
predicting KOA progression within 48 months, with the area-under-receiver operating characteristic
curve (AUC) of 0.621, outperforming the commonly used minimum-JSW with 0.554 AUC. We
provided a fully automated radiographic assessment tool for KOA with comparable performance to
the radiologists and showed that the fine-grained measurement of multiple-JSWs yields superior
prediction performance for KOA over the minimum-JSW.

Keywords: knee osteoarthritis; deep learning; automatic measurement; joint space width; muscu-
loskeletal disorders; Kellgren-Lawrence grade
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1. Introduction

Knee Osteoarthritis (KOA) is a prevalent musculoskeletal disease that is a leading
cause of chronic pain and disability in older adults. Clinical diagnosis of KOA relies
on plain radiography; the Kellgren-Lawrence (KL) grading system is widely deployed
in current practice to subjectively describe the severity and progression of radiographic
OA [1]. Joint space width (JSW) is a primary indicator of the integrity of articular cartilage
and the severity of KOA [2]. The Osteoarthritis Research Society International (OARSI)
atlas [3] has been recently established for feature-specific measurement of JSW; however,
similar to the KL-Grade, the subjectivity of individuals becomes detrimental to the repeata-
bility and reproducibility of measurements [4]. There has been a growing interest in the
development of automated computer-aided methods for consistent quantification of joint
space information on plain radiographs for diagnostics and prognostics of KOA.

One of the most commonly used quantities for the characterization of the radiographic
severity of KOA is minimum-JSW. The key to automatic estimation lies in the accurate
segmentation of the femur and tibia plateau [1]. The earlier computer-aided approaches
were built on traditional methods such as edge detection filters and other statistical algo-
rithms [1,5,6]. Such naive approaches either fail to address the 3D joint structure projection
onto 2D images (resulting in the identification of irrelevant bone edges [7] and inaccurate
joint space width estimations) or require prior parameterization to roughly localize the
bone regions on every image, leading to a lack of automation [8].

Recently, deep learning has emerged with superior performance in extracting sophis-
ticated features from a wide variety of data types [9]. By leveraging such an approach, a
number of recent OA studies have yielded great success in the analysis of KOA progression
prediction [10], total knee replacement (TKR) prediction based on MRI [11], and human
tissue segmentation [12]. However, to our best knowledge, little research has been done
in an attempt to identify a smooth, continuous contour of the knee joint for accurate and
fine-grained characterization of the tibiofemoral joint space. Wang et al. and Tiulpin et al.
leveraged low-cost labels to identify the coarse landmarks instead of a detailed contour
of the knee joint [7,13,14]. Meanwhile, Lindner et al. and Thomson et al. employed con-
volutional neural networks (CNN) to create a bounding box to localize the joint space for
subsequent detailed grading [15,16]. The above approaches leverage deep learning or other
advanced machine learning methods to generate rough landmarks or regions-of-interest
(ROI) for various subsequent applications. However, these coarse-grained localizations do
not favor the detailed quantification of joint space features. As a result, a new approach is
of great need that is capable of creating fine-grained bone contours with distinguishable
relevant edge structures under the 3-D projection in the 2-D radiographic image.

To this end, in this paper, we first develop a deep neural network based on the
ResU-Net [15] architecture, which performs automatic segmentation of the tibia and femur.
Subsequently, the performance of our ResU-Net approach is compared with the other
deep learning-based image segmentation techniques, including CUMedVision [17,18],
DeepLabv3 [19,20], and U-Net [21]. Second, with the identification of the tibial and femoral
bone contour, pixel-wise quantitative measurements are made to calculate the knee JSW. In
particular, apart from the minimum-JSW defined in the medial compartment, the smooth
and continuous contours are obtained for the calculation of multiple-JSWs at fixed locations
in the tibiofemoral joint. It is inferred that not only the richer one-dimensional information
regarding the bone margin could be retrieved, but that together, they could characterize
the whole joint shape, which may effectively enhance the detection of radiographic OA,
as inspired by Bayramoglu et al.’s recent work [22]. To validate the JSW calculation by
our proposed algorithm, we compared our results with the measurements by radiologists
from the Osteoarthritis Initiative (OAI) database. Finally, in pursuit of demonstrating the
added values of the multiple-JSWs generated by our approach, we compared its prediction
prowess towards radiographic severity and progression of KOA, defined by Kellgren-
Lawrence (KL) grades with the minimum-JSW measured by our method and clinical
practitioners, respectively.
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2. Materials and Methods
2.1. Dataset and Preprocessing

All radiographic images being used were retrieved from the Osteoarthritis Initiative
(OAI) database (https://data-archive.nimh.nih.gov/oai, accessed on 1 September 2020).
Subjects were recruited (n = 4796) from four centres. The inclusion criteria include men
and women of all ethnicities, ages 45–79, with or at risk for symptomatic femoral-tibial
knee OA. The exclusion criteria were bilateral end-stage knee OA, inflammatory arthritis,
and contraindications that could be found with a 3-Tesla MRI.

For image segmentation, we focus on subjects with bilateral X-ray images from the
baseline cohort, which consists of a total of 4216 images from distinct subjects. The subject’s
ages ranged from 47–79, with a median of age 61. A KL grade of 0 was discovered in 38.6%
of the images, 18.1% had KL grade 1, 26.4% had KL grade 2, 13.7% had KL grade 3, and
3.2% had KL grade 4. In the preprocessing pipeline, the 16-bit DICOM images were first
normalized using global contrast normalization and a histogram truncation between the
5th and 99th percentiles. These images were downscaled to 1024 × 1024 pixels for both
training and inferencing. Out of the 4216 images, 100 bilateral radiographs (200 knees) were
chosen randomly. The masks were being annotated by two authors (A.Y.-C.T. and L.-C.C.)
using the Computer Vision Annotation Tool (https://github.com/openvinotoolkit/cvat,
accessed on 1 October 2020) and were cross-checked to refine the annotations. Among all
the annotated data, 90% were being used for training, while 10% were used for validation. It
has been reported that bilateral knee OA patients demonstrated larger interlimb kinematic
asymmetry that may lead to different severity of OA among their limbs [23]. As a result,
the wearing rate of both legs might be different and could be biased towards one of the
legs in the population, thus potentially leading to model overfitting. Given this, horizontal
flipping of the X-ray images as a means of data augmentation was employed to improve
the model generalization and reduce bias.

2.2. Bone Segmentation Using Deep Neural Network

In our automated JSW estimation approach, we first employed a deep learning model
to perform bone segmentation on plain radiographic images. To this end, four deep
convolutional neural network models, including U-Net [21], CUMedVision [16], ResU-
Net [24], and DeepLabv3 [19,20] were selected for producing the segmentations of the
X-ray images.

U-Net is a class of neural networks designed for image segmentation that extends
the fully convolutional net (FCN) [17] by adding skip connections from encoder layers to
decoder layers to facilitate backpropagation through different convolutional layers and,
hence, reducing the gradient vanishing problem. This type of network has been widely
applied to medical image segmentation, such as knee menisci segmentation from MRI [25]
and knee cartilage tracking [26].

CUMedvision is a variant of FCN, which uses multi-level feature fusion to integrate
both high-level and low-level features, making it excel in identifying objects with huge size
differences on the image [16].

On the other hand, ResU-Net is another variant of U-Net, with the addition of residual
blocks and skip connections [27]. The residual blocks in ResU-Net further assist in propa-
gating low-level details to higher network layers, thereby facilitating more fine-grained
segmentation of objects (Figure 1). Instead of the structure defined in the original work, a
low complexity version of ResU-Net using 18 residual layers in place of 50 were applied
as the network backbone, which accommodates a lower memory usage for training and
better performance in radiographic images.

https://data-archive.nimh.nih.gov/oai
https://github.com/openvinotoolkit/cvat
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Figure 1. Flow diagram of the multiple-JSW automatic measurement.

DeepLabv3 further extends ResU-Net by using dilated convolution, context module,
spatial pyramid pooling, etc. [20]. For the hyperparameters and network structures in
DeepLabv3 and U-Net, we employed the default settings from PyTorch 1.7.0. While
CUMedvision does, in its settings, follow the original paper.

The four selected models are all in an encoder-decoder architecture [17], in which each
pixel in the neural network is classified as one of the four categories: femur, fibula, tibia,
or background, with a probability between 0 and 1, with a sigmoid function in the output
layer. We compared their performance and subsequently selected the best performing
model with the highest mean Intersect over Union (IoU) score.

2.3. Model Training

In the training procedure of the four models, the deep network is implemented using
PyTorch version 1.7.0. The Adam optimizer with a learning rate of 0.001 was used, which
provides a tradeoff between training time and accuracy. Weight decay with 1 × 10−5 was
used, and the early stopping strategy was also applied, which terminates the training
when there is no loss improvement for 10 epochs to prevent overfitting. Backpropagation
optimizes parameters by minimizing the loss function using a first-order gradient. All four
networks use Binary Cross-Entropy (BCE) as the loss function, which aims to maximize
the log-likelihood for correct predictions of the classes of each pixel.

BCE(p) =
1
m

m

∑
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−pi log
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pi
)
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)
log

(
1 − pi

)
(1)

To tackle the issue of limited data, data augmentation was applied to improve the
model generalization ability. Histogram normalization was used to maintain consistency
across different image sets, which were taken by different observers and equipment. Along-
side saturation and contrast jitter, translation and random flipping were also applied in
the augmentation process. The rotation and horizontal shifts of the images were ± 5◦ and
± 10%, respectively.

2.4. Quantitative Measurement

Following the output of masks indicating the femur and tibia from the deep neural
network, a program for the automated calculation of JSWs was derived. Firstly, contours
are being extracted from the femoral and tibial masks generated with Canny filters using
the OpenCV 3 package in Python. The horizontal distance of the extracted tibial plateau
contour was normalized to a scale of 1. We denote this scale as a variable x (Figure 2). The
multi-JSW measurement was calculated in the range x = 0.15~0.30 (lateral compartment)
and x = 0.7~0.9 at 0.05, 0.025, 0.0125, and 0.00625 intervals for 8-point, 16-point, 32-point,
and 64-point JSWs, respectively. While for the minimum-JSW, pixel distance between
all pairs of pixels in the two contour segments of the condyles and tibial plateau were
computed in the range x = 0.7~0.9 (medial compartment), and finally, the minimum distance
was identified as the minimum-JSW. The measurements were further normalized to a
millimeter-scale using the flexion beams. To validate the estimation accuracy, we compared
the minimum-JSW calculated by our approach against the radiologists’ measurements
from the OAI database. Their correspondence was quantified using Pearson correlation,
and the difference was visualized by a Bland-Altman plot [28].
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2.5. KOA Severity and Progression Prediction

After the development of an automated JSW measuring system, we randomly sampled
1760 bilateral X-ray images from the baseline cohort together with their corresponding
KL-grades assessed by the radiologists from the OAI database (those used for training
and validation of the segmentation models were excluded) and employed the algorithm to
output the minimum-JSW and multiple-JSWs accordingly. We defined the KOA severity
using the 5-grade KL-grading system. An XGBoost model, which is a tree-based method
capable of capturing nonlinearity within the data structure [29], was trained using the
estimated JSWs as input to classify the severity of KOA. The optimal hyperparameters of
the model were obtained using grid-search with 5-fold cross-validation. From which, the
maximum depth, alpha, and lambda parameters were found to be 30, 1, and 1, respectively.

In the next experiment, the disease progression was defined as an increase in KL-grade
from the unaffected (grade 0 and 1) to the confirmed case (grade 2 to 4) within 48 months.
Moreover, samples that dropped out of the study before the 48-month follow-up were
viewed as data with missing labels and were subsequently ruled out. After the selection,
945 pairs of knees remained. The grid-search procedure with 5-fold cross-validation was
performed for this experiment, and the most optimal hyperparameters of the XGBoost
model were identified to be maximum depth = 25, alpha = 0.5, and lambda = 1. Both
experiments were conducted with an 8:2 train-test split. We evaluated the model perfor-
mance with the test set using the average macro F1 and average area under the receiver
operating curve (AUC) scores with both metrics’ average values obtained by 100 iterations
of bootstrapping for severity classification. Meanwhile, the disease progression prediction,
average F1, and average AUC scores with 100 iterations of bootstrapping were used. Lastly,
in pursuit of comparing the performance of our CNN-based JSW estimation and those
measured by radiologists in the prediction of disease severity and progression, we repeated
the above experiments using the minimum-JSW and 16-point JSWs from the OAI dataset.

3. Results
3.1. Reliability of the Annotations

Before training our deep learning model for knee bone segmentation on plain radio-
graphic images, we first assessed the reliability of the annotations in the dataset. The
minimum-JSW measurements obtained from the annotated data were further compared to
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the radiologists’ measurements extracted from the OAI dataset to produce a baseline of
interobserver error. The mean interobserver error was 0.483 mm, with a standard deviation
of 0.661 mm, and an R2 value of 0.9565. The intra-class correlation coefficient (ICC) was
used to test the agreement of inter-observer measurement [30]. The ICC between OAI mea-
surement and contour annotator was 0.812, showing that the minimum-JSW measurements
have high consistency with the measurements by radiologists.

3.2. Bone Segmentation Performance Comparison

The segmentation accuracies of the four segmentation methods (i.e., CUMed-vision,
U-Net, DeepLabv3, and ResU-Net) were compared in Table 1. The segmentation masks
produced by the four networks and the annotated mask are shown in Figure 3. Both
ResU-Net and DeepLabv3 achieved the highest mean IoU score of 0.989, outperforming the
other two candidates. Validation loss of ResU-Net is lower than Deeplabv3 (0.006 < 0.011),
showing that the former model outperforms Deeplabv3 in terms of validation loss. Finally,
it was noticed that the overfitting score of Deeplabv3 is higher than that of ResU-Net, which
indicates its greater tendency of undesirable over-fitting. As a result, the ResU-Net was
conceived as the best model in terms of both performance and robustness.

Table 1. Segmentation performance of different deep learning models.

Models Mean IoU Validation
Loss

Training
Loss

Over-Fitting
( Val Loss−Train Loss

Val Loss )

CUMedVision 0.973 0.047 0.008 0.830
U-Net 0.594 0.410 0.409 0.002

DeepLabv3 0.989 0.011 0.005 0.545
ResU-Net-18 (ours) 0.989 0.006 0.004 0.333
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3.3. Automated Measurement of Joint Space Width

As the ResU-Net has demonstrated its superiority over the other CNN architectures
in this automatic segmentation task on plain radiographs, it was selected as the algorithm
to outline the bone contour for subsequent joint space measurements using the OpenCV2
package from python. We then employed the algorithm to segment 4216 X-ray images, then
automatically calculated their minimum-JSW in the medial compartment, with estimated
numerical values ranging from 0 to 7.16 mm, with a mean of 3.53 mm, and a standard
deviation of 1.35 mm. In order to access the validity of our automated estimation, we
additionally harvested the JSW measurements by clinical doctors or radiologists of those
4216 images from the OAI dataset. The measurement values ranged from 0 to 7.744 mm,
with a mean of 3.68 mm and a standard deviation of 1.36 mm.

To examine the performance of our proposed deep learning-based automated JSW
measurement algorithm, we first performed a linear regression analysis between the
minimum-JSW in the medial compartment measured by radiologists, which were obtained
from the OAI database and that estimated by our proposed deep learning-based automated
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method with the automatic measurement method (Figure 4a). A significant correspondence
was observed among them with an R2 value of 0.6086 and a Pearson correlation of 0.7801
(p < 0.0001). Moreover, the Bland-Altman plot [28,31] between the two measurements
was also plotted (Figure 4b), which indicated a low mean difference (d = 0.61 mm), while
most of the data were within the 95% confidence interval (±1.76 mm) around the mean
difference. This indicated a good agreement between the results obtained by the automatic
quantitative JSW estimation and measurement by radiologists.
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3.4. Prediction of KOA Severity and Progression

The accurate JSW measurements enable further study of morphological factors in the
severity and progression of OA. KL-grade is a semi-quantitative clinical criterion widely
used for the diagnosis of OA, which reflects the severity of OA. The minimum-JSW observes
the narrowest points between the tibia and femur plateau in the medial compartment and
acts as a monitoring factor for the joint space narrowing (JSN) condition. Nonetheless, this
measurement only quantifies the JSW at a single site, which may overlook the whole joint
morphological information. Encouraged by our deep learning approach, where continuous
contours of the knee joint could be accurately identified, it is possible to measure the JSW
at multiple points simultaneously.

In the experiment, 16 points were chosen from both the lateral and medial compart-
ments at a fixed interval. Based on the bone contour identified by our ResU-Net, the
algorithm automatically calculated the JSWs at all 16 sites at the same time. Additionally,
to demonstrate the added value of using 16-point JSWs over the use of the single-point
minimum-JSW, they were compared side-by-side in the prediction of the KL-grade. Table 2
shows that using the 16-point JSWs in place of the minimum-JSW significantly improves
both the macro F1 (from 0.311 to 0.402) and AUC scores (from 0.587 to 0.624) in the classifi-
cation of KL-grades. The measurements by radiologists obtained from the OAI database
were also benchmarked with the automatically measured JSWs. Using an unpaired t-test,
the null hypothesis of having a significant difference of the average AUC between CNN-
based automatic measurements and the radiologist measurements was not rejected for the
minimum JSW (p = 0.1225 > 0.5) while it was rejected for the 16-point JSWs (p = 0.0063
< 0.05). Despite having higher prediction scores than the computer-aided estimation in
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both single-point and 16-points cases, the results still indicated a consistent trend in the
classification of KL-grades.

Table 2. KL-grade classification performance using minimum-JSW and 16-point JSWs from the
radiologist measurements or CNN-based estimation using XGBoost model. The error represents the
95% confidence interval with a p-value of the t-test reported for comparison between CNN-based
estimation and radiologist measurements.

Macro Average
F1 Average AUC p-Value of AUC

Comparison

Minimum-JSW
(single-point)

CNN-based
Estimation 0.311 (± 0.020) 0.587 (± 0.017)

0.1225

Radiologist
measurement 0.402 (± 0.030) 0.624 (± 0.017)

16-point JSWs

CNN-based
Estimation 0.337 (± 0.027) 0.609 (± 0.022)

0.0063

Radiologist
measurement 0.454 (± 0.024) 0.655 (± 0.014)

Alongside the 16-point and minimum-JSWs at the baseline were deployed to predict
the OA progression defined by the increase in KL-grade from the unaffected to affected
condition within the future 48-month period. Significant prediction improvements in
both metrics (Table 3) were observed when replacing single-point minimum-JSW with
16-point JSWs, where the macro F1 and AUROC scores increased from 0.484 to 0.544 and
0.554 to 0.583, respectively, while a similar trend was also observed from the radiologist
measurements. Using unpaired t-tests, the null hypothesis of having significant difference
of average AUC between CNN-based automatic measurement and radiologist measure-
ments was not rejected for both the minimum JSW (p = 0.898 > 0.5) and 16-point JSWs
(p = 0.1816 > 0.05).

Table 3. KL-progression prediction performance using minimum-JSW and 16-point JSWs from
radiologist measurements or CNN-based estimation using XGBoost model. The error represents the
95% confidence interval with the p-value of the t-test reported for comparison between CNN-based
estimation and radiologist measurements.

Average F1 Average AUC p-Value of AUC
Comparison

Minimum-JSW
(single-point)

CNN-based
Estimation 0.484 (± 0.041) 0.554 (± 0.039)

0.898

Radiologist
measurement 0.544 (± 0.032) 0.583 (± 0.040)

16-point JSWs

CNN-based
Estimation 0.480 (± 0.041) 0.551 (± 0.024)

0.1816

Radiologist
measurement 0.562(± 0.044) 0.613 (± 0.018)

Finally, by leveraging the continuous contours of the tibia and femur output by our
ResU-Net model, we further divided the joint space into equally spaced regions with
several different densities, and hence, the 8, 32, and 64-point JSWs were calculated and
subsequently employed for prediction of KL-grade and OA prediction. Figure 5a,b both
revealed generally increasing trends of the AUC score as the number of JSWs increases.
Specifically, in the classification of KL-grades, the prediction performance levels at 32
points of JSW. This might indicate that 64 points of JSW do not provide more additional
information than the 32-point JSWs. On the other hand, the prediction performance
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increases strictly as a greater number of JSWs are involved. It is noteworthy that in both
classifications, the optimal CNN-estimated JSWs yield a similar classification score as the
radiologist-measured 16-point JSWs.
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4. Discussion

In this study, we have proposed a novel deep learning-based approach for automated
bone segmentation in the knee joint on radiographic images. Different from the previ-
ous works such as BoneFinder [32] and KNEEL [7], which only identify discontinuous
landmarks on the bone margin, our proposed deep learning model outputs continuous
bone contours, allowing characterization of tibiofemoral joint-space shape in higher reso-
lution [33,34]. Four different prominent neural network architectures, including CUMed-
Vision [16], DeepLabv3 [19], U-Net [21], and ResU-Net-18 [24], designed specifically for
image segmentation, were explored and compared for our application. Lastly, the ResU-
Net-18 architecture was selected for its high performance (average IoU of 98.9%). We
further demonstrated the robust estimation of the JSWs using our trained network, while
such estimations do not only agree well with the measurements by radiologists but are also
readily applicable for the prediction of KOA severity and progression risk in the future
48-months based on the KL-grading system [10,35].

Instead of merely estimating the minimal JSW in the medial compartment of the
tibiofemoral joint, which is known as a common clinical practice in KOA diagnosis, with
the continuous contour output by our knee segmentation network, it paves the way for mea-
suring JSWs at multiple fixed locations simultaneously. The experimental results indicated
that multiple-JSWs are a significantly better predictor over the single-point minimum-JSW
in the classification of KOA severity as well as the prediction of disease progression defined
by the KL-grading system. Multiple-JSWs consistently outperform single-point minimum-
JSW-based methods on both radiologist measurements and estimated measurements by
our model, while radiologist measurements performed better than the estimated measure-
ments by networks slightly but statistically significantly, which might have been caused
by less-than-perfect JSW estimations using the network. Moreover, our results also point
out that increasing the density of the JSW estimations further enhances the classification
performances in both KL-grade and KL-defined radiographic OA progression. It could
be explained by the fact that the incorporation of multiple JSW measurements at different
locations along the bone contour would provide more information in the characterization
of the tibiofemoral joint’s global morphology, which was previously shown to associate
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with the OA severity [22,36,37]. On top of that, we have further corroborated that joint
morphology could also be a valuable predictor of KOA progression.

Previous attempts to apply the traditional computer-vision segmentation approach
rely on handcrafted features, such as edge detection filters [1] and active contour meth-
ods [6] for segmentation; the former detects every edge on the radiograph using the
first-order gradient. However, it could not distinguish the anterior and posterior edge
of the tibial articular surface, where the bright bands of subchondral cortical bone of
the tibial plateau and femoral condyle instead of the outermost edge visualized on the
radiographs are essential for the measurement of JSW [38] (Figure 2). Meanwhile, the
latter method’s performance relies heavily on the prior curve parameterization by users
to roughly locate the regions of interest, which is usually image-specific, thus leading to
a lack of automation during the segmentation process [8,39]. On the other hand, deep
neural networks have a large number and automatic feature filter generations, hence al-
lowing the model to learn more complex image details and anatomical structures instead
of simple edges and boundaries [33] automatically. Furthermore, this class of models
was recently shown to outperform another decision tree-based segmentation technique,
BoneFinder [7,40]. Specifically, our deep learning-based bone segmentation approach is
superior to the existing approaches in a way that produces a continuous contour of the
tibial plateau and femoral condyle rather than discrete landmarks [7,40,41] and is capable
of accurately identifying the relevant tibial contour for JSW measurements. This allows
preservation of pixel-level boundary information in the tibiofemoral joint, hence, beneficial
to the extraction of fine-grained morphological details such as multiple JSWs.

The ResU-Net-18 architecture was selected as the backbone of our deep knee segmen-
tation network owing to its high performance and resistance to overfitting compared to the
other three candidates. This network enables the low-level details to be passed across the
hidden layers to the final output layer, while its residual blocks extract higher-level features,
hence reducing the overfitting problem, as well as ensuring a better fusion of different
levels of image features. Additionally, the model adopts atrous convolution, which allows a
larger receptive field to be detected [18], thus being beneficial to large image segmentation
in our case. On the other hand, the original ResU-Net-50 network was further carefully
modified by reducing its number of hidden layers from 50 to 18 to cater to our mono-color,
low-variation bone segmentation task; such modification would effectively reduce the risk
of over-fitting in the model [24].

As a future plan, external validation of our model on an additional hospital dataset
is to be conducted. Moreover, our multiple-JSW approach could also be scaled to the
3-dimensional image modalities, such as computed tomography (CT) images, to charac-
terize the joint space surface landscape for further improvement on the KOA progression
prediction.

5. Conclusions

In this work, we first employed a deep learning-based approach that automatically
detects the bone contours with high accuracy in the knee joint; by leveraging the continuous
contours, the JSWs were measured in an automated manner, which was comparable to the
radiologist-level measurements. We further demonstrated the capability of our algorithm
to provide an acceptable characterization of the global joint-space shape by estimating the
JSWs at multiple fixed locations, which is time-consuming, if not impractical, in regular
clinical settings. Moreover, for the first time, we found that multiple-JSW measurements are
more effective than the commonly used minimum-JSW in classifying the OA severity and
the prediction of disease progression. As a result, our method provides a computer-aided
tool to the clinical practitioners that could facilitate the KOA diagnosis and prognosis with
the fully automated, accurate, and efficient computation of the joint-space parameters.
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