Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae
Abstract
:Simple Summary
Abstract
1. General Effects of High Hydrostatic Pressure on Biological Systems
2. Effects of High Pressure on Cultured Human Cells and Tissues
3. Effects of Lethal Levels of High Pressure on Yeast Survival
4. Tryptophan Uptake Is Crucial for Yeast Physiology under High Pressure
5. High Pressure Induces Degradation of Tryptophan Permeases via Ubiquitination
6. Transcriptional Analysis of Genes Responsive to High Pressures
7. Global Functional Analysis of Genes Required for Growth under High Pressure
8. High Pressure Activates a Nutrient Sensor Protein Kinase Complex TORC1
9. Identification of Novel S. cerevisiae Genes Required for Growth under High Pressure
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abe, F.; Kato, C.; Horikoshi, K. Pressure-regulated metabolism in microorganisms. Trends Microbiol. 1999, 7, 447–453. [Google Scholar] [CrossRef]
- Bartlett, D.H. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 2002, 1595, 367–381. [Google Scholar] [CrossRef]
- Yayanos, A.A. Microbiology to 10,500 m in the deep sea. Annu. Rev. Microbiol. 1995, 49, 777–805. [Google Scholar] [CrossRef] [PubMed]
- Abe, F.; Horikoshi, K. The biotechnological potential of piezophiles. Trends Biotechnol. 2001, 19, 102–108. [Google Scholar] [CrossRef]
- Oger, P.M.; Jebbar, M. The many ways of coping with pressure. Res. Microbiol. 2010, 161, 799–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muir, H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 1995, 17, 1039–1048. [Google Scholar] [CrossRef]
- Abe, F. Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: Perspectives from piezophysiology. Biosci. Biotechnol. Biochem. 2007, 71, 2347–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aertsen, A.; Meersman, F.; Hendrickx, M.E.; Vogel, R.F.; Michiels, C.W. Biotechnology under high pressure: Applications and implications. Trends Biotechnol. 2009, 27, 434–441. [Google Scholar] [CrossRef]
- Lenz, C.A.; Vogel, R.F. Pressure-Based Strategy for the Inactivation of Spores. Subcell. Biochem. 2015, 72, 469–537. [Google Scholar]
- Coelho, P.S.; Kumar, A.; Snyder, M. Genome-wide mutant collections: Toolboxes for functional genomics. Curr. Opin. Microbiol. 2000, 3, 309–315. [Google Scholar] [CrossRef]
- Vidan, S.; Snyder, M. Large-scale mutagenesis: Yeast genetics in the genome era. Curr. Opin. Biotechnol. 2001, 12, 28–34. [Google Scholar] [CrossRef]
- Nislow, C.; Wong, L.H.; Lee, A.H.; Giaever, G. Functional Profiling Using the Saccharomyces Genome Deletion Project Collections. Cold Spring Harb. Protoc. 2016, 2016, pdb-prot088039. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.; Jaenicke, R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur. J. Biochem. 1994, 221, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Meersman, F.; Smeller, L.; Heremans, K. Protein stability and dynamics in the pressure-temperature plane. Biochim. Biophys. Acta 2006, 1764, 346–354. [Google Scholar] [CrossRef]
- Elo, M.A.; Karjalainen, H.M.; Sironen, R.K.; Valmu, L.; Redpath, N.T.; Browne, G.J.; Kalkkinen, N.; Helminen, H.J.; Lammi, M.J. High hydrostatic pressure inhibits the biosynthesis of eukaryotic elongation factor-2. J. Cell. Biochem. 2005, 94, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Nogi, Y.; Kato, C.; Liang, Z.; Ruger, H.J.; De Kegel, D.; Glansdorff, N. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int. J. Syst. Evol. Microbiol. 2003, 53, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Ohmae, E.; Murakami, C.; Tate, S.; Gekko, K.; Hata, K.; Akasaka, K.; Kato, C. Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli. Biochim. Biophys. Acta 2012, 1824, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somero, G.N. Protein adaptations to temperature and pressure: Complementary roles of adaptive changes in amino acid sequence and internal milieu. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2003, 136, 577–591. [Google Scholar] [CrossRef]
- Morita, T. Structure-based analysis of high pressure adaptation of alpha-actin. J. Biol. Chem. 2003, 278, 28060–28066. [Google Scholar] [CrossRef] [Green Version]
- Yancey, P.H.; Blake, W.R.; Conley, J. Unusual organic osmolytes in deep-sea animals: Adaptations to hydrostatic pressure and other perturbants. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002, 133, 667–676. [Google Scholar] [CrossRef]
- Yancey, P.H.; Siebenaller, J.F. Co-evolution of proteins and solutions: Protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 2015, 218, 1880–1896. [Google Scholar] [CrossRef] [Green Version]
- Yancey, P.H. Cellular responses in marine animals to hydrostatic pressure. J. Exp. Zool. A. Ecol. Integr. Physiol. 2020, 333, 398–420. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Bian, C.; Liu, R.; Wang, Y.; Shao, G.; Li, J.; Qiu, Y.; He, T.; Li, W.; Ao, J.; et al. Whole genome sequencing of a snailfish from the Yap Trench (~7000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea. PLoS Genet. 2021, 17, e1009530. [Google Scholar] [CrossRef]
- Fourme, R.; Girard, E.; Akasaka, K. High-pressure macromolecular crystallography and NMR: Status, achievements and prospects. Curr. Opin. Struct. Biol. 2012, 22, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Akasaka, K.; Kitahara, R.; Kamatari, Y.O. Exploring the folding energy landscape with pressure. Arch. Biochem. Biophys. 2013, 531, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Scheyhing, C.H.; Meersman, F.; Ehrmann, M.A.; Heremans, K.; Vogel, R.F. Temperature-pressure stability of green fluorescent protein: A Fourier transform infrared spectroscopy study. Biopolymers 2002, 65, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Tolgyesi, E.; Bode, C.S.; Smelleri, L.; Kim, D.R.; Kim, K.K.; Heremans, K.; Fidy, J. Pressure activation of the chaperone function of small heat shock proteins. Cell. Mol. Biol. (Noisy-le-Grand) 2004, 50, 361–369. [Google Scholar]
- Gekko, K. Compressibility gives new insight into protein dynamics and enzyme function. Biochim. Biophys. Acta 2002, 1595, 382–386. [Google Scholar] [CrossRef]
- Winter, R. Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochim. Biophys. Acta 2002, 1595, 160–184. [Google Scholar] [CrossRef]
- Matsuki, H.; Goto, M.; Tada, K.; Tamai, N. Thermotropic and barotropic phase behavior of phosphatidylcholine bilayers. Int. J. Mol. Sci. 2013, 14, 2282–2302. [Google Scholar] [CrossRef] [Green Version]
- Ichimori, H.; Hata, T.; Matsuki, H.; Kaneshina, S. Barotropic phase transitions and pressure-induced interdigitation on bilayer membranes of phospholipids with varying acyl chain lengths. Biochim. Biophys. Acta 1998, 1414, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Toyoda, T.; Suzuki, H.; Hisamori, N.; Matsumoto, H.; Toyama, Y. Hydrostatic pressure modulates mRNA expressions for matrix proteins in human meniscal cells. Biorheology 2006, 43, 611–622. [Google Scholar] [PubMed]
- Natsu-Ume, T.; Majima, T.; Reno, C.; Shrive, N.G.; Frank, C.B.; Hart, D.A. Menisci of the rabbit knee require mechanical loading to maintain homeostasis: Cyclic hydrostatic compression in vitro prevents derepression of catabolic genes. J. Orthop. Sci. 2005, 10, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Elder, B.D.; Athanasiou, K.A. Hydrostatic pressure in articular cartilage tissue engineering: From chondrocytes to tissue regeneration. Tissue Eng. Part B. Rev. 2009, 15, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Pattappa, G.; Zellner, J.; Johnstone, B.; Docheva, D.; Angele, P. Cells under pressure—The relationship between hydrostatic pressure and mesenchymal stem cell chondrogenesis. Eur. Cell. Mater. 2019, 37, 360–381. [Google Scholar] [CrossRef]
- Diehl, P.; Schauwecker, J.; Mittelmeier, W.; Schmitt, M. High hydrostatic pressure, a novel approach in orthopedic surgical oncology to disinfect bone, tendons and cartilage. Anticancer Res. 2008, 28, 3877–3883. [Google Scholar]
- Hiemer, B.; Genz, B.; Jonitz-Heincke, A.; Pasold, J.; Wree, A.; Dommerich, S.; Bader, R. Devitalisation of human cartilage by high hydrostatic pressure treatment: Subsequent cultivation of chondrocytes and mesenchymal stem cells on the devitalised tissue. Sci. Rep. 2016, 6, 33747. [Google Scholar] [CrossRef] [Green Version]
- Le, T.M.; Morimoto, N.; Ly, N.T.M.; Mitsui, T.; Notodihardjo, S.C.; Munisso, M.C.; Kakudo, N.; Moriyama, H.; Yamaoka, T.; Kusumoto, K. Hydrostatic pressure can induce apoptosis of the skin. Sci. Rep. 2020, 10, 17594. [Google Scholar] [CrossRef] [PubMed]
- Rosin, M.P.; Zimmerman, A.M. The induction of cytoplasmic petite mutants of Saccharomyces cerevisiae by hydrostatic pressure. J. Cell. Sci. 1977, 26, 373–385. [Google Scholar] [CrossRef]
- Kobori, H.; Sato, M.; Tameike, A.; Hamada, K.; Shimada, S.; Osumi, M. Ultrastructural effects of pressure stress to the nucleus in Saccharomyces cerevisiae: A study by immunoelectron microscopy using frozen thin sections. FEMS Microbiol. Lett. 1995, 132, 253–258. [Google Scholar] [CrossRef]
- Hamada, K.; Nakatomi, Y.; Shimada, S. Direct induction of tetraploids or homozygous diploids in the industrial yeast Saccharomyces cerevisiae by hydrostatic pressure. Curr. Genet. 1992, 22, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Glover, J.R.; Lindquist, S. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 1998, 94, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Iwahashi, H.; Kaul, S.C.; Obuchi, K.; Komatsu, Y. Induction of barotolerance by heat shock treatment in yeast. FEMS Microbiol. Lett. 1991, 64, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Iwahashi, H.; Obuchi, K.; Fujii, S.; Komatsu, Y. Effect of temperature on the role of Hsp104 and trehalose in barotolerance of Saccharomyces cerevisiae. FEBS Lett. 1997, 416, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Iwahashi, H.; Nwaka, S.; Obuchi, K. Evidence for contribution of neutral trehalase in barotolerance of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2000, 66, 5182–5185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwahashi, H.; Fujii, S.; Obuchi, K.; Kaul, S.C.; Sato, A.; Komatsu, Y. Hydrostatic pressure is like high temperature and oxidative stress in the damage it causes to yeast. FEMS Microbiol. Lett. 1993, 108, 53–57. [Google Scholar] [CrossRef]
- Palhano, F.L.; Orlando, M.T.; Fernandes, P.M. Induction of baroresistance by hydrogen peroxide, ethanol and cold-shock in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2004, 233, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.M.; Domitrovic, T.; Kao, C.M.; Kurtenbach, E. Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett. 2004, 556, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Nomura, K.; Iwahashi, H.; Iguchi, A.; Shigematsu, T. Barosensitivity in Saccharomyces cerevisiae is Closely Associated with a Deletion of the COX1 Gene. J. Food Sci. 2015, 80, M1051-9. [Google Scholar] [CrossRef] [PubMed]
- Funada, C.; Tanino, N.; Fukaya, M.; Mikajiri, Y.; Nishiguchi, M.; Otake, M.; Nakasuji, H.; Kawahito, R.; Abe, F. SOD1 mutations cause hypersensitivity to high-pressure-induced oxidative stress in Saccharomyces cerevisiae. Biochim. Biophys. Acta Gen. Subj. 2021, 1866, 130049. [Google Scholar] [CrossRef] [PubMed]
- Domitrovic, T.; Fernandes, C.M.; Boy-Marcotte, E.; Kurtenbach, E. High hydrostatic pressure activates gene expression through Msn2/4 stress transcription factors which are involved in the acquired tolerance by mild pressure precondition in Saccharomyces cerevisiae. FEBS Lett. 2006, 580, 6033–6038. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Minegishi, H.; Usami, R.; Abe, F. Systematic analysis of HSP gene expression and effects on cell growth and survival at high hydrostatic pressure in Saccharomyces cerevisiae. Extremophiles 2006, 10, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Abe, F. Induction of DAN/TIR yeast cell wall mannoprotein genes in response to high hydrostatic pressure and low temperature. FEBS Lett. 2007, 581, 4993–4998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Freitas, J.M.; Bravim, F.; Buss, D.S.; Lemos, E.M.; Fernandes, A.A.; Fernandes, P.M. Influence of cellular fatty acid composition on the response of Saccharomyces cerevisiae to hydrostatic pressure stress. FEMS Yeast Res. 2012, 12, 871–878. [Google Scholar] [CrossRef] [Green Version]
- Abe, F.; Horikoshi, K. Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol. Cell. Biol. 2000, 20, 8093–8102. [Google Scholar] [CrossRef]
- Abe, F.; Iida, H. Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol. Cell Biol. 2003, 23, 7566–7584. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.H.; Xiao, Z.; Fitzgerald-Hayes, M. SCM2, a tryptophan permease in Saccharomyces cerevisiae, is important for cell growth. Mol. Gen. Genet. 1994, 244, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Hershko, A.; Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 1998, 67, 425–479. [Google Scholar] [CrossRef]
- Rotin, D.; Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 2009, 10, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, A.; Kato, C.; Abe, F. The N- and C-terminal mutations in tryptophan permease Tat2 confer cell growth in Saccharomyces cerevisiae under high-pressure and low-temperature conditions. Extremophiles 2004, 8, 143–149. [Google Scholar] [CrossRef]
- Iwahashi, H.; Odani, M.; Ishidou, E.; Kitagawa, E. Adaptation of Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition. FEBS Lett. 2005, 579, 2847–2852. [Google Scholar] [CrossRef] [Green Version]
- Abramova, N.; Sertil, O.; Mehta, S.; Lowry, C.V. Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. J. Bacteriol. 2001, 183, 2881–2887. [Google Scholar] [CrossRef] [Green Version]
- Giaever, G.; Chu, A.M.; Ni, L.; Connelly, C.; Riles, L.; Veronneau, S.; Dow, S.; Lucau-Danila, A.; Anderson, K.; Andre, B.; et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002, 418, 387–391. [Google Scholar] [CrossRef]
- Abe, F.; Minegishi, H. Global screening of genes essential for growth in high-pressure and cold environments: Searching for basic adaptive strategies using a yeast deletion library. Genetics 2008, 178, 851–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, F. The effects of high hydrostatic pressure on the complex intermolecular networks in a living cell. Rev. High Press. Sci. Technol. 2021, 31, 54–65. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Friedman, H.; Lu, P.; Rich, A. Ribosomal subunits produced by cold sensitive initiation of protein synthesis. Nature 1969, 223, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.E.; Sypherd, P.S. Genetic analysis of cold-sensitive ribosome maturation mutants of Escherichia coli. J. Bacteriol. 1974, 117, 1082–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Manney, T.R. Genetic analysis of mutations affecting growth of Saccharomyces cerevisiae at low temperature. Genetics 1974, 77, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Ursic, D.; Davies, J. A cold-sensitive mutant of Saccharomyces cerevisiae defective in ribosome processing. Mol. Gen. Genet. 1979, 175, 313–323. [Google Scholar] [CrossRef]
- Tucker, M.; Valencia-Sanchez, M.A.; Staples, R.R.; Chen, J.; Denis, C.L.; Parker, R. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 2001, 104, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Hata, H.; Mitsui, H.; Liu, H.; Bai, Y.; Denis, C.L.; Shimizu, Y.; Sakai, A. Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics 1998, 148, 571–579. [Google Scholar] [CrossRef]
- Ando, A.; Nakamura, T.; Murata, Y.; Takagi, H.; Shima, J. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. FEMS Yeast Res. 2007, 7, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.L.; Souza, C.M.; Pichler, H.; Dewhurst, G.; Schaad, O.; Kajiwara, K.; Wakabayashi, H.; Ivanova, T.; Castillon, G.A.; Piccolis, M.; et al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol. Biol. Cell 2009, 20, 2083–2095. [Google Scholar] [CrossRef] [Green Version]
- Dubouloz, F.; Deloche, O.; Wanke, V.; Cameroni, E.; De Virgilio, C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 2005, 19, 15–26. [Google Scholar] [CrossRef]
- Heitman, J.; Movva, N.R.; Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991, 253, 905–909. [Google Scholar] [CrossRef]
- Dokudovskaya, S.; Rout, M.P. SEA you later alli-GATOR– a dynamic regulator of the TORC1 stress response pathway. J. Cell. Sci. 2015, 128, 2219–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powis, K.; De Virgilio, C. Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling. Cell Discov. 2016, 2, 15049. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.Y.; Zoncu, R. The lysosome as a command-and-control center for cellular metabolism. J. Cell Biol. 2016, 214, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Hall, M.N. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 2017, 36, 397–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, J.; Soulard, A.; Huber, A.; Lippman, S.; Mukhopadhyay, D.; Deloche, O.; Wanke, V.; Anrather, D.; Ammerer, G.; Riezman, H.; et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol. Cell 2007, 26, 663–674. [Google Scholar] [CrossRef]
- Powers, T.; Walter, P. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 1999, 10, 987–1000. [Google Scholar] [CrossRef] [Green Version]
- Gasch, A.P.; Spellman, P.T.; Kao, C.M.; Carmel-Harel, O.; Eisen, M.B.; Storz, G.; Botstein, D.; Brown, P.O. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 2000, 11, 4241–4257. [Google Scholar] [CrossRef]
- Brauer, M.J.; Huttenhower, C.; Airoldi, E.M.; Rosenstein, R.; Matese, J.C.; Gresham, D.; Boer, V.M.; Troyanskaya, O.G.; Botstein, D. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol. Biol. Cell 2008, 19, 352–367. [Google Scholar] [CrossRef] [Green Version]
- Uemura, S.; Mochizuki, T.; Amemiya, K.; Kurosaka, G.; Yazawa, M.; Nakamoto, K.; Ishikawa, Y.; Izawa, S.; Abe, F. Amino acid homeostatic control by TORC1 in Saccharomyces cerevisiae under high hydrostatic pressure. J. Cell. Sci. 2020, 133, 10.1242/jcs.245555. [Google Scholar] [CrossRef]
- Cario, A.; Lormieres, F.; Xiang, X.; Oger, P. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus. Res. Microbiol. 2015, 166, 710–716. [Google Scholar] [CrossRef]
- Kurosaka, G.; Uemura, S.; Mochizuki, T.; Kozaki, Y.; Hozumi, A.; Suwa, S.; Ishii, R.; Kato, Y.; Imura, S.; Ishida, N.; et al. A novel ER membrane protein Ehg1/May24 plays a critical role in maintaining multiple nutrient permeases in yeast under high-pressure perturbation. Sci. Rep. 2019, 9, 18341. [Google Scholar] [CrossRef]
Cellular Function | Inhibitory/Effective Pressure (MPa<) |
---|---|
Nutrient uptake | 10 |
Cell division | 20 |
Alcohol fermentation | 15–20 |
Membrane protein function | 25–50 |
DNA replication | 25–50 |
RNA transcription | 50–100 |
Protein synthesis | 50 |
Microbial death | 100–200 |
Protein oligomerization | 50–100 |
Soluble enzyme activity | 100 |
Protein tertiary structure | 200–1000 |
DNA double strand formation | 1000 |
Term Description | Observed Gene Count | Background Gene Count | Strength |
---|---|---|---|
Lysosome organization | 3 | 3 | 1.9 |
Tryptophan biosynthetic process | 4 | 6 | 1.73 |
Inositol phosphate biosynthetic process | 3 | 5 | 1.68 |
Aromatic amino acid family biosynthetic process | 6 | 24 | 1.3 |
Ergosterol biosynthetic process | 5 | 25 | 1.2 |
Alcohol biosynthetic process | 8 | 54 | 1.07 |
Positive regulation of transcription elongation from RNA polymerase II promoter | 6 | 46 | 1.02 |
Organic hydroxy compound biosynthetic process | 9 | 76 | 0.97 |
Transcription elongation from RNA polymerase II promoter | 6 | 55 | 0.94 |
Cellular amino acid biosynthetic process | 10 | 131 | 0.78 |
Small molecule biosynthetic process | 19 | 324 | 0.67 |
Carboxylic acid biosynthetic process | 11 | 186 | 0.67 |
Cellular amino acid metabolic process | 12 | 246 | 0.59 |
Positive regulation of cellular biosynthetic process | 16 | 424 | 0.48 |
Organic cyclic compound biosynthetic process | 30 | 931 | 0.41 |
Small molecule metabolic process | 21 | 693 | 0.38 |
Aromatic compound biosynthetic process | 25 | 871 | 0.36 |
Organic substance biosynthetic process | 46 | 1810 | 0.31 |
Cellular biosynthetic process | 44 | 1764 | 0.3 |
Cellular nitrogen compound biosynthetic process | 31 | 1261 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, F. Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae. Biology 2021, 10, 1305. https://doi.org/10.3390/biology10121305
Abe F. Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae. Biology. 2021; 10(12):1305. https://doi.org/10.3390/biology10121305
Chicago/Turabian StyleAbe, Fumiyoshi. 2021. "Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae" Biology 10, no. 12: 1305. https://doi.org/10.3390/biology10121305
APA StyleAbe, F. (2021). Molecular Responses to High Hydrostatic Pressure in Eukaryotes: Genetic Insights from Studies on Saccharomyces cerevisiae. Biology, 10(12), 1305. https://doi.org/10.3390/biology10121305