Nutritional and Bioactive Characterization of Sicana odorifera Naudim Vell. Seeds By-Products and Its Potential Hepatoprotective Properties in Swiss Albino Mice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagent and Standars
2.2. Collection and Preparation of Samples
2.3. Seeds Extract Preparation
2.4. Morphological and Physicochemical Characteristics of Seeds
2.5. Seeds Composition
2.5.1. Proximate Analysis and Mineral Composition
2.5.2. MeOH Extract of Sicana odorifera (Kurugua) through UHPLC-ESI-MS/MS Profile
Chromatographic and MS Conditions of Seeds’ MeOH Extract Profile
2.5.3. Seeds’ Fatty Acids Profile by GC-MS
2.6. Biological Assays
2.6.1. Antioxidant Activity
Determination of Total Phenol Content and ABTS Radical Inhibition Test
Total Phenolic Compounds (TPC)
Content of Total Vitamin C
Determination of Monomeric Anthocyanins
2.6.2. Effects of Sicana odorifera Seeds’ Methanolic Extract on Acute Toxicity and the General Behavior Test on Mice
2.6.3. Hepatoprotective Effect of the Methanolic Extract of S. odorifera Seeds
2.7. Data Analysis
3. Results
3.1. Seeds Composition
3.1.1. Proximate and Minerals Composition
3.1.2. Chemical Characterization through UHPLC-DAD and UHPLC-ESI-MS of the S. odorifera Seeds’ Extract
3.1.3. Seeds Fatty Acids Profile by GC-MS
3.2. Biological Assays
3.2.1. Antioxidant Activity
3.2.2. Effects of S. odorifera Seeds’ Methanolic Extract on Acute Toxicity and the General Behavior Test on Mice
3.2.3. Hepatoprotective Activity Assay of S. odorifera Seeds’ Methanolic Extract
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Food Loss and Waste and the Right to Adequate Food: Making the Connection; FAO: Rome, Italy, 2018; ISBN 978-92-5-130932-2. [Google Scholar]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Biological Protein Precipitation: A Green Process for the Extraction of Cucumisin from Melon (Cucumis Melo L. Inodorus) by-Products. Food Hydrocoll. 2021, 116, 106650. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J. Fruits By-Products—A Source of Valuable Active Principles. A Short Review. Front. Bioeng. Biotechnol. 2020, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.F.; Silva, M.P.L.; Teles, S.; Silva, F.; Martins, G.N. Avaliação de diferentes substratos na qualidade fisiológica de sementes de melão de caroá [Sicana odorifera (Vell.) Naudim]. Rev. Bras. Plantas Med. 2010, 12, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from Fruit Processing Wastes: Green Approaches to Valuable Chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Bhat, I.U.H.; Bhat, R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. Biology 2021, 10, 586. [Google Scholar] [CrossRef] [PubMed]
- FAO. Fruit and Vegetables—Your Dietary Essentials: The International Year of Fruits and Vegetables, 2021, Background Paper; FAO: Rome, Italy, 2020; ISBN 978-92-5-133709-7. [Google Scholar]
- Nunes, P.; Bhat, R. Chapter 15—Valorization of Seeds of the Genera Cucumis, Citrullus, and Cucurbita. In Valorization of Agri-Food Wastes and By-Products; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 317–329. ISBN 978-0-12-824044-1. [Google Scholar]
- Rezig, L.; Chouaibi, M.; Meddeb, W.; Msaada, K.; Hamdi, S. Chemical Composition and Bioactive Compounds of Cucurbitaceae Seeds: Potential Sources for New Trends of Plant Oils. Process Saf. Environ. Prot. 2019, 127, 73–81. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, B. New Insights into Chemical Compositions and Health Promoting Effects of Edible Oils from New Resources. Food Chem. 2021, 364, 130363. [Google Scholar] [CrossRef] [PubMed]
- Imas González, B.A. Análisis Técnico y Económico de La Producción de Kurugua Sicana Odorifera (Vell.) Naud; Como Complemento En La Agricultura Familiar; Universidad Nacional de Asunción: San Lorenzo, Paraguay, 2009. [Google Scholar]
- De Filho, G.X.P.; Barreira, T.F.; Pinheiro, S.S.; de Cardoso, L.M.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. ‘Melão Croá’ (Sicana Sphaerica Vell.) and ‘Maracujina’ (Sicana Odorifera Naud.): Chemical Composition, Carotenoids, Vitamins and Minerals in Native Fruits from the Brazilian Atlantic Forest. Fruits 2015, 70, 341–349. [Google Scholar] [CrossRef]
- Mereles, L.; Caballero, S.; Burgos-edwards, A.; Benítez, M.; Ferreira, D.; Coronel, E. Extraction of Total Anthocyanins from Sicana Odorifera Black Peel Fruits Growing in Paraguay for Food Applications. Appl. Sci. 2021, 11, 6026. [Google Scholar] [CrossRef]
- Nakano, S.; Fujimoto, Y.; Takaishi, Y.; Osorio, C.; Duque, C. Cucurbita-5,23-Diene-3β,25-Diol from Sicana Odorifera. Fitoterapia 2004, 75, 609–611. [Google Scholar] [CrossRef]
- Kienteka, S.S.; Corrêa-Ferreira, M.L.; de Oliveira Petkowicz, C.L. Characterization of Cell Wall Polysaccharides from Sicana Odorifera Fruit and Structural Analysis of a Galactan-Rich Fraction Pectins as Side Chains. Carbohydr. Polym. 2018, 197, 395–402. [Google Scholar] [CrossRef]
- Parada, F.; Duque, C.; Fujimoto, Y. Free and Bound Volatile Composition and Characterization of Some Glucoconjugates as Aroma Precursors in Melón de Olor Fruit Pulp (Sicana Odorifera). J. Agric. Food Chem. 2000, 48, 6200–6204. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, K.; Dawid, C.; Hofmann, T.; Fujimoto, Y.; Osorio, C. Identification of Antioxidative Flavonols and Anthocyanins in Sicana Odorifera Fruit Peel. J. Agric. Food Chem. 2011, 59, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Dias, M.I.; Pereira, C.; Petrović, J.; Soković, M.; Calhelha, R.C.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R.; Barros, L. Valorization of Sicanaodorifera (Vell.) Naudin Epicarp as a Source of Bioactive Compounds: Chemical Characterization and Evaluation of Its Bioactive Properties. Foods 2021, 10, 700. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Azeem, A.S.; Hegazy, A.M.; Ibrahim, K.S.; Farrag, A.-R.H.; El-Sayed, E.M. Hepatoprotective, Antioxidant, and Ameliorative Effects of Ginger (Zingiber Officinale Roscoe) and Vitamin E in Acetaminophen Treated Rats. J. Diet. Suppl. 2013, 10, 195–209. [Google Scholar] [CrossRef]
- Shu, Y.; He, D.; Li, W.; Wang, M.; Zhao, S.; Liu, L.; Cao, Z.; Liu, R.; Huang, Y.; Li, H.; et al. Hepatoprotective Effect of Citrus Aurantium L. Against APAP-Induced Liver Injury by Regulating Liver Lipid Metabolism and Apoptosis. Int. J. Biol. Sci. 2020, 16, 752–765. [Google Scholar] [CrossRef] [Green Version]
- Du, K.; Ramachandran, A.; Jaeschke, H. Oxidative Stress during Acetaminophen Hepatotoxicity: Sources, Pathophysiological Role and Therapeutic Potential. Redox Biol. 2016, 10, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.-B.; Xiao, Y.-H.; Zhang, Q.-Y.; Zhou, M.; Liao, S.-G. Hepatoprotective Natural Triterpenoids. Eur. J. Med. Chem. 2018, 145, 691–716. [Google Scholar] [CrossRef]
- Hinson, J.A.; Roberts, D.W.; James, L.P. Mechanisms of Acetaminophen-Induced Liver Necrosis. In Adverse Drug Reactions; Uetrecht, J., Ed.; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 369–405. ISBN 978-3-642-00663-0. [Google Scholar]
- OPS/OMS. Plan de Acción Para Eliminar Los Ácidos Grasos Trans de Producción Industrial 2020–2025 En: 71a Sesión Del Comite Regional de La OMS Para Las Américas; OPS/OMS: Washington, DC, USA, 2019. [Google Scholar]
- Pipoyan, D.; Stepanyan, S.; Seda, S.; Romina, M.; Merendino, N.; Beglaryan, M.; Costantini, L. The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods 2021, 10, 2452. [Google Scholar] [CrossRef]
- Contini, M.; Baccelloni, S.; Massantini, R.; Anelli, G. Extraction of Natural Antioxidants from Hazelnut (Corylus avellana L.) Shell and Skin Wastes by Long Maceration at Room Temperature. Food Chem. 2008, 110, 659–669. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; Horwitz, W., Ed.; AOAC International: Gaithersburg, Maryland, 2000. [Google Scholar]
- Greenfield, H. Datos de Composición de Alimentos; Organización de las Naciones Unidas para la Agricultura y la Alimentación: Roma, Italy, 2006; ISBN 9789253049493. [Google Scholar]
- Greenfield, H.; Southgate, D.A.T.; Greenfield, H.; Southgate, D.A.T. Food Composition Data and Food Composition Data Bases. Food Compos. Data 1992, 3–14. [Google Scholar] [CrossRef]
- Dreywood, R. Qualitative Test for Carbohydrate Material. Ind. Eng. Chem. Anal. 1946, 8, 499. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 5509:2000. Animal and Vegetable Fats and Oils—Preparation of Methyl Esters of Fatty Acids, 2nd ed.; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- Gorinstein, S.; Böhm, V.; Schaich, K.M.; Özyürek, M.; Güçlü, K. Methods of Measurement and Evaluation of Natural Antioxidant Capacity/Activity (IUPAC Technical Report )*. Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Instituto Interamericano de Cooperación para la Agricultura. Porgrama Cooperativo para el Desarrollo y Agroindustrial del Cono Sur. In Protocolos estandarizados para la valorización de frutos nativos del PROCISUR frente a la creciente demanda por ingredientes y aditivos especializados (carotenoides, antocianinas y polifenoles); Díaz, E.D., Pino, M.T., Saavedra, J., Eds.; Instituto Interamericano de Cooperación para la Agricultura: Montevideo, Paraguay, 2018; ISBN 978-92-9248-793-5. [Google Scholar]
- OECD. Test No. 420: Acute Oral Toxicity—Fixed Dose Procedure; Organisation for Economic Cooperation and Development: Paris, Italy, 2002. [Google Scholar]
- Irwin, S. Drug Screening and Evaluation of New Compounds in Animals. In Animal and Clinical Pharmacologic Techniques in Drug Evaluation; Nodine, J.H., Siegler, P.E., Eds.; Year Book Medical Publischers Inc.: Chicago, IL, USA, 1964; pp. 36–64. [Google Scholar]
- Mossanen, J.C.; Tacke, F. Acetaminophen-Induced Acute Liver Injury in Mice. Lab. Anim. 2015, 49, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Wu, W.; Kirkpatrick, J.; Kuhnert, N. Profiling the Chlorogenic Acids and Other Caffeic Acid Derivatives of Herbal Chrysanthemum by LC−MSn. J. Agric. Food Chem. 2007, 55, 929–936. [Google Scholar] [CrossRef]
- Gruz, J.; Novák, O.; Strnad, M. Rapid Analysis of Phenolic Acids in Beverages by UPLC–MS/MS. Food Chem. 2008, 111, 789–794. [Google Scholar] [CrossRef]
- Jaiswal, R.; Karaköse, H.; Rühmann, S.; Goldner, K.; Neumüller, M.; Treutter, D.; Kuhnert, N. Identification of Phenolic Compounds in Plum Fruits (Prunus Salicina L. and Prunus Domestica L.) by High-Performance Liquid Chromatography/Tandem Mass Spectrometry and Characterization of Varieties by Quantitative Phenolic Fingerprints. J. Agric. Food Chem. 2013, 61, 12020–12031. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J. Negative Ion Electrospray High-Resolution Tandem Mass Spectrometry of Polyphenols. J. Mass Spectrom. 2016, 51, 33–43. [Google Scholar] [CrossRef]
- Yasir, M.; Sultana, B.; Nigam, P.S.; Owusu-Apenten, R. Antioxidant and Genoprotective Activity of Selected Cucurbitaceae Seed Extracts and LC-ESIMS/MS Identification of Phenolic Components. Food Chem. 2016, 199, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Akihisa, T.; Yasukawa, K.; Kimura, Y.; Takido, M.; Kokke, W.C.M.C.; Tamura, T. 7-OX0-10α-Cucurbitadienol from the Seeds of Trichosanthes Kirilowii and Its Anti-Inflammatory Effect. Phytochemistry 1994, 36, 153–157. [Google Scholar] [CrossRef]
- Ukiya, M.; Akihisa, T.; Tokuda, H.; Toriumi, M.; Mukainaka, T.; Banno, N.; Kimura, Y.; Hasegawa, J.; Nishino, H. Inhibitory Effects of Cucurbitane Glycosides and Other Triterpenoids from the Fruit of Momordica Grosvenori on Epstein−Barr Virus Early Antigen Induced by Tumor Promoter 12-O-Tetradecanoylphorbol-13-Acetate. J. Agric. Food Chem. 2002, 50, 6710–6715. [Google Scholar] [CrossRef] [PubMed]
- WHO. Food Based Dietary Guidelines in the WHO European Region; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Alminger, M.; Aura, A.-M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T.; et al. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Agricultural Library Dietary Reference Intakes (DRIs): Estimated Average Requirements. Available online: https://www.nal.usda.gov/sites/default/files/fnic_uploads/recommended_intakes_individuals.pdf (accessed on 7 December 2021).
- Contreras-Calderón, J.; Calderón-jaimes, L.; Guerra-hernández, E.; García-villanova, B. Antioxidant Capacity, Phenolic Content and Vitamin C in Pulp, Peel and Seed from 24 Exotic Fruits from Colombia. Food Res. Int. 2011, 44, 2047–2053. [Google Scholar] [CrossRef]
- Coronel, E.; Caballero, S.; Baez, R.; Villalba, R.; Mereles, L.; De Asunción, N.; Químicas, F.D.C.; Alimentos, D.D.B. De Sicana Odorifera “Kurugua” from Paraguay, Composition and Antioxidant Potential of Interest for the Food Industry. Multidiscip. Digit. Publ. Inst. Proc. 2019, 59, 103151. [Google Scholar]
- Chaudhari, S.P. Nutraceuticals: A Review. World J. Pharm. Pharm. Sci. 2017, 681–739. [Google Scholar] [CrossRef] [Green Version]
- MERCOSUR/GMC/RES. No 01/12 Reglamento Técnico Mercosur Sobre Información Nutricional Complementaria (Declaraciones De Propiedades Nutricionales). 2012; pp. 1–18. Available online: http://www.puntofocal.gov.ar/notific_otros_miembros/pry33a1_t.pdf (accessed on 7 December 2021).
- Chirinos, R.; Zuloeta, G.; Pedreschi, R.; Mignolet, E.; Larondelle, Y.; Campos, D. Sacha Inchi (Plukenetia Volubilis): A Seed Source of Polyunsaturated Fatty Acids, Tocopherols, Phytosterols, Phenolic Compounds and Antioxidant Capacity. Food Chem. 2013, 141, 1732–1739. [Google Scholar] [CrossRef]
- Botella-Martinez, C.; Pérez Alvarez, J.A.; Sayas-Barberá, E.; Fernández López, J.; Viuda-Martos, M. Assessment of Chemical, Physicochemical, and Lipid Stability Properties of Gelled Emulsions Elaborated with Different Oils Chia (Salvia Hispanica L.) or Hemp (Cannabis Sativa L.) and Pseudocereals. Foods 2021, 10, 1463. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies on a Request from the Commission Related to Labelling Reference Intake Values for n-3 and n-6 Polyunsaturated Fatty Acids; EFSA: Parma, Italy, 2009; Volume 1176. [Google Scholar]
- OPS. Healthy Oils and the Elimination of Industrially Produced Trans Fatty Acids in the Americas: Initiative for the Prevention and Control of Chronic Diseases; OPS: Washington, DC, USA, 2008; ISBN 978-92-75-13228-9. [Google Scholar]
- Nutrition Division. DIETA, NUTRICIÓN Y PREVENCIÓN DE ENFERMEDADES CRÓNICAS: Informe de una Consulta Mixta de Expertos OMS/FAO; FAO: Rome, Italy, 2003. [Google Scholar]
- MERCOSUR. Reglamento Técnico Mercosur Sobre El Rotulado Nutricional De Alimentos Envasados. 2003. Available online: http://www.puntofocal.gov.ar/doc/r_gmc_46-03.pdf (accessed on 7 December 2021).
- Peričin, D.; Krimer, V.; Trivić, S.; Radulović, L. The Distribution of Phenolic Acids in Pumpkin’s Hull-Less Seed, Skin, Oil Cake Meal, Dehulled Kernel and Hull. Food Chem. 2009, 113, 450–456. [Google Scholar] [CrossRef]
- Salehi, B.; Capanoglu, E.; Adrar, N.; Catalkaya, G.; Shaheen, S.; Jaffer, M.; Giri, L.; Suyal, R.; Jugran, A.K.; Calina, D.; et al. Cucurbits Plants: A Key Emphasis to Its Pharmacological Potential. Molecules 2019, 24, 1854. [Google Scholar] [CrossRef] [Green Version]
- Andjelkovic, M.; Van Camp, J.; Trawka, A.; Verhé, R. Phenolic Compounds and Some Quality Parameters of Pumpkin Seed Oil. Eur. J. Lipid Sci. Technol. 2010, 112, 208–217. [Google Scholar] [CrossRef]
- Liu, W.; Nan, G.; Nisar, M.F.; Wan, C. Chemical Constituents and Health Benefits of Four Chinese Plum Species. J. Food Qual. 2020, 2020, e8842506. [Google Scholar] [CrossRef]
- Akihisa, T.; Tamura, T.; Matsumoto, T.; Eggleston, D.S.; Kokke, W.C.M.C.; Shimizu, N. Karounidiol [D:C-Friedo-Oleana-7,9(11)-Diene-3α,29-Diol] and Its 3-o-Benzoate: Novel Pentacyclic Triterpenes from Trichosanthes Kirilowii. X-ray Molecular Structure of Karounidiol Diacetate. J. Chem. Soc. Perkin 1988, 439–443. [Google Scholar] [CrossRef]
- Akihisa, T.; Tokuda, H.; Ichiishi, E.; Mukainaka, T.; Toriumi, M.; Ukiya, M.; Yasukawa, K.; Nishino, H. Anti-Tumor Promoting Effects of Multiflorane-Type Triterpenoids and Cytotoxic Activity of Karounidiol against Human Cancer Cell Lines. Cancer Lett. 2001, 173, 9–14. [Google Scholar] [CrossRef]
- Surai, P.F. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants 2015, 4, 204–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papackova, Z.; Heczkova, M.; Dankova, H.; Sticova, E.; Lodererova, A.; Bartonova, L.; Poruba, M.; Cahova, M. Silymarin Prevents Acetaminophen-Induced Hepatotoxicity in Mice. PLoS ONE 2018, 13, e0191353. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-Q.; Chen, P.; Su, W.-W.; Wang, Y.-G.; Wu, H.; Peng, W.; Li, P.-B. Antioxidant Activity and Hepatoprotective Potential of Quercetin 7-Rhamnoside In Vitro and In Vivo. Molecules 2018, 23, 1188. [Google Scholar] [CrossRef] [Green Version]
- Radenkovs, V.; Püssa, T.; Juhnevica-Radenkova, K.; Kviesis, J.; Salar, F.J.; Moreno, D.A.; Drudze, I. Wild Apple (Malus spp.) by-Products as a Source of Phenolic Compounds and Vitamin C for Food Applications. Food Biosci. 2020, 38, 100744. [Google Scholar] [CrossRef]
- Tai, M.; Zhang, J.; Song, S.; Miao, R.; Liu, S.; Pang, Q.; Wu, Q.; Liu, C. Protective Effects of Luteolin against Acetaminophen-Induced Acute Liver Failure in Mouse. Int. Immunopharmacol. 2015, 27, 164–170. [Google Scholar] [CrossRef]
- El-Shafey, M.M.; Abd-Allah, G.M.; Mohamadin, A.M.; Harisa, G.I.; Mariee, A.D. Quercetin Protects against Acetaminophen-Induced Hepatorenal Toxicity by Reducing Reactive Oxygen and Nitrogen Species. Pathophysiology 2015, 22, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Chen, Y.; Cao, Y.; Jia, Y.; Zhang, J. Metabolomics Analysis Reveals the Protective Effect of Quercetin-3-O-Galactoside (Hyperoside) on Liver Injury in Mice Induced by Acetaminophen. J. Food Biochem. 2020, 44, e13420. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.-L.; Sheng, Y.-C.; Zheng, Z.-Y.; Shi, L.; Wang, Z.-T. The Involvement of P62–Keap1–Nrf2 Antioxidative Signaling Pathway and JNK in the Protection of Natural Flavonoid Quercetin against Hepatotoxicity. Free Radic. Biol. Med. 2015, 85, 12–23. [Google Scholar] [CrossRef] [PubMed]
Parameter | Mesocarp (Fresh Weight) | Seeds (Dry Base) |
---|---|---|
Weight (g) | 1970 ± 51 | 0.11 ± 0.01 |
Color | L* = 66.00 ± 2.45 a* = 11.71 ± 3.28 b* = 69.43 ± 2.32 | L* = 34.80 ± 10.44 a* = 4.50 ± 5.52 b* = 8.70 ± 3.07 |
Longitudinal diameter (cm) | 26.90 ± 1.4 | 1.58 ± 0.12 |
Transverse diameter (cm) | 10.42 ± 0.7 | 0.80 ± 0.04 |
Water (g/100 g) | 86.70 ± 0.4 | 10.06 ± 0.30 |
Total lipids (g/100 g) | 1.31 ± 0.02 | 35.51 ± 0.40 |
Ash (g/100 g) | 0.13 ± 0.01 | 2.55 ± 0.10 |
Total protein (g/100 g) | 1.07 ± 0.08 | 18.05 ± 0.56 |
Total carbohydrate (g/100 g) | 7.35 ± 0.31 | 2.80 ± 0.06 |
Dietary fiber (g/100 g) | 3.11 ± 0.00 | 34.67 ± 0.31 |
Caloric value (Kcal/100 g) | 45.5 ± 5 | 403 ± 5 |
Fe (mg/100 g) | 0.35 ± 0.06 | 6.35 ± 0.69 |
Mn (mg/100 g) | 0.55 ± 0.02 | 1.82 ± 0.10 |
Cu (mg/100 g) | 0.25 ± 0.02 | 0.69 ± 0.09 |
Zn (mg/100 g) | 42.31 ± 0.05 | 2.31 ± 0.09 |
Mg (mg/100 g) | 5.16 ± 0.07 | 177.00 ± 4.66 |
Ca (mg/100 g) | 29.61 ± 2.35 | 124.98 ± 9.17 |
Na (mg/100 g) | 4.27 ± 0.54 | 29.51 ± 1.27 |
K (mg/100 g) | Nd | 784.05 ± 52.40 |
Peak | Rt (Min) | UVmax | [M − H]−/[M + H]+ | Polarity | MS/MS Fragments | Tentative Identification |
---|---|---|---|---|---|---|
1 | 1.22–1.48 | 341.61 | Negative | 179.48 (45), 119.14 (100) | Caffeoyl hexoside | |
2 | 2.66 | 290, 265 | 167.49 | Negative | 108.22 (100) | Vanillic acid |
3 | 4.59 | 351, 265 | 609.91 | Negative | 608.75 (20), 300.68 (100), 179.27 (20) | Quercetin hexoside rhamnoside 1 |
4 | 5.06 | 350, 265 | 609.70 | Negative | 301.50 (100) | Quercetin hexoside rhamnoside 2 |
5 | 5.19 | 350 | 579.76 | Negative | 301.36 (100) | Quercetin pentoside rhamnoside |
6 | 5.59 | 346, 265 | 447.96 | Negative | 300.46 (100), 271.19 (20), 255.11 (20), 179.29 (25) | Quercetin rhamnoside |
7 | 6.34 | 301.58 | Negative | 150.92 (100), 107.37 (60) | Quercetin | |
8 | 6.61 | 285.22 | Negative | 175.08 (100), 151.22 (15) | Luteolin | |
9 | 7.73 | 329.83 | Negative | 314.78 (100) | Quercetin dimethyl ether | |
I | 4.96 | 443.59 | Positive | 350.169 (30), 262.64 (65), 232.61 (100) | Boeticol | |
II | 7.84–8.01 | 647.25 | Positive | 647.16 (85), 226.95 (87), 171.56 (40), 104.39 (100) | Karounidiol dibenzoate |
Fatty Acids | Abbreviated Formula | mg/100 g |
---|---|---|
Miristic | C14:0 | 0.034 ± 0.02 |
Pentadecanoic | C15:0 | 0.01 ± 0.01 |
Palmitic | C16:0 | 3.64 ± 0.0 |
Palmitoleic | C16:1 | 0.02 ± 0.01 |
Margaric | C17:0 | 0.04 ± 0.01 |
Stearic | C18:0 | 2.33 ± 0.02 |
Oleic | C18:1c | 4.32 ± 0.02 |
Linoleic | C18:2 ω6 | 9.98 ± 0.19 |
8,11 Octadecadienoic | C18:2 c | 0.40 ± 0.01 |
Alfa Linolenic | C18:3 ω3 | 12.93 ± 0.01 |
Arachidic | C20:0 | 0.09 ± 0.01 |
Gondoic | C20:1 | 0.12 ± 0.01 |
Total SFA | 18.09 ± 0.09 | |
Total MUFA | 13.10 ± 0.06 | |
Total PUFA | 68.68 ± 0.574 |
Parameter | Seeds (SBS) |
---|---|
TPC (mg GAE/100 g FW) | 47.34 ± 4.41 |
Monomeric anthocyanins (mg/100 g of cyanidin 3-glucoside) | 5.90 ± 0.98 |
Vitamin C (mg/100 g) | 1.11 ± 0.27 |
Total antioxidant capacity ABTS (μM TEAC/g) | 7.47 ± 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero, S.; Mereles, L.; Burgos-Edwards, A.; Alvarenga, N.; Coronel, E.; Villalba, R.; Heinichen, O. Nutritional and Bioactive Characterization of Sicana odorifera Naudim Vell. Seeds By-Products and Its Potential Hepatoprotective Properties in Swiss Albino Mice. Biology 2021, 10, 1351. https://doi.org/10.3390/biology10121351
Caballero S, Mereles L, Burgos-Edwards A, Alvarenga N, Coronel E, Villalba R, Heinichen O. Nutritional and Bioactive Characterization of Sicana odorifera Naudim Vell. Seeds By-Products and Its Potential Hepatoprotective Properties in Swiss Albino Mice. Biology. 2021; 10(12):1351. https://doi.org/10.3390/biology10121351
Chicago/Turabian StyleCaballero, Silvia, Laura Mereles, Alberto Burgos-Edwards, Nelson Alvarenga, Eva Coronel, Rocío Villalba, and Olga Heinichen. 2021. "Nutritional and Bioactive Characterization of Sicana odorifera Naudim Vell. Seeds By-Products and Its Potential Hepatoprotective Properties in Swiss Albino Mice" Biology 10, no. 12: 1351. https://doi.org/10.3390/biology10121351
APA StyleCaballero, S., Mereles, L., Burgos-Edwards, A., Alvarenga, N., Coronel, E., Villalba, R., & Heinichen, O. (2021). Nutritional and Bioactive Characterization of Sicana odorifera Naudim Vell. Seeds By-Products and Its Potential Hepatoprotective Properties in Swiss Albino Mice. Biology, 10(12), 1351. https://doi.org/10.3390/biology10121351