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Ordinary differential equations (ODEs) were used to predict COVID-19 infection dy-

namics in the Thai population. Nj(t) is the number of people of the jth age group at time, t, 

and frj is the fertility rate in females aged j years. The number of newborn babies at any 

time [birth(t)] is shown as follows: 

birth(t) = ∑frj ⋅ Nj

j

 (t) (1) 

Mortality among the population [deathj(t)] was calculated from the age-specific mor-

tality rate drj: 

deathj(t) = drj ⋅ Nj(t)  (2) 

Ageing is defined as the rate at which individuals move to the next age group, also 

represented as at a rate 
1

age.diff
  per year, where age.diff represents the difference between 

two age classes. Therefore, the matrix equation for individual dynamics was as follows: 

agingj(t) =

[
 
 
 
 
−aging1 0 0 ⋯ 0
aging1 −aging2 0 ⋯ 0

0 aging2 −aging3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ aging7 −aging8]

⋅

[

N1

N2

N3

⋮
N8]

+ birth(t) − deathj(t) (3) 

All parameters included in the model are shown in Table S1. 

Table 1. Parameter table for the COVID-19 model. 

Parameter Symbol 
Value 

(95% Credible Interval) 

Source/ 

Reference 

Population parameters 

The size of the population 

in Thailand 
Nj 

The Thai population 

stratified by age 
Census data [1] 

Fertility and mortality 

rates stratified by age 
frj, drj 

Fertility and mortality 

rates stratified by age 

Census data and public 

health statistics [2] 

Contact rate by age per 

day 
contactj 

Average contact rate per 

day was 10 contacts 
Meeyai A, et al. 2015 [3] 

Contact rate by age per 

day after Thailand de-

clared the emergency de-

cree and before the easing 

of each restriction phase 

contactj
× 0.155 
(0.145
− 0.165)

Average contact rate per 

day was 1.55 (1.45–1.65) 

contacts 

Estimated by the Bayes-

ian Markov Chain Monte 

Carlo (MCMC) method 

Mean household size Householdsize 3 people Household data [4] 

Transmission parameters 

Transition rate of exposed 

individuals to the infected 

compartment (the mean 

incubation period was 5.2 

(4–7) days) 

σ 1/5.2 Qun Li et al, 2020 [5] 

Transition rate of asymp-

tomatic individuals to the 

recovery compartment 

𝛾𝐴 0.2 Zou L et al, 2020 [6]  

Transition rate of sympto-

matic individuals to the 

recovery compartment 

𝛾𝑆 0.10526  

Chen J, et al., 2020 [7] and 

WHO mission to China 

Report   



Parameter Symbol 
Value 

(95% Credible Interval) 

Source/ 

Reference 

Transition rate of quaran-

tined infected individuals 

to the recovery compart-

ment 

𝛾𝑞 0.11624 Tang B et al., 2020 [8] 

Pre-symptomatic period 
1

𝜂
4 days Gandhi M et al, 2020 [9] 

Proportion of infected 

person who is asympto-

matic  

𝐴𝑠𝑚𝑝 
0.179 

(0.155-0.202) 

Mizumoto K et al, 2020 

[10] 

Relative infectiousness 

during the incubation 

phase 

𝜌 10% Jing Q-L et al, 2020 [11] 

Infectivity rate of COVID-

19 infections 
𝑚𝑎𝑔𝑛𝑖𝑡 

0.041  

(0.0407-0.0414) 

Estimated by the Bayes-

ian Markov Chain Monte 

Carlo (MCMC) method 

Effectiveness of quaran-

tine 
𝑄𝑒𝑓𝑓 50% Assumed 

Effectiveness of hand 

washing and wearing face 

masks  
ℎ𝑎𝑛𝑑𝑒𝑓𝑓  

20% 

Doung-ngern, P., et 

al.,2020 [12] (noted that 

the coverage was taken 

into account in this pa-

rameter) 

Effectiveness of isolation  𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑒𝑓𝑓 35% 
Kucharski, A. J., et al., 

2020 [12] 

Mean number of infected 

migrants per day  
𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛

0.001  
(0.0001-0.004) cases per 

day  

Estimated by the Bayes-

ian Markov Chain Monte 

Carlo (MCMC) method 

Quarantine coverage 𝑄𝑐𝑜𝑣 50% Assumed 

Duration of quarantine 
1

𝑄𝑑𝑎𝑦
14 days MoPH, 2020 [13] 

Case fatality stratified by 

age  
𝑐𝑎𝑠𝑒. 𝑓𝑎𝑡𝑎𝑙𝑗 

Age 0-4 = 0.007  

(0.001-0.033) 

Age 5-14 = 0.006  

(0.001-0.025) 

Age 15-24 = 0.006  

(0.001-0.024) 

Age 25-34 = 0.006  

(0.001-0.026) 

Age 35-44 = 0.006  

(0.001-0.024) 

Age 45-54 = 0.023  

(0.006-0.054) 

Age 55-64 = 0.024  

(0.006-0.062) 

Age more than 65 = 

0.138 (0.082-0.209) 

Estimated by the Bayes-

ian Markov Chain Monte 

Carlo (MCMC) method 

Percentage of all reported 

asymptomatic infections  𝐴𝑠𝑚𝑟 

2.1%  

(range 1.1-3.1%) 

Estimated by the Bayes-

ian Markov Chain Monte 

Carlo (MCMC) method 



Parameter Symbol 
Value 

(95% Credible Interval) 

Source/ 

Reference 

Percentage of all reported 

symptomatic infections 𝑆𝑚𝑟 
20%  

(range 10-30%) 
Assumed 

The differential equations of the COVID-19 model in Thailand are as follows: 

𝑑𝑆𝑗(𝑡)

𝑑𝑡
= 𝑏𝑖𝑟𝑡ℎ(𝑡) − 𝜆 𝑆𝑗(𝑡) − 𝑄𝑟𝑎𝑡𝑒𝑆𝑗(𝑡) +

1

𝑄𝑑𝑎𝑦

𝑄𝑆𝑗(𝑡) + 𝑎𝑔𝑖𝑛𝑔𝑗(𝑡) − 𝑑𝑒𝑎𝑡ℎ𝑗(𝑡) (4) 

𝑑𝐸𝑗(𝑡)

𝑑𝑡
= 𝜆 𝑆𝑗(𝑡) − 𝜎𝐸𝑗(𝑡) − 𝑄𝑟𝑎𝑡𝑒𝐸𝑗(𝑡) +

1

𝑄𝑑𝑎𝑦

𝑄𝐸𝑗(𝑡) + 𝑎𝑔𝑖𝑛𝑔𝑗(𝑡) − 𝑑𝑒𝑎𝑡ℎ𝑗(𝑡) (5) 

𝑑𝐴𝑠𝑦𝑚𝑗(𝑡)

𝑑𝑡
= (𝐴𝑠𝑚𝑝)𝜎Ej(𝑡) − 𝛾𝐴𝐴𝑠𝑦𝑚𝑗(𝑡) − 𝑄𝑟𝑎𝑡𝑒𝐴𝑠𝑦𝑚𝑗(𝑡) +

1
𝑄𝑑𝑎𝑦

𝑄𝐴𝑗(𝑡)

+ 𝑎𝑔𝑖𝑛𝑔𝑗(𝑡) − 𝑑𝑒𝑎𝑡ℎ𝑗(𝑡)

(6) 

𝑑𝑃𝑠𝑦𝑚𝑗(𝑡)

𝑑𝑡
= (1 − 𝐴𝑠𝑚𝑝)𝜎𝐸𝑗(𝑡) − 𝜂𝑃𝑠𝑦𝑚𝑗(𝑡) − 𝑄𝑟𝑎𝑡𝑒𝑃𝑠𝑦𝑚𝑗(𝑡) +

1

𝑄𝑑𝑎𝑦

𝑄𝑃𝑗(𝑡)

+ 𝑎𝑔𝑖𝑛𝑔𝑗(𝑡) − 𝑑𝑒𝑎𝑡ℎ𝑗(𝑡)
(7) 

𝑑𝑆𝑦𝑚𝑗(𝑡)

𝑑𝑡
= 𝜂𝑃𝑠𝑦𝑚𝑗(𝑡) + 𝜂𝑄𝑃𝑗(𝑡) − 𝛾𝑆𝑆𝑦𝑚𝑗(𝑡) + 𝑎𝑔𝑖𝑛𝑔𝑗(𝑡) − 𝑑𝑒𝑎𝑡ℎ𝑗(𝑡)  (8) 

𝑑𝑅𝑗(𝑡)

𝑑𝑡
= 𝛾𝐴𝐴𝑠𝑦𝑚𝑗(𝑡) + 𝛾𝑆𝑆𝑦𝑚𝑗(𝑡) + 𝛾𝑞𝑄𝐴𝑗(𝑡) + 𝑎𝑔𝑖𝑛𝑔𝑗(𝑡) − 𝑑𝑒𝑎𝑡ℎ𝑗(𝑡) (9) 

𝑑𝑄𝑆𝑗(𝑡)

𝑑𝑡
= 𝑄𝑟𝑎𝑡𝑒𝑆𝑗(𝑡) −

1

𝑄𝑑𝑎𝑦

𝑄𝑆𝑗(𝑡) − 𝜆𝑞𝑄𝑆𝑗(𝑡) + 𝑎𝑔𝑖𝑛𝑔𝑗(𝑡) − 𝑑𝑒𝑎𝑡ℎ𝑗(𝑡) (10) 

𝑑𝑄𝐸𝑗(𝑡)

𝑑𝑡
= 𝑄𝑟𝑎𝑡𝑒𝐸𝑗(𝑡) −

1

𝑄𝑑𝑎𝑦

𝑄𝐸𝑗(𝑡) + 𝜆𝑞𝑄𝑆𝑗(𝑡) − 𝜎𝑄𝐸𝑗(𝑡) + 𝑎𝑔𝑖𝑛𝑔𝑗(𝑡) − 𝑑𝑒𝑎𝑡ℎ𝑗(𝑡) (11) 

𝑑𝑄𝐴𝑗(𝑡)

𝑑𝑡
= 𝑄𝑟𝑎𝑡𝑒𝐴𝑠𝑦𝑚𝑗(𝑡) −

1

𝑄𝑑𝑎𝑦

𝑄𝐴𝑗(𝑡) + (𝐴𝑠𝑚𝑝)𝜎𝑄𝐸𝑗(𝑡)−𝛾𝑞𝑄𝐴𝑗(𝑡) + 𝑎𝑔𝑖𝑛𝑔𝑗(𝑡)

− 𝑑𝑒𝑎𝑡ℎ𝑗(𝑡)
(12) 

𝑑𝑄𝑃𝑗(𝑡)

𝑑𝑡
= 𝑄𝑟𝑎𝑡𝑒𝑃𝑠𝑦𝑚𝑗(𝑡) −

1
𝑄𝑑𝑎𝑦

𝑄𝑃𝑗(𝑡) + (1 − 𝐴𝑠𝑚𝑝)𝜎𝑄𝐸𝑗(𝑡) − 𝜂𝑄𝑃𝑗(𝑡)

+ 𝑎𝑔𝑖𝑛𝑔𝑗(𝑡) − 𝑑𝑒𝑎𝑡ℎ𝑗(𝑡)

(13) 

Force of infection of natural diseases 

𝜆𝑗 = 𝛽𝑗 ×
(𝜌𝐸𝑗(𝑡) + 𝐴𝑠𝑦𝑚𝑗(𝑡) + 𝑃𝑠𝑦𝑚𝑗(𝑡) + 𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑒𝑓𝑓 . 𝑆𝑦𝑚𝑗(𝑡) + 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛)

𝑁𝑡𝑜𝑡𝑎𝑙𝑗
(14) 

𝛽𝑗 = (1 − ℎ𝑎𝑛𝑑𝑒𝑓𝑓) × 𝑚𝑎𝑔𝑛𝑖𝑡 × contactj × 𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦.𝐷𝑒𝑐𝑟𝑒𝑒. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (15) 

Force of infection of under quarantine 

𝜆𝑞,𝑗 = 𝛽𝑞,𝑗 ×
(𝜌𝐸𝑗(𝑡) + 𝐴𝑠𝑦𝑚𝑗(𝑡) + 𝑃𝑠𝑦𝑚𝑗(𝑡) + 𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑒𝑓𝑓 .𝑆𝑦𝑚𝑗(𝑡) + 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛)

𝑁𝑡𝑜𝑡𝑎𝑙𝑗
(16) 

𝛽𝑞,𝑗  = (1 − ℎ𝑎𝑛𝑑𝑒𝑓𝑓) × 𝑚𝑎𝑔𝑛𝑖𝑡 × (1 − 𝑄
𝑒𝑓𝑓

) × 𝑐𝑜𝑛𝑡𝑎𝑐𝑡ℎ𝑜𝑚𝑒,𝑗

× 𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦. 𝐷𝑒𝑐𝑟𝑒𝑒. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
(17) 

𝑄𝑟𝑎𝑡𝑒,𝑗 = (

(𝐴𝑠𝑚𝑟(𝐴𝑠𝑦𝑚
𝑗
(𝑡) + 𝑃𝑠𝑦𝑚

𝑗
(𝑡)) + 𝑆𝑚𝑟(𝑆𝑦𝑚

𝑗
(𝑡))× 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠𝑖𝑧𝑒

𝑁𝑡𝑜𝑡𝑎𝑙𝑗
) × 𝑄𝑐𝑜𝑣 (18) 

Note: the 𝑗 indicated to each stratified age group 

Where, 



𝑑𝑆𝑗(𝑡)

𝑑𝑡
  denotes the rate of change in the number of susceptible individuals at time t. 

𝑑𝐸𝑗(𝑡)

𝑑𝑡
  denotes the rate of change in the number of exposed individuals at time t. 

𝑑𝐴𝑠𝑦𝑚𝑗(𝑡)

𝑑𝑡
denotes the rate of change in the number of asymptomatic individuals infected at time 

t. 

𝑑𝑃𝑠𝑦𝑚𝑗(𝑡)

𝑑𝑡
denotes the rate of change in the number of pre-symptomatic infected individuals at 

time t. 

𝑑𝑆𝑦𝑚𝑗(𝑡)

𝑑𝑡
denotes the rate of change in the number of symptomatic infected individuals at time 

t. 

𝑑𝑅𝑗(𝑡)

𝑑𝑡
  denotes the rate of change in the number of recovered individuals at time t. 

𝑑𝑄𝑆𝑗(𝑡)

𝑑𝑡
denotes the rate of change in the number of quarantine susceptible individuals at time 

t. 

𝑑𝑄𝐸𝑗(𝑡)

𝑑𝑡
denotes the rate of change in the number of quarantine exposed individuals at time t. 

𝑑𝑄𝐴𝑗(𝑡)

𝑑𝑡
denotes the rate of change in the number of quarantine asymptomatic individuals at 

time t. 

𝑑𝑄𝑃𝑗(𝑡)

𝑑𝑡
denotes the rate of change in the number of quarantine pre-symptomatic individuals 

at time t. 

The number of cumulative hospitalized cases (CumHosj) was calculated by numerical 

integration of exposed cases (Ej), quarantine exposed (QEj), and the transition rate of ex-

posed individuals to the infected class (σ) as follows: 

CumHosj = ∫ (𝐴𝑠𝑚𝑟(𝐴𝑠𝑚𝑝)σ(Ej + QEj) + 𝑆𝑚𝑟(1 − 𝐴𝑠𝑚𝑝)σ(Ej + QEj))dt
t+1

t

 (19) 

The number of cumulative recovery cases (CumRej) was calculated by numerical in-

tegration of asymptomatic cases (Asymj), symptomatic (Symj), quarantine asymptomatic 

infected (QAj), and the transition rate of asymptomatic or symptomatic individuals to the 

recovery class (γ), as follows: 

CumRej = ∫ (𝐴𝑠𝑚𝑟(γAAsymj) + 𝐴𝑠𝑚𝑟(γqQAj) + 𝑆𝑚𝑟(γSSymj))  dt
t+1

t

 (20) 

The number of cumulative case fatality (CumFatalj) was calculated by numerical in-

tegration of exposed cases (Ej), quarantine exposed (QEj), and the transition rate of ex-

posed individuals to the infected class (σ), and case fatality proportion (𝑐𝑎𝑠𝑒. 𝑓𝑎𝑡𝑎𝑙𝑗), as 

follows: 

CumFatalj = ∫ (𝑐𝑎𝑠𝑒. 𝑓𝑎𝑡𝑎𝑙𝑗 (𝐴𝑠𝑚𝑟(𝐴𝑠𝑚𝑝)𝜎(𝐸𝑗 + 𝐸𝑄𝑗)
t+1

t

+ 𝑆𝑚𝑟(1 − 𝐴𝑠𝑚𝑝)𝜎(𝐸𝑗 + 𝐸𝑄𝑗)))dt

(21) 

The Bayesian framework 

Bayesian inference of the COVID-19 infection model provided a framework for esti-

mating parametric uncertainty in terms of probabilistic distributions and allowing a direct 
quantification of parameter uncertainty.  



Bayes’ theorem states that the best estimate (posterior uncertainty 𝑝(𝜃|𝑦)) for a pa-

rameter vector 𝜃 given data y is given by: 

𝑝(𝜃|𝑦) =
𝑝(𝜃)𝑝(𝑦|𝜃)

𝑝(𝑦)
(22) 

Here, 𝑝(𝜃) is the prior information and, 
𝑝(𝑦|𝜃)

𝑝(𝑦)
 is the likelihood ratio. Markov Chain 

Monte Carlo (MCMC) algorithms were applied to approximate these distributions, which 
used a sampling scheme to estimate the posterior distribution [14,15].  

Prior distribution 

Uniform distribution was applied to all prior parameter values, given that little in-

formation about these parameters has been measured or reported. The minimum and 
maximum values were initially determined to constrain the feasible range of a parameter, 

thereafter it was narrowed down during an iterative model fitting procedure. 

Likelihood function 

The likelihood was defined as the product of likelihood terms for each data point. 
The data arise from the daily reported incidence, recovery cases, and deaths and are linked 

to the summation of those expected values by age via a Poisson distribution. The log-
likelihood (used as the target in the MCMC algorithm) is: 

Likelihood function of the developed COVID-19 dynamic model is, 

𝐿𝐿𝑗 = ∑(∑log (
𝑅𝜃𝑐exp (−𝑅)

𝜃𝑐!
)

𝑡

)

𝑗

 (23) 

Where 𝜃𝑐 is the number of daily reported incidences, recovery cases, and deaths aged 

𝑗 at time 𝑡; 𝑅 is the expected number of daily reported incidences, recovery cases, and 
deaths from the model prediction at each age class 𝑗th and time 𝑡. 

Posterior estimation 

Differential Evolution MCMCzs (DE-MCzs) were applied to estimate the parameter 

posterior distributions. Observations were fitted using the Markov Chain methods of sam-
pling [16] implemented in the Bayesian Tools R package, which is generally applied for 

numerical problems. Differential Evolution Markov Chain (DE-MC) is an adaptive 
MCMC algorithm. This algorithm can optimize the runtime using multiple chains in par-
allel and presenting them. DE-MCzs combine characteristics of conventional MCMC 

methods with the ideas of differential evolution optimization algorithms by making use 
of the full joint density function and (independent) proposal distributions for each of the 

variables. Posterior parameter distributions from the COVID-19 dynamic model are illus-
trated in Figure S1. 



Figure S1. Posterior parameter distributions of the COVID-19 dynamic model, with each row cor-
responding to a separate parameter, the left-hand column contains traces with 6-colour chains 
(dashed lines: actual traces, solid lines: trends) and the right-hand column contains the posterior 
distribution, corresponding to each parameter. 

Estimation of the effective reproductive number (Rt) of COVID-19 in Thailand 

The effective reproductive number (Rt) was calculated based on the average number 
of people who become infected by an infectious person, as in the following equation and 
Figure S2. 

𝑅𝑡 =
∑ (𝜎 × 𝐸𝑡)

𝑗
𝑡

∑ (𝜎 × 𝐸
𝑡−

1
𝛾
)𝑗

𝑡−
1
𝛾

(24) 



Figure S2. The effective reproductive number (Rt) of COVID-19 with 95% CrI in Thailand from 
January to May. (Vertical dotted line: the Thai government announced the emergency decree on 
March 26, 2020). 

The model fitting results 

The COVID-19 recovery cases per day between the data and the model are shown in 

Figure S3. 

Figure S3. Reported COVID-19 recovery cases and the fitted COVID-19 model with 95% CrI be-
tween January and August 2020. (Vertical dotted line: the Thai government announced the emer-
gency decree on March 26, 2020). 

COVID-19 deaths per day between the data and the model are shown in Figure S4. 



Figure S4. Reported COVID-19 deaths and the fitted COVID-19 model with 95% CrI between Jan-
uary and August 2020. (Vertical dotted line: the Thai government announced the emergency de-
cree on March 26, 2020). 
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