Lymphatic Senescence: Current Updates and Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Search Methodology
3. Reporting Structure of the Results
- Section 4.1: Aging of the lymphatic vessels
- Section 4.2: Aging of the lymph nodes
- Section 4.3: Lymphatic senescence and lymphatic muscles
- Section 4.4: Lymphatic vessel and nerve fibers across aging
- Section 4.5: Senescence and alteration in glycocalyx function in lymphatics vessels
- Section 4.6: Physiology of the lymphatic pump
- Section 4.7: Effects of chronic ultraviolet light exposure on lymphatic dysfunction
- Section 4.8: Aging induced oxidative changes in lymphatic vessels
- Section 4.9: Aging-induced acute inflammation changes and their effects on lymphatic vessels and perilymphatic tissues
- Section 4.10: Lymphatic senescence and immune function
- Section 4.11: Lymphatic senescence and clinical outlook.
4. Detailed Analysis of the Included Literature
4.1. Aging of the Lymphatic Vessels
4.2. Aging of the Lymph Nodes
4.3. Lymphatic Senescence and Lymphatic Muscles
4.4. Lymphatic Vessel and Nerve Fibres across Aging
4.5. Senescence and Alteration in Glycocalyx Function in Lymphatics Vessels
4.6. Physiology of the Lymphatic Pump
4.7. Effects of Chronic Ultraviolet Light Exposure on Lymphatic Dysfunction
4.8. Aging Induced Oxidative Changes in Lymphatic Vessels
4.9. Aging-Induced Acute Inflammation Changes and Their Effects on Lymphatic Vessels and Perilymphatic Tissues
4.10. Lymphatic Senescence and Immune Function
4.11. Lymphatic Senescence and Clinical Outlook
4.12. Limitations
5. Conclusions and Perspectives for Future Scientific Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer disease |
CSF | Cerebrospinal fluid |
ECs | Endothelial cells |
eNOS | Endothelial nitric oxide synthase |
ICG | Indocyanine green |
ISF | Interstitial fluid |
LPS | Lipopolysaccharide |
MLC20 | Myosin light chain (20 kDa) |
MLVs | Mesenteric lymphatics vessels |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NO | Nitric oxide |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
TLR | Toll-like receptors |
UVB | Ultraviolet B light |
VEGF-A | Vascular endothelial growth factor A |
VEGF-C | Vascular endothelial growth factor C |
References
- Brix, B.; Apich, G.; Roessler, A.; Ure, C.; Schmid-Zalaudek, K.; Hinghofer-Szalkay, H.; Goswami, N. Fluid shifts induced by physical therapy in lower limb lymphedema patients. J. Clin. Med. 2020, 9, 3678. [Google Scholar] [CrossRef] [PubMed]
- Brix, B.; Apich, G.; Ure, C.; Roessler, A.; Goswami, N. Physical therapy affects endothelial function in lymphedema patients. Lymphology 2020, 53, 109–117. [Google Scholar] [PubMed]
- Brix, B.; Sery, O.; Onorato, A.; Ure, C.; Roessler, A.; Goswami, N. Biology of Lymphedema. Biology 2021, 10, 261. [Google Scholar] [CrossRef]
- Gashev, A.A. Basic mechanisms controlling lymph transport in the mesenteric lymphatic net. Ann. N.Y. Acad. Sci. 2010, 1207 (Suppl. 1), E16–E20. [Google Scholar] [CrossRef]
- Zawieja, D.C. Contractile physiology of lymphatics. Lymphat. Res. Biol. 2009, 7, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Dixon, J.B. Lymphatic lipid transport: Sewer or subway? Trends Endocrinol. Metab. 2010, 21, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Davis, M.J.; Muthuchamy, M. Emerging trends in the pathophysiology of lymphatic contractile function. Semin. Cell Dev. Biol. 2015, 38, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Goswami, N. Falls and fall-prevention in older persons: Geriatrics meets spaceflight! Front. Physiol. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Goswami, N.; Blaber, A.P.; Hinghofer-Szalkay, H.; Montani, J.P. Orthostatic intolerance in older persons: Etiology and countermeasures. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Boss, G.R.; Seegmiller, J.E. Age-related physiological changes and their clinical significance. West. J. Med. 1981, 135, 434–440. [Google Scholar]
- Montagna, W.; Carlisle, K. Structural changes in ageing skin. Br. J. Dermatol. 1990, 122 (Suppl. 35), 61–70. [Google Scholar] [CrossRef]
- Gashev, A.; Chatterjee, V. Aged lymphatic contractility: Recent answers and new questions. Lymphat. Res. Biol. 2013, 11, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Zolla, V.; Nizamutdinova, I.T.; Scharf, B.; Clement, C.C.; Maejima, D.; Akl, T.; Nagai, T.; Luciani, P.; Leroux, J.-C.; Halin, C.; et al. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell 2015, 14, 582–594. [Google Scholar] [CrossRef]
- Ince, C.; De Backer, D.; Mayeux, P.R. Microvascular dysfunction in the critically Ill. Crit. Care Clin. 2020, 36, 323–331. [Google Scholar] [CrossRef]
- Turner, V.M.; Mabbott, N.A. Structural and functional changes to lymph nodes in ageing mice. Immunology 2017, 151, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Kajiya, K.; Kunstfeld, R.; Detmar, M.; Chung, J.H. Reduction of lymphatic vessels in photodamaged human skin. J. Dermatol. Sci. 2007, 47, 241–243. [Google Scholar] [CrossRef] [Green Version]
- Karaman, S.; Buschle, D.; Luciani, P.; Leroux, J.C.; Detmar, M.; Proulx, S.T. Decline of lymphatic vessel density and function in murine skin during aging. Angiogenesis 2015, 18, 489–498. [Google Scholar] [CrossRef]
- Pan, W.R.; Suami, H.; Taylor, G.I. Senile changes in human lymph nodes. Lymphat. Res. Biol. 2008, 6, 77–83. [Google Scholar] [CrossRef]
- Gashev, A.A.; Zawieja, D.C. Hydrodynamic regulation of lymphatic transport and the impact of aging. Pathophysiology 2010, 17, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Bridenbaugh, E.A.; Nizamutdinova, I.T.; Jupiter, D.; Nagai, T.; Thangaswamy, S.; Chatterjee, V.; Gashev, A.A. Lymphatic muscle cells in rat mesenteric lymphatic vessels of various ages. Lymphat. Res. Biol. 2013, 11, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Zawieja, D.C.; Davis, K.L.; Schuster, R.; Hinds, W.M.; Granger, H.J. Distribution, propagation, and coordination of contractile activity in lymphatics. Am. J. Physiol. 1993, 264, H1283–H1291. [Google Scholar] [CrossRef]
- Nagai, T.; Bridenbaugh, E.A.; Gashev, A.A. Aging-associated alterations in contractility of rat mesenteric lymphatic vessels. Microcirculation 2011, 18, 463–473. [Google Scholar] [CrossRef]
- Shang, T.; Liang, J.; Kapron, C.M.; Liu, J. Pathophysiology of aged lymphatic vessels. Aging 2019, 11, 6602–6613. [Google Scholar] [CrossRef]
- Nizamutdinova, I.T.; Maejima, D.; Nagai, T.; Meininger, C.J.; Gashev, A.A. Histamine as an endothelium-derived relaxing factor in aged mesenteric lymphatic vessels. Lymphat. Res. Biol. 2017, 15, 136–145. [Google Scholar] [CrossRef]
- Ohhashi, T.; Kawai, Y.; Azuma, T. The response of lymphatic smooth muscles to vasoactive substances. Pflugers Arch. 1978, 375, 183–188. [Google Scholar] [CrossRef]
- Mignini, F.; Sabbatini, M.; Coppola, L.; Cavallotti, C. Analysis of nerve supply pattern in human lymphatic vessels of young and old men. Lymphat. Res. Biol. 2012, 10, 189–197. [Google Scholar] [CrossRef]
- Chakraborty, S.; Nepiyushchikh, Z.; Davis, M.J.; Zawieja, D.C.; Muthuchamy, M. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R. Microcirculation 2011, 18, 24–35. [Google Scholar] [CrossRef]
- Henry, C.B.; Duling, B.R. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am. J. Physiol. 1999, 277, H508–H514. [Google Scholar] [CrossRef]
- Pal, S.; Meininger, C.J.; Gashev, A.A. Aged lymphatic vessels and mast cells in perilymphatic tissues. Int. J. Mol. Sci. 2017, 18, 965. [Google Scholar] [CrossRef] [Green Version]
- Gashev, A.A.; Davis, M.J.; Zawieja, D.C. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J. Physiol. 2002, 540, 1023–1037. [Google Scholar] [CrossRef]
- Cueni, L.N.; Detmar, M. New insights into the molecular control of the lymphatic vascular system and its role in disease. J. Invest. Dermatol. 2006, 126, 2167–2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawane, M.; Kajiya, K. Ultraviolet light-induced changes of lymphatic and blood vasculature in skin and their molecular mechanisms. Exp. Dermatol. 2012, 21 (Suppl. 1), 22–25. [Google Scholar] [CrossRef] [PubMed]
- Kajiya, K.; Hirakawa, S.; Detmar, M. Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am. J. Pathol. 2006, 169, 1496–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baluk, P.; Fuxe, J.; Hashizume, H.; Romano, T.; Lashnits, E.; Butz, S.; Vestweber, D.; Corada, M.; Molendini, C.; Dejana, E.; et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 2007, 204, 2349–2362. [Google Scholar] [CrossRef]
- Jakic, B.; Kerjaschki, D.; Wick, G. Lymphatic capillaries in aging. Gerontology 2020, 66, 419–426. [Google Scholar] [CrossRef]
- Kidoya, H.; Naito, H.; Takakura, N. Apelin induces enlarged and nonleaky blood vessels for functional recovery from ischemia. Blood 2010, 115, 3166–3174. [Google Scholar] [CrossRef] [Green Version]
- Sawane, M.; Kidoya, H.; Muramatsu, F.; Takakura, N.; Kajiya, K. Apelin attenuates UVB-induced edema and inflammation by promoting vessel function. Am. J. Pathol. 2011, 179, 2691–2697. [Google Scholar] [CrossRef]
- Breier, G. Lymphangiogenesis in regenerating tissue is VEGF-C sufficient? Circulat. Res. 2005, 96, 1132–1134. [Google Scholar] [CrossRef] [Green Version]
- Breslin, J.W.; Gaudreault, N.; Watson, K.D.; Reynoso, R.; Yuan, S.Y.; Wu, M.H. Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am. J. Physiol. Heart Circulat. Physiol. 2007, 293, H709–H718. [Google Scholar] [CrossRef] [Green Version]
- Hartiala, P.; Suominen, S.; Suominen, E.; Kaartinen, I.; Kiiski, J.; Viitanen, T.; Alitalo, K.; Saarikko, A.M. Phase 1 Lymfactin® study: Short-term safety of combined adenoviral VEGF-C and lymph node transfer treatment for upper extremity lymphedema. J. Plastic Reconstruct. Aest. Surg. 2020, 73, 1612–1621. [Google Scholar] [CrossRef]
- Cai, H.; Li, Z.; Dikalov, S.; Holland, S.M.; Hwang, J.; Jo, H.; Dudley, S.C., Jr.; Harrison, D.G. NAD(P)H oxidase-derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II. J. Biol. Chem. 2002, 277, 48311–48317. [Google Scholar] [CrossRef] [Green Version]
- Thangaswamy, S.; Bridenbaugh, E.A.; Gashev, A.A. Evidence of increased oxidative stress in aged mesenteric lymphatic vessels. Lymphat. Res. Biol. 2012, 10, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Ohkuma, M. Lipoperoxide in the dermis of patients with lymph stasis. Lymphology 1993, 26, 38–41. [Google Scholar]
- Santa María, C.; Ayala, A.; Revilla, E. Changes in superoxide dismutase activity in liver and lung of old rats. Free Radic. Res. 1996, 25, 401–405. [Google Scholar] [CrossRef]
- O’Mahony, L.; Akdis, M.; Akdis, C.A. Regulation of the immune response and inflammation by histamine and histamine receptors. J. Allergy Clin. Immunol. 2011, 128, 1153–1162. [Google Scholar] [CrossRef]
- Sato, M.; Sasaki, N.; Ato, M.; Hirakawa, S.; Sato, K.; Sato, K. Microcirculation-on-a-chip: A microfluidic platform for assaying blood- and lymphatic-vessel permeability. PLoS ONE 2015, 10, e0137301. [Google Scholar] [CrossRef]
- Chatterjee, V.; Gashev, A.A. Mast cell-directed recruitment of MHC class II positive cells and eosinophils towards mesenteric lymphatic vessels in adulthood and elderly. Lymphat. Res. Biol. 2014, 12, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Ly, C.L.; Kataru, R.P.; Mehrara, B.J. Inflammatory manifestations of lymphedema. Int. J. Mol. Sci. 2017, 18, 171. [Google Scholar] [CrossRef]
- Ahmadi, O.; McCall, J.L.; Stringer, M.D. Does senescence affect lymph node number and morphology? A systematic review. ANZ J. Surg. 2013, 83, 612–618. [Google Scholar] [CrossRef]
- Sano, S.; Wang, Y.; Walsh, K. Clonal Hematopoiesis and its impact on cardiovascular disease. Circ. J. 2018, 83, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Gasheva, O.; Knippa, K.; Muthuchamy, M.; Gashev, A. Age-related alterations of active pumping mechanisms in rat thoracic duct. Microcirculation 2009, 14, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Luscieti, P.; Hubschmid, T.; Cottier, H.; Hess, M.W.; Sobin, L.H. Human lymph node morphology as a function of age and site. J. Clin. Pathol. 1980, 33, 454–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimbaldeston, M.A.; Metz, M.; Yu, M.; Tsai, M.; Galli, S.J. Effector and potential immunoregulatory roles of mast cells in IgE-associated acquired immune responses. Curr. Opin. Immunol. 2006, 18, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Shakoory, B.; Fitzgerald, S.M.; Lee, S.A.; Chi, D.S.; Krishnaswamy, G. The role of human mast cell-derived cytokines in eosinophil biology. J. Interferon. Cytokine Res. 2004, 24, 271–281. [Google Scholar] [CrossRef]
- Da Mesquita, S.; Louveau, A.; Vaccari, A.; Smirnov, I.; Cornelison, R.C.; Kingsmore, K.M.; Contarino, C.; Onengut-Gumuscu, S.; Farber, E.; Raper, D.; et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 2018, 560, 185–191. [Google Scholar] [CrossRef]
- Da Mesquita, S.; Fu, Z.; Kipnis, J. The meningeal lymphatic system: A new player in neurophysiology. Neuron 2018, 100, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Santoro, A.; Spinelli, C.C.; Martucciello, S.; Nori, S.L.; Capunzo, M.; Puca, A.A.; Ciaglia, E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J. Leukoc. Biol. 2018, 103, 509–524. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filelfi, S.L.; Onorato, A.; Brix, B.; Goswami, N. Lymphatic Senescence: Current Updates and Perspectives. Biology 2021, 10, 293. https://doi.org/10.3390/biology10040293
Filelfi SL, Onorato A, Brix B, Goswami N. Lymphatic Senescence: Current Updates and Perspectives. Biology. 2021; 10(4):293. https://doi.org/10.3390/biology10040293
Chicago/Turabian StyleFilelfi, Sebastian Lucio, Alberto Onorato, Bianca Brix, and Nandu Goswami. 2021. "Lymphatic Senescence: Current Updates and Perspectives" Biology 10, no. 4: 293. https://doi.org/10.3390/biology10040293
APA StyleFilelfi, S. L., Onorato, A., Brix, B., & Goswami, N. (2021). Lymphatic Senescence: Current Updates and Perspectives. Biology, 10(4), 293. https://doi.org/10.3390/biology10040293