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Simple Summary: The intrinsic dynamics of the propagation of a disease changes along an epidemic
course, especially for long lasting epidemics such as the COVID-19. Indeed, the natural evolution of
the pathogen and countermeasures such as quarantining, lockdown, social distancing and vaccination
modify the transmission dynamics of the disease. With a view to match these theoretical changes
to potential changes in observed epidemiological data, we designed a hybrid modeling framework
where we integrated: (1) two growth curves for daily reported positive cases, differentiating the
early epidemic phase and a second phase with a potentially different dynamics; (2) two logistic
regression models for daily recoveries and deaths; and (3) a SIQR (Susceptible, Infective, Quarantined,
Recovered) mechanistic model to provide an overview of the dynamics of the disease in the target
population. This joint modeling approach allows explicit analytical expressions for the different
compartments of the SIQR model, circumventing common identifiability issues in such models. The
changes in the disease transmission pattern can be subjected to countermeasures so as to assess their
effectiveness along time. For illustrative purposes, we applied the approach to COVID-19 data from
West Africa. It turned out that the first imported COVID-19 case(s) in West Africa likely entered the
region between 28 January and 7 February 2020. Moreover, the first measures implemented by West
African authorities impacted the dynamics of the disease one month after the outbreak.

Abstract: The widely used logistic model for epidemic case reporting data may be either restrictive
or unrealistic in presence of containment measures when implemented after an epidemic outbreak.
For flexibility in epidemic case reporting data modeling, we combined an exponential growth curve
for the early epidemic phase with a flexible growth curve to account for the potential change in
growth pattern after implementation of containment measures. We also fitted logistic regression
models to recoveries and deaths from the confirmed positive cases. In addition, the growth curves
were integrated into a SIQR (Susceptible, Infective, Quarantined, Recovered) model framework to
provide an overview on the modeled epidemic wave. We focused on the estimation of: (1) the delay
between the appearance of the first infectious case in the population and the outbreak (“epidemic
latency period”); (2) the duration of the exponential growth phase; (3) the basic and the time-varying
reproduction numbers; and (4) the peaks (time and size) in confirmed positive cases, active cases
and new infections. The application of this approach to COVID-19 data from West Africa allowed
discussion on the effectiveness of some containment measures implemented across the region.

Keywords: growth model; epidemic latency period; reproduction number; West Africa

1. Introduction

The ravages of the COVID-19 pandemic has deepened the need for mathematical
and statistical tools to understand the dynamics of epidemics across the world. Simple
mathematical models of infectious diseases are useful for providing insight into epidemic
trajectories and disease dynamics [1–3]. However, applications should target complex
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but parsimonious models which make realistic assumptions and let the observed data
drive estimations.

There are two common approaches to epidemiological modeling: phenomenological
models and mechanistic models (e.g., compartmental models). On the one hand, phe-
nomenological models use an empirical approach based on growth curve fitting (e.g., by
nonlinear least squares [4] or by maximum likelihood [5]) to describe the temporal progres-
sion of case counts (e.g., daily confirmed positive cases). In this regard, the logistic bell
curve has been widely used for various epidemic data, but it lacks flexibility for epidemics
whose data exibits asymmetry or varying growth patterns [4,6,7]. With a view to allow
flexibility, Tovissodé et al. [5] considered the generic growth curve of Turner et al. [8] with
application to COVID-19 data. This approach concedes the simple logistic curve when it
is supported by the observed data, but offers the possibility to fit various flexible growth
models such as the generalized logistic model [9,10], the hyperlogistic model [8,11], the
hyper-Gompertz [8] and the Gompertz curves [12,13]. However, to be realistic, models for
epidemic data should be able to account for the potential effect of containment measures
when implemented after an epidemic outbreak. In a target population undergoing an epi-
demic wave, the number of infective individuals may be assumed to follow an exponential
growth in the early epidemic phase where no containment measures were implemented
or the implemented measures were not yet effective [14]. In this case, the variation of the
number of infective individuals is expected to shift to a sub-exponential growth resulting
from negative feedbacks due to a decrease in the probability that an infectious individual
meets a susceptible individual [6] or effects of the containment measures, if any. The major
advantage of the phenomenological modeling approach is its simplicity while allowing the
estimation of various quantities of interest to understand an epidemic, e.g., the “epidemic
latency period” defined as the delays between the appearance of the first infectious case in
the population (“patient zero”) and the outbreak [14] and epidemic peak time and size, and
the forecast of future incidence. The main limitation of phenomenological models is the
inability to inform on the transmission process (new infections) and the removal processes
(recovery and death) of an epidemic. As a result, phenomenological modeling lacks the
ability to assess the effects of control interventions.

On the other hand, and contrary to phenomenological models, mechanistic models
structure the population under study into different epidemiological states [4] and allow
assessing the effects of control interventions on the population and disease dynamics. For
instance, the effect of various control measures (e.g., contact limitation, detection and
diagnosis) on COVID-19 transmission has been assessed using the Susceptibles–Exposed–
Infectives–Recovered (SEIR) model and its variants [15–17]. However, because only a few
epidemiological states can be observed, mechanistic models often face an identifiability
issue in the estimation of model parameters [18–20]. In addition, there is generally no
closed form solutions to the differential equations describing the considered epidemio-
logical states. As a consequence, the estimation of compartmental models often relies on
numerical approximations which make fitting procedures (e.g., nonlinear least squares
or Bayesian estimation) computationally intensive and may introduce high-order errors
in both estimates and forecasts [21]. Moreover, some quantities of high interest to under-
stand epidemic outbreaks, which are readily available from a growth model including the
epidemic latency period, are hard to derive under compartmental models.

This study proposes a hybrid framework to combine the advantages of phenomenolog-
ical and mechanistic models while circumventing some of the limits of the two approaches.
We focus on epidemic waves managed with at least an isolation measure for all identified
infectives, as for the COVID-19 pandemic in nearly all the world. The objective of this work
is to provide a quantitative framework in which epidemiologists can identify, from a large
family of models, the parsimonious model that explains patterns in an observed dataset,
and then assess hypotheses on the potential course of related but unobservable processes
of interest. Specifically, we modeled confirmed positive cases using a combination of the
exponential growth curve for the initial epidemic phase and the generic growth curve [8]
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after this initial phase. This development allows the estimation of the duration of the
exponential growth phase and the theoretical time and size of the peak of new positive
cases. Secondly, we modeled removal (recovery and death) from identified positive cases
as binary processes using two logistic regression models to monitor the evolution and the
peak (time and size) of the actives among detected cases. Finally, to provide an overall view
for a target epidemic, we integrated the growth curve and the logistic regression removal
rates into a mechanistic SIQR model frame [22] in which the population is structured in
Susceptibles, Infectives, Quarantined (identified actives cases) and Recovered individuals.
The result is a mechanistic model in which the sizes of the different states (compartments)
have closed form expressions. This allows inference on various epidemiological parameters
such as the delay between the appearance of the first infectious case in the population
(“patient zero”) and the outbreak (“epidemic latency period”), the reproduction number,
the unobservable new infections per unit time as well as the proportion of the target
population immunized against the pathogen of the target disease.

In addition to the estimates (with quantified uncertainty) for common epidemiological
parameters, the proposed hybrid modeling framework extracts from the observed data
and demographic rates, the evolution along the epidemic course of the key parameter
to summarize the dynamics of an epidemic: the reproduction number. The changes in
this parameter can thus be confronted to control measures promoted/enforced by public
health authorities and governments. For illustrative purpose, we used the developed
modeling framework: (i) to model COVID-19 case reporting data (daily PCR-confirmed
positives, recoveries and deaths) from Western Africa (28 February to 31 August 2020); and
(ii) to evaluate the transmission pattern of the disease in the region during the considered
period. The results were used to discuss the effectiveness of some containment measures
implemented by governments across the region.

2. The Hybrid Modeling Framework

In this section, we describe the three sub-models integrated into the proposed model-
ing framework, namely, the growth model, the logistic removal rates and the Susceptible–
Infective–Quarantined–Recovered (SIQR) mechanistic model.

2.1. Mixture of Growth Models for Detected Cases

We assume that the cumulative number Ct of reported cases, as a function of time t,
has the form

Ct =


0 if t ≤ 0

eω0(t−τ0) if 0 < t ≤ te
ξ + ϕt if t > te

(1)

where te > 0 is the duration from outbreak to the end of the exponential growth phase,

ϕt = Ω(1 + ut)
−1/ν (2)

is the generic growth model [8] with ut = [1 + ωνρ(t− τ)]−1/ρ, Ω > 0 is a constant such
that the ultimate epidemic size (detected) is ξ + Ω, ω > 0 is the “intrinsic” growth rate
constant for the sub-exponential growth phase, ν > 0 is a growth acceleration parameter, ρ
(−1 < ρ < ν−1) is a shape parameter controlling the skewness of the growth curve during
the sub-exponential epidemic phase (see Appendix A.1 for restriction related details) and
τ is a constant of integration determined by the initial conditions of the epidemic. The
generic growth curve ϕt specified for t > te encompasses many special or limiting cases
including the Bertalanffy–Richards (ρ → 0), hyper-Gompertz (ν → 0 while ων1+ρ → ω̃
with ω̃ constant), Gompertz (ν → 0, ρ → 0 while ων → ω̃), hyper-logistic (ν = 1) and
logistic (ν = 1 and ρ→ 0) growth models [8] (see Appendix A.1 for details). The parameter
ω0 > 0 in (1) is the exponential growth rate for the early epidemic phase and τ0 ∈ R
determines the growth rate at t = 0. The constants ω0 and τ0 are set such that the first
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derivative Ċt and the second derivative C̈t of Ct with respect to t are smooth at t = te (i.e.,
at the end of the exponential growth phase). Specifically,

ω0 = ϕ̈e (3)

τ0 = te +
log ω0 − log ϕ̇e

ω0
(4)

where ϕ̇e = ϕ̇te and ϕ̈e = ϕ̈te ; ϕ̇t and ϕ̈t are, respectively, the first and second derivatives of
ϕt (see Appendix A.1 for details); and (4) follows from setting ω0eω0(te−τ0) = ϕ̇e. Further-
more, the real constant ξ in (1) ensures that Ct does not jump at t = te. In other words, ξ is
given by ξ = eω0(te−τ0) − ϕe (with ϕe = ϕte ) which by (4) simplifies to

ξ =
ϕ̇e

ω0
− ϕe. (5)

In (1), the time (in e.g., days, weeks or months) of the first identified cases corresponds
to t = 1. In other words, to match (1) to the observed data, C1 is identified to the number
of cases reported in the time interval (0, 1], C2 is the number of cases reported in the
time interval (0, 2], etc. If Ω → ∞ and νρ → 0, the curve Ct converges to an exponential
growth curve with rate ω0. However, this scenario can be ruled out since the size of any
target population is finite and so is Ω. In practice, the exponential growth is prevented
by negative feedbacks which decrease the probability that an infectious individual and
a susceptible individual meet and have an adequate contact (i.e., contact sufficient for
transmission). For instance, the growth of the infectives is naturally continuously lowered
by the increasing fraction of the population constituted by individuals who recovered
and become less susceptible (temporarily or permanently immune) to the infection [6]. To
prevent the exponential growth of the infectives, control measures such as quarantining and
lockdown reduce the probability of contact between susceptible and infectious individuals,
whereas some other measures such as social distancing and wearing a face mask reduce
the likelihood of transmission whenever contacts happen.

The specification of the growth model in (1) to an epidemic thus implies that the
growth rate Ċt, i.e., the number of new cases reported per unit time given by

Ċt =

{
ω0eω0(t−τ0) if 0 ≤ t ≤ te

ϕ̇t if t > te
(6)

with ϕ̇t defined in Appendix A.1, will peak and then fall toward zero case per unit time.
The peak occurs at a time tp > te when the growth acceleration C̈t given by,

C̈t =

{
ω2

0eω0(t−τ0) if 0 ≤ t ≤ te
ϕ̈t if t > te

(7)

with ϕ̈t defined in Appendix A.1, vanishes. The expressions of the time (tp) and the size
(Ċp) of the peak are available in Appendix A.2 for the general situation (ν 6= 0 and ρ 6= 0),
as well as for limiting cases.

The number of detected cases Ct is the basic data reported during an epidemic.
Once this has been modeled, various epidemic related quantities can be inferred upon
introduction of disease related parameters (e.g., detection of infectives, recoveries and
deaths) and demographic parameters (e.g., natural mortality, births and immigration).

2.2. Infectives, Epidemic Latency Period and Active Cases

Since only a fraction of infectives are identified at a time t, the number It of infective
individuals in a target population is obtained using (6) as It = δ−1Ċt [5], which reads

It =

{
I0eω0t if t ≤ te
δ−1 ϕ̇t if t > te

(8)
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where I0 = δ−1ω0e−ω0τ0 is the number of infectives at the outbreak (t = 0) and δ ∈ (0, 1] is
the detection rate assumed constant along the epidemic course (after the outbreak). Note
that the number of infectives before the outbreak (t < 0) is obtained by back extrapolation
as It = I0eω0t, i.e., considering an exponential growth before the outbreak [14].

We refer to the time from the appearance of the first infectious case in the population
(“patient zero”) to the outbreak as the “epidemic latency period”. An estimate of the
duration to of this period is obtained by setting It = 1 [14]. By (8), the duration of the
epidemic latency period is estimated by to = ω−1

0 log I0, which on using (4) simplifies to

to =
log ϕ̇e − log δ

ω0
− te. (9)

The number of detected and active cases, i.e., individuals tested positive and in
isolation at a hospital or at home at time t, is denoted Qt following Hethcote et al. [22] for
“Quarantined” state, although we refer to Qt as “Actives”. Given the detected cases Ct in
(1), Qt satisfies

Q̇t = Ċt − (αt + εt)Qt (10)

where αt is the recovery rate and εt is the death rate (natural and disease-related mortality)
of actives. Indeed, following Tovissodé et al. [5], we allow the removal rates αt and εt from
Qt to be time varying. This is appropriate when recovery and death data are available
in addition to the reported positive cases per unit time. The two rates have here the
logistic forms

αt =
[
1 + e−(κ0+κt)

]−1
(11)

εt =
[
1 + e−(λ0+λt)

]−1
. (12)

The number of active cases is then given by (see Appendix B for details)

Qt =


[

Q0F0 + ω0
∫ t

0 eω0(r−τ0)Frdr
]

F−1
t if 0 < t ≤ te[

QeFte +
∫ t

te
ϕ̇rFrdr

]
F−1

t if t > te
(13)

where Q0 is available from Equation (A3) and represents the number of persistent cases
from previous epidemic waves (isolated actives) at the outbreak of the target epidemic
wave (e.g., Q0 = 0 for a new disease-related epidemic) and Ft is defined as

Ft =


e(α0+ε0)t if κ = 0 and λ = 0

eα0t(1 + eλ0+λt)1/λ if κ = 0 and λ 6= 0(
1 + eκ0+κt)1/κeε0t if κ 6= 0 and λ = 0(

1 + eκ0+κt)1/κ(1 + eλ0+λt)1/λ if κ 6= 0 and λ 6= 0

. (14)

2.3. Overall Epidemic Dynamics

The dynamics of an epidemic, as expressed by the variations of the infectives It, is
determined by the combination of the transmission rate (new infections) and the average
residence time, i.e., the average duration from infection to isolation, recovery or death. The
core parameter to summarize these dynamics is, at moment t, the reproduction number
denoted Rt, which is indeed crucial for quantifying the intensity of control measures
required to control an epidemic [7].

The reproduction number is defined as the average number of secondary cases gen-
erated by a primary case. With a view to derive Rt under the growth model in (1), we
first consider an overall picture of the target population in order to enlighten the sources
(transmission and removal) of the variations of It as given in (8).
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2.3.1. The SIQR Model

Following the authors of [5,14], we consider the Susceptible–Infectious–Quarantined–
Recovered (SIQR) model of Hethcote et al. [22] to obtain a picture of the different states of
individuals in a target population. We use the “quarantine-adjusted incidence” version [22]
of this model since the underlying transmission mechanism explicitly recognizes the
isolation of detected cases. In this framework, letting Nt denote, at time t, the size of the
target population (assumed finite but large), Nt satisfies

Nt = St + It + Qt + Rt (15)

where St is the size of the class of susceptible individuals, It is the class of infectives, Qt is
the size of the class of detected active cases and Rt is the size of the class of individuals
who recovered (both detected and not detected). We assume that the infection has zero
latent period (susceptible individuals become infectious as soon as they become infected).
The individuals in the classes R are assumed permanently immune within the period of
time considered. It is also assumed that known active cases (in the class Q) do not mix
with other classes and do not infect the susceptibles (i.e., the transmission rate from Q-class
individuals is considered negligible). The corresponding SIQR model is described by the
following set of nonlinear differential equations [22]

Ṡt = η − βt(St + Rt)It/(Nt −Qt)− µSt (16)

İt = [βt(St + Rt)/(Nt −Qt)− (γ + δt + π)]It (17)

Q̇t = δt It − (αt + εt)Qt (18)

Ṙt = γIt + αtQt − µRt (19)

where η is the recruitment rate of susceptibles (births and immigration); βt is the total
number of adequate contacts (i.e., contacts sufficient for transmission) per unit time; µ is
the per capita natural mortality rate; αt and γ are the recovery rates from actives Qt and
infectives It respectively; εt and π are the death rates (natural and disease-related) for
actives Qt and infectives It respectively; and δt is the detection rate which is null (δt = 0)
for t < 0 and equals δt = δ for t ≥ 0. Note that (18) is the same as (10) for t ≥ 0. Unlike
in [22], we allow the transmission rate βt to be time varying as a consequence of the form
of the number of infectives It already available in (8). The transfer diagram for this SIQR
model is shown in Figure 1.

Figure 1. Transfer diagram for a SIQR model with quarantine-adjusted incidence. S is the class of
susceptibles, I is the class of infectives, Q is the class of detected active cases, i.e., individuals tested
positive and in isolation at a hospital or at home and R is the class of individuals who contracted
the disease, were detected or not, and have recovered. The individuals in class R are considered
permanently immune.

The system (16)–(19) always has the disease-free equilibrium P0 = (S = η/µ, I = 0,
Q = 0, R = 0), i.e., in the absence of the disease, the population size Nt approaches the
carrying capacity N∗ = η/µ. Further discussion of the equilibria of the system are given in
Appendix C.1. The availability of the number of infectives in Equation (8) makes it possible
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to solve the system (16)–(19). Indeed, from (17), the transmission rate, i.e., the number of
adequate contacts per unit time (for It > 0) is given by

βt =

(
γ + δt + π +

İt

It

)(
1 +

It

St + Rt

)
. (20)

From (20), and using the same approach considered to find the number Qt of active
cases in Equation (13) from the number It of infectives in Equation (8), the expressions
of the number St of susceptibles, the number Rt of recovered individuals and the total
number of persons infected during an epidemic wave can be obtained (see Appendix C.2
for details).

2.3.2. The Effective Reproduction Number

From the definition of the effective reproduction number as the average number of
secondary cases generated by a primary case, the thresholdRt corresponds to the product
of the transmission rate βt and the average residence time 1/(γ + δt + π) in the class of
infectives, i.e.,

Rt = βt/(γ + δt + π).

This effective reproduction number is sometimes referred to as a “quarantine” re-
production number [22] or simply a “control” reproduction number to acknowledge the
influence of isolation of identified infectives, and other control measures, if any [15]. The
basic reproduction number defined as the average number of secondary infections pro-
duced when one primary infectious individual enters a completely susceptible population
(So = No − 1, Io = 1, Qo = 0, Ro = 0), is here given byRo =

(
1 + ω0

γ+π

)
No/(No − 1). This

expression is simplified, assuming No/(No − 1) = 1 for the sake of beauty [23] and mostly
because No is large (recall this is a model assumption), as

Ro = 1 +
ω0

γ + π
. (21)

During the epidemic latency period (to < t < 0) where the growth is exponential
( İt/It = ω0) and the detection rate is δt = 0, the time-varying reproduction number is
given by

Rt =

(
1 +

ω0

γ + π

)(
1 +

It

St + Rt

)
for − to ≤ t < 0. (22)

From the outbreak, the time-varying effective reproduction number during the re-
maining of the exponential phase has the same form

Rt =

(
1 +

ω0

γ + δ + π

)(
1 +

It

St + Rt

)
for 0 ≤ t ≤ te. (23)

It appears from (22) and (23) that Rt > 1 during the whole exponential growth
phase as expected. During the sub-exponential growth phase, the time-varying effective
reproduction number is given by

Rt =

(
1 +

zt

γ + δ + π

)(
1 +

It

St + Rt

)
for t > te (24)

where zt = ϕ̈t/ϕ̇t (see Appendix A.1).
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2.3.3. Epidemic Peak

The peak of new infections occurs when the second derivative of the total number of
infected persons (since the beginning of the epidemic) vanishes. This peak time denoted
tnew satisfies tnew > te and is the solution of (see details in Appendix C.3)

(γ + δ + π)ϕ̈t +
...
ϕt = 0 (25)

which can be solved for t using a numerical root finding routine such as the R [24] function
uniroot or the Matlab [25] function fzero. Afterwards, the peak size Ṫnew (the maximum
number of new infections per unit time) is obtained by inserting tnew in (A14).

2.4. Long-Term Epidemic Dynamics

The specification of the growth model in (1) to an epidemic implicitly assumes that
the number of infectives in (8) peaks at time tp and then approaches zero. The decay of
the infectives after the peak can happen at various rates, depending on the growth pattern
(determined by contacts between the infectives and the susceptibles or intermediate hosts),
the response of the infected individual’s organism (natural or induced with medicine or
a vaccine) to the disease (recovery and death process) and the testing efforts (detection
followed by isolation). There are actually two alternative paths from a disease-related state
(i.e., It > 0) toward the unique (disease-free) equilibrium P0: transmissions either stop
(Rt reaches zero) or continue fro a long time at a rate which cannot sustain an epidemic
(0 < Rt ≤ 1). These two scenarios are discussed further in Appendix C.4.

2.5. Statistical Model and Inference

To allow likelihood inference in the growth models in (1) using observed epidemiolog-
ical data, we follow Tovissodé et al. [5] and assign to new reported cases Yt (t = 1, 2, · · · , n)
a log-normal distribution with probability density function (pdf)

fY(Yt|θ) =
1

σ(Yt + 1)
√

2π
exp

(
−1

2

[
log(Yt + 1)− log(Ċt + 1)

σ
+

σ

2

]2)
(26)

where σ > 0 is a dispersion parameter (standard deviation at logarithmic scale). This
specification yields the mean E[Yt] = Ċt and the variance Var[Yt] =

(
Ċt + 1

)2
(

eσ2 − 1
)

while allowing null values of Yt. In addition, the numbers of new recoveries Gt and
new deaths Mt from known active cases Qt (t = 1, 2, · · · , n) are modeled using logistic
regression models with probability mass functions (pmf)

fG(Gt|θ, Qt−1, Yt) =

(
Qt−1 + Yt

Gt

)
αGt

t (1− αt)
Qt−1+Yt−Gt (27)

fM(Mt|θ, Qt−1, Yt) =

(
Qt−1 + Yt

Mt

)
εMt

t (1− εt)
Qt−1+Yt−Mt (28)

where αt =
[
1 + eκ0+κt]−1 and εt =

[
1 + eλ0+λt]−1. The parameter vector indexing the

pdf in (26) and the conditional pmf in (27) and (28) is θ = (Ω, ω, ν, ρ, τ, te, σ, κ0, κ, λ0, λ)>

when the generic growth curve is considered for the sub-exponential growth phase. If a
special case of the generic growth curve is desired, the corresponding restricted parameters
must be withdrawn from θ. For instance, the use of a hyper-logistic growth curve (ν = 1)
implies θ = (Ω, ω, ρ, τ, te, σ, κ0, κ, λ0, λ)>. Given Q0, the conditional log-likelihood of an
observed series {Yt, Gt, Mt} with t = 1, 2, · · · , n, as a function of the parameter θ is
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`(θ) = `Y(θ) + `G(θ) + `M(θ) (29)

where `Y(θ) =
n

∑
t=1

log fY(Yt|θ) (30)

`G(θ) =
n

∑
t=1

log fG(Gt|θ, Qt−1, Yt) (31)

`M(θ) =
n

∑
t=1

log fM(Mt|θ, Qt−1, Yt). (32)

The conditional maximum likelihood estimate θ̂ of θ can be obtained using an opti-
mization algorithm to maximize the log-likelihood function `. Note that the three com-
ponents of `(θ) are separable and can be maximized independently. In other words, the
parameter vector θ has the partition θ = (θ>Y , θ>G , θ>M)> and the maximum likelihood
estimates of the components θY = (Ω, ω, ν, ρ, τ0, te, σ)>, θG = (κ0, κ)> and θM = (λ0, λ)>

can be obtained by maximizing `Y, `G and `M respectively.
Since both the binomial and the log-normal distributions belong to the exponential

family, we consider the common deviance statistic used in Generalized Linear Models [26]
for checking the goodness-of-fit of the log-normal model associated to Yt and the binomial
models associated to Gt and Mt. For the selection of the parsimonious model agreeing
with the observed data, we consider the likelihood ratio statistic [27]. Further details on
the deviance statistic and the likelihood ratio test are given in Appendix D.

3. Application to COVID-19 Data of Western Africa
3.1. Context and Objectives

The Western African region has 16 countries (Benin, Burkina-Faso, Cape Verde, Côte
d’Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria,
Senegal, Sierra Leone and Togo), covering 6,140,178 km2 with a population of about
402,555,230 inhabitants [28] (Table 1).

Table 1. Population size [28] and cumulative PCR-confirmed COVID-19 cases, deaths and recoveries
in West Africa (28 February to 31 August 2020) [29].

Country Population Size Total Confirmed Recoveries Deaths

Nigeria 206,522,290 54,008 41,638 1013
Ghana 31,072,945 44,298 42,963 276
Côte d’Ivoire 26,428,999 18,067 16,699 117
Niger 24,269,389 1176 1088 69
Burkina-Faso 20,946,992 1368 1058 55
Mali 20,294,900 2776 2169 126
Senegal 16,776,618 13,611 9439 284
Guinea 13,160,021 9409 8447 59
Benin 12,123,200 2145 1738 40
Togo 8,293,924 1400 1005 28
Sierra Leone 7,989,949 2022 1594 70
Liberia 5,066,990 1304 872 82
Mauritania 4,659,052 7048 6464 159
Gambia 2,421,823 2963 1032 96
Guinea-Bissau 1,971,640 2205 1127 34
Cape Verde 556,498 3884 2916 40
West Africa 402,555,230 167,684 140,249 2548

The first COVID-19 patient was formally identified in Western Africa in late (27)
February 2020. We considered COVID-19 daily infection (PCR-confirmed cases on the day
of reporting), recovery and death data, from 28 February to 31 August 2020, obtained from
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the Global Rise of Education Platform [29]. This period roughly corresponds to the first
wave of the COVID-19 pandemic in the region [30]. We concentrated on these six months
of data since the proposed modeling framework has been designed for a single epidemic
wave. As of 31 August 2020, the region had 167,684 confirmed cases, among which 83.64%
recovered and 1.52% died (Table 1). Although the region is heterogeneous, we treated it
as if it were homogeneous. Indeed, it must be kept in mind that the reported COVID-19
cases occurred in small clusters concentrated in the main cities of each country. Hence,
the sparsity of the data for the whole region actually reflect data sparsity at national and
city levels.

The purpose of this analysis is to demonstrate, by example, the use of the proposed
modeling framework. The specific aims are: (i) to model COVID-19 case reporting data
(daily PCR-confirmed positives, recoveries and deaths) from Western Africa (28 February
to 31 August 2020); and (ii) to evaluate the transmission pattern of the disease. Most
West African governments have planned and subsequently implemented several control
measures, either before or overlapping with the time of diagnosis of the first national
cases [31]. The main sequence of public health and movement restriction measures taken
by West African governments during the considered period includes personal hygiene and
social distancing recommendations and isolation/lockdown (Table 2). The adoption of
these containment measures followed a sustained increment during late March 2020. The
modeling results are used to discuss the effectiveness of the containment measures and the
implications for the control of the further spread of COVID-19 in West African countries.

Table 2. Main sequence of public health and movement restriction measures taken by West African governments during the
first phase of the COVID-19 pandemic (until 31 August 2020).

Main Interventions First Introduction (Country) Implementation by the Last Country

State of health emergency and social distancing 22 March 2020 (Ghana) 30 March 2020 (Sierra Leone)
Setting up test sites and measures to quarantine
suspected cases and isolate positive cases 25 February 2020 (Nigeria) Early March 2020

Partial lockdown 18 March 2020 (Benin) Late March
Curfew 20 March 2020 (Burkina Faso) Not all countries
Reduced mobility and prohibition of
social gatherings 15 March 2020 (Ghana) Late March 2020

Land borders closure 20 March 2020 (Côte d’Ivoire) 30 March 2020 (Sierra Leone)
Wearing face mask in public mandatory 8 April 2020 (Benin) 14 May 2020 (Mauritania)
Systematic testing of target groups 22 March 2020 (Benin) Late March to early April

Sources: https://hsfnotes.com/africa/2020/05/22/covid-19-initial-responses-of-certain-african-countries#page=1 (accessed on 4 April
2021) and [31].

3.2. Data Analysis

All computations and statistical analyses were performed in R software [24]. The
significance level of statistical tests was set to 5%.

3.2.1. Model Fitting

We fitted the generic growth curve to the daily new infections Yt. We used the optim
routine of R software to maximize the log-likelihood (30). We also fitted three of its special
cases (Bertalanffy–Richards, hyper-logistic and hyper-Gompertz), which were compared
to the generic model fit using likelihood ratio tests. Instead of directly maximizing the
log-likelihoods (31) for θ̂G and (32) for θ̂M with the optim routine, we used the glm routine
of R with the family specification “family = binomial(logit)”. Since COVID-19 was a new
disease in 2020, we considered the number of known active cases Q0 = 0 at t = 0 in (27)
and (28). We plotted the daily new positives, recoveries, deaths and actives to provide
graphical insights in the fitted models.

https://hsfnotes.com/africa/2020/05/22/covid-19-initial-responses-of-certain-african-countries#page=1
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3.2.2. Overall Epidemic Dynamics

We analyzed the overall dynamics of the COVID-19 epidemic in West Africa using
the mechanistic SIQR model described in Section 2.3. The rate parameters δ (detection
rate), γ and π (recovery and death rates in infected but non-detected individuals) cannot
be estimated using only the available data sequence {Yt, Gt, Mt} (daily new positives,
recoveries and deaths) without additional assumptions on their relationships with the rate
parameters for detected cases (αt and εt). We obtained from the literature δ = 0.009 [30]
and γ + π = 1/10 [14,30] and assumed that the ratio of the daily recovery probability
to the daily death probability in non detected infectives is equal to this ratio in the de-
tected individuals at outbreak, i.e., before the implementation of treatments, if any. From
γ/π = α0/ε0 ≈ 5.1495, we obtained γ = 1/11.9419 and π = 1/61.4953.

Two demographic parameters are required in the SIQR model: the daily recruitment
rate of susceptibles (through births and immigration) η (individuals/day) and the per capita
natural mortality rate µ (day−1). Using the birth rate ρb (total births and net immigrations
in a period of length L divided by the average population size N during this period), the
recruitment rate η was estimated by

η =
rbN

L
. (33)

Under “natural” (i.e., disease-free) conditions where Nt = St, the variation ∆N of the
population size Nt over a period of length L satisfies

∆N =

(
η

µ
− Ni

)(
1− e−µL

)
(34)

where Ni is the population of West Africa at the beginning of the period. The Equation (34)
follows by (A5) with I0 = 0. The variation ∆N of the population size is given by
∆N = rbN − rdN, where rbN represents the total recruitment during the period and rdN
represents the total number of deaths with ρd the mortality rate (individuals/day). Conse-
quently, µ can be obtained by solving (34) for µ using ∆N = (rb − rd)N.

We considered L = 365.25 days, N = 401,861,254, Ni = 397,429,929 [28]. Us-
ing the annual birth (32.816/1000) and death rates (7.952/1000) [32] and the net an-
nual immigrations (−177,000 individuals) in West Africa [28], we obtained the rates
rb = (32.816/1000) − (177,000/N) = 32.371/1000 and rd = 7.952/1000. By (33) and
(34), we then found and used for our analyses on West Africa, η = 35,615.35 individu-
als/day and µ = 2.1745× 10−5 day−1. We plotted the daily number of new infections,
infectives and recovered individuals, as well as the reproduction number in the West
African population.

3.2.3. Standard Error and Confidence Interval

Standard errors were obtained for quantities calculated using estimated model param-
eters by the delta method [33]. For a positive definite parameter or calculated quantity φ in
general, we first found the estimate φ̂ and its logarithmic scale-standard error σ̂φ by the
delta method and computed its logarithmic scale-mean given by µ̂φ = log φ̂− 0.5σ̂2

φ. We
then obtained the bounds of its shortest confidence interval as described by Dahiya and
Guttman [34].

3.3. Results
3.3.1. Growth Curve for New Positives and Logistic Regressions for Removals

The results of the likelihood ratio tests comparing the generic growth model (1) against
its closest special cases are presented in Table 3. The growth model involving the generic
growth curve was retained. Indeed, the combination of an early exponential growth and
the generic growth models was found to be the best growth model for the new positive
cases in West Africa, as compared to the combinations of the exponential growth with



Biology 2021, 10, 365 12 of 27

the Bertalanffy–Richards, hyper-logistic and hyper-Gompertz growth models (Table 3;
p-value < 0.001).

Table 3. Likelihood ratio test results comparing the generic growth model [8] to three of its
special cases.

Special Growth Model Restriction LRS DF p-Value

Bertalanffy–Richards ρ→ 0 60.06 1 <0.001
Hyper-logistic ν = 1 240.33 1 <0.001
Hyper-Gompertz ν→ 0, νω(1+ρ) → ω̃ 512.91 1 <0.001

Table notes: LRS, likelihood ratio statistic; DF, Degrees of freedom; ω̃ stands for a positive constant; see
Equation (1) for details on the parameters ν, ρ and ω.

The deviance based χ2 test for overall goodness-of-fit (Table 4) indicates a lack-of-
fit (p-value < 0.001), with an overall adjusted-deviance reduction ratio of r2

dev = 11.60%.
Looking for the sub-models, we noticed that the estimated growth curve is significantly
different from the corresponding null model fit (p-value < 0.001) and does not lack fit
(p-value = 0.6115). Indeed, the adjusted-deviance reduction ratio is r2

dev = 95.26% (the
adjusted-coefficient of determination is r2

a = 99.96%). The overall lack of fit is due to the
logistic regression fits for the daily recoveries (r2

dev = 9.25%) and deaths (r2
dev = 49.08%). We

nevertheless kept these fits because there are significantly different from the corresponding
null model fits (p-value < 0.001).

Table 4. Deviance based goodness-of-fit test results for the combination of an early exponential
growth curve with a generic growth curve (fitted to daily PCR-confirmed positives) and logistic
regression models (fitted to daily numbers of recoveries and deaths) using West African COVID-19
data from 28 February to 31 August 2020.

Data
Goodness-of-Fit Overall Significance

DS DF p-Value r2
dev (%) LRS DF p-Value

Reported cases 173.04 179 0.6115 95.26 3601.57 6 <0.001
Recoveries 45,028.51 184 <0.001 9.25 4861.55 1 <0.001
Deaths 499.13 184 <0.001 49.08 486.40 1 <0.001
Overall 45,700.68 175 <0.001 11.60 8949.52 8 <0.001

Table notes: DS, Deviance statistic; DF, Degrees of freedom; r2
dev, adjusted-deviance reduction ratio; LRS, Likeli-

hood Ratio Statistic.

The maximum likelihood estimates of the generic growth model and logistic regression
model parameters are presented in Table 5. The Wald test results (Table 5) agree with the
likelihood ratio tests considered to select the growth model for the sub-exponential growth
phase. Indeed, the 95% confidence bounds for the parameters ν (CI(ν) = [2.77, 4.82]) and ρ
(CI(ρ) = [0.09, 0.15]) indicate that none of the Bertalanffy–Richards growth model (ρ→ 0),
the hyper-logistic growth model (ν = 1), the logistic growth model (ρ → 0, ν = 1), the
hyper-Gompertz growth model (ν → 0, ων1+ρ → ω̃) and the Gompertz growth model
(ρ→ 0, ν→ 0, ων→ ω̃) are appropriate for this dataset.

The exponential growth phase lasted about one month (t̂e = 29.48, CI(te) = [26.94, 31.79]
days) after the outbreak (Table 5). The growth curve fitted to the cumulative positive cases
is given by

Ct =

e0.1660×(t+7.2208) if 0 < t ≤ 29.48
200.3128 + 191,290.8{

1+[1+0.0067×(t−171.3210)]8.3185
}0.2656 if t > 29.48 (35)

where t is the time (day) from the outbreak. Figure 2A shows the daily confirmed positive
cases and the fitted growth curve based on a log-normal error structure. The observed
peak of new positives happened 148 days after the outbreak (24 July 2020) and amounted
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to 2626 positive cases. However, the number of positive cases showed a high variability
around this date (16–29/07/2020), with most daily records roughly ranging between 1600
and 2000 new positive cases (Figure 2A) around an average of 1803 cases (with standard
error SE = 86.48). The estimated peak time for the new positive cases was around 15 July
2020, i.e., about 139 days after the outbreak (Table 6), and the estimate of the peak size
is about 1805 new positive cases (CI(Ċp) = [1643.19, 1969.86]). Assuming a log-normal
distribution, the 95% prediction interval for the peak size is PI(Ċp) = [1368.93, 2669.55]
new positive cases, which includes the observed value. The 95% prediction interval for the
peak time is PI(tp) = [126.59, 151.65] days, which also includes the observed peak time.

Table 5. Estimate, standard error (SE), Wald test statistic (z-value), p-value (P(> |z|)) and 95%
confidence interval (CI95%) for the parameters of the combination of an early exponential growth
curve with a generic growth curve (fitted to daily PCR-confirmed positives) and logistic regression
parameters (fitted to daily numbers of recoveries and deaths) using West African COVID-19 data
from 28 February to 31 August 2020.

Parameter Estimate SE z-Value * P(> |z|) CI95%

te (day) 29.4781 1.2368 80.1417 <0.001 [26.9413, 31.7865]
Ω (ind.) 191,290.8 6444.5420 360.9696 <0.001 [178,756.4, 204,008.2]
ω (day−1) 0.0148 0.0007 −87.1715 <0.001 [0.0134, 0.0162]
ν 3.7640 0.5280 9.3782 <0.001 [2.7685, 4.8240]
ρ 0.1202 0.0169 −15.1710 <0.001 [0.0884, 0.1541]
τ (day) 171.3210 2.4252 70.6431 <0.001 [166.5678, 176.0742]
σ (log ind.) 0.3962 0.0201 −18.4774 <0.001 [0.3572, 0.4361]
κ0 −4.0609 0.0122 −333.6829 <0.001 [−4.0848, −4.0370]
κ 0.0059 0.0001 68.5372 <0.001 [0.0058, 0.0061]
λ0 −5.7136 0.0682 −83.7346 <0.001 [−5.8473, −5.5799]
λ −0.0126 0.0006 −22.4195 <0.001 [−0.0137, −0.0115]
ωo (day−1) 0.1660 0.0011 −261.8024 <0.001 [0.1659, 0.1662]
τ0 (day) −7.2208 0.0226 −319.1971 <0.001 [−7.2651, −7.1764]
ξ (ind.) 200.3128 2.7771 382.2758 <0.001 [194.8864, 205.7716]

Table notes: ind., individuals; te (day) is the duration of the exponential growth phase after the outbreak; Ω
and ξ (ind.) determine the ultimate epidemic size (detected) as ξ + Ω; ω > 0 (day−1) is the “intrinsic” growth
rate constant for the sub-exponential growth phase; ν > 0 is a growth acceleration parameter, ρ is a shape
parameter controlling the skewness of the growth curve during the sub-exponential growth phase; τ (day) is a
constant of integration determined by the initial conditions of the epidemic outbreak; σ is the logarithmic-scale
standard deviation of the log-normal distribution fitted to the daily new positive case reporting data; κ0

and κ are the logit-scale intercept and slope for the daily probability αt that an active case recovers at time t
(αt = 1/(1 + e−(κ0+κt))); λ0 and λ are the logit-scale intercept and slope for the daily probability εt that an active
case dies at time t (εt = 1/(1 + e−(λ0+λt))); ω0 (day−1), τ0 (day) and ξ (individuals) are not free parameters, but
computed using Equations (4) and (5); ω0 is the growth rate during the exponential growth phase; τ0 and ξ

ensure that the daily number of positives Ċt and the cumulative number of positives Ct are smooth at t = te;
* z-value was computed at logarithmic scale for positive definite parameters (te, Ω, ω, ν, ρ, σ and ω0), so that a
p-value < 0.05 indicates significant difference from 1 at 5% level.

Based on the logistic regression parameters shown in Table 5, the probabilities of
removals from the actives (quarantined) are shown in Figure 3. The probabilities of recovery
and death are α̂0 = 0.0169 and ε̂0 = 0.0033, respectively, at outbreak (t = 0). The recovery
probability then improved, with an odd ratio (recover/not recover) increasing on average
by 0.59% (CI(κ) = [0.58, 0.61]%) each day. The death probability on the contrary decreased,
with an odd ratio (die/not die) decreasing on average by 1.26% (CI(λ) = [−1.37,−1.15]%)
each day.
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Figure 2. Records of new positive cases Ċt (A), daily recoveries αtQt, (B), daily deaths εtQt (C) and
known actives cases (quarantined at home/hospital) Qt (D) in COVID-19 daily case reporting data
from West Africa (28 February to 31 August 2020). The fitted curves are based on a combination of an
early exponential growth model and a generic growth model with log-normal error structure for the
daily new positive cases Ċt, two logistic regression models for the probabilities of recovery (αt) and
death (εt) and the combination of Ċt, αt and εt (using (13)) for actives Qt. Two outlying data points
(6006 recoveries on 20 June 2020 and 11,468 recoveries on 4 August 2020) were removed from the
graph (B) for a better visualization.

Table 6. Estimate, standard error (SE) and 95% confidence interval (CI95%) for some quantities using
the West African COVID-19 data from 28 February to 31 August 2020.

Quantity Observed Value Estimate SE CI95%

to (day) - 24.78 2.55 [19.91, 29.87]
Ro - 2.66 0.11 [2.60, 2.69]
I0 (ind.) - 61.17 6.94 [47.98, 75.05]
R0 - 2.52 0.12 [2.29, 2.76]
tp (day) 148 138.87 2.26 [134.45, 143.31]
Ċp (ind.) 2626 1804.90 83.40 [1643.19, 1969.86]
tnew (day) - 131.12 2.53 [126.18, 136.11]
Ṫmax (ind.) - 22,352.97 1067.46 [20,284.04, 24,464.98]
tQmax (day) 143 149.67 1.78 [146.18, 153.17]
Qmax (ind.) 41,435 42,507.01 1449.81 [39,687.48, 45,368.24]
R186 (ind.) - 1,754,698.5 40,665.66 [1,675,407.60, 1,834,783.00]

Table notes: to , duration of the epidemic latency period; Ro , basic reproduction number; I0, number of infectives
at outbreak; R0, reproduction number at outbreak; tp, time of the peak of positive cases; Ċp, size of the peak of
positive cases; tnew, time of the peak of new infections; Ṫmax , size of the peak of new infections; tQmax , time of the
peak of active cases; Qmax , size of the peak of active cases; R186, total number of recovered in the population at
t = 186 days (i.e., at the end of the studied period (31 August 2020)); - indicates not applicable.

Figure 2B,C shows the removals (daily recovery and death) and the fitted values based
on the logistic regression models for removal probabilities. We noticed that the lack-of-fit
(indicated by the residual deviance test) is due to the very large variability of the observed
daily proportions of recoveries and deaths. However, despite the lack-of-fit in the logistic
regression fits, the use of the related recovery and death probabilities (αt and εt) along with
the fitted growth curve (Ċt), resulted in fitted active cases (Qt) agreeing to a large extent
with the observed daily actives (Figure 2D), with an adjusted-coefficient of determination
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of 97.08%. The peak of known active cases (Qt) was on 19 July 2020 and amounted to
41,435 actives. The fitted peak is about 42,507 actives around 26 July 2020 (Table 6). The 95%
prediction interval is PI(Qmax) = [34,807.25, 50,893.54] actives for the maximum of active
cases and PI(tQmax ) = [139.92, 159.71] days for the peak time tQmax (16 July to 5 August 2020).

Figure 3. Fitted probabilities of recovery and death in COVID-19 daily case reporting data from West
Africa (28 February to 31 August 2020). The fits are based on two logistic regression models.

3.3.2. Overall Epidemic Dynamics

The estimate of the duration of the epidemic latency period (delay between the arrival
of the first infectious individual and outbreak) is about 25 days (CI(to) = [19.91, 29.87] days;
see Table 6). Accordingly, the first imported COVID-19 case(s) in West Africa likely entered
the region during the last week of January and the first week of February (28 January–7
February) 2020. The estimate of the basic reproduction number is R̂o = 2.66 (CI(Ro) =
[2.60, 2.69]). At outbreak, the number of infectives in the region is estimated at about 61
(CI(I0) = [47.98, 75.05]) infectives. The estimate of the control reproduction number during
the exponential growth phase after the outbreak is R̂0 = 2.52 (CI(R0) = [2.29, 2.76]).

Figure 4 shows the curves of the daily number of new infections (Ṫt), the daily number
of infectives (It) and the immune fraction of the population (Rt = Kt +Ut). As expected, the
peak in new infections occurred before the peak in detected infected individuals (observed
143 days after the outbreak). Indeed, the number of new infections peaked about 131 days
after the outbreak (CI(tnew) = [126.18, 136.11] days), i.e., around 7 (2–12) July 2020, to
about 22,353 (CI(Ṫmax) = [20,284.04, 24,464.98]) new infections. As of 31 August 2020,
the number of known recoveries in the West African region was 140,249. The number of
both known and unknown recovered people at this date is estimated at about 1,754,699
individuals (CI(R186) = [1,675,407.60, 1,834,783.00]), i.e., about 0.44% of the population in
the region.

The time-varying effective reproduction number is shown in Figure 5. It appears that
the effective reproduction number first decreased during the sub-exponential growth phase
(from 2.52 on 27 February 2020), reaching 1 on 15 July and 0.66 on 31 August 2020. The
effective reproduction number attained a minimum value of 0.61 on 29 September 2020
and then increased with a dynamics indicatingR∞ = 1.
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Figure 4. Estimates of the daily number of new infections, infectives and recovered individuals using
the COVID-19 daily case reporting data from West Africa (28 February to 31 August 2020). The
estimates are based on a SIQR model (see (16)–(19)) with rate parameters δ = 0.009 day−1 (detection
rate), γ = 1/11.9419 day−1 (recovery rate for non detected), π = 1/61.4953 day−1 (death rate for non
detected), η = 35,615.35 individuals/day (recruitment rate) and µ = 2.1745× 10−5 day−1 (natural
mortality rate).

Figure 5. Time varying effective reproduction number of the 2020 COVID-19 epidemic in
West Africa using daily case reporting data (28 February to 31 August 2020). The estimate is
based on a SIQR model (see (16)–(19)) with rate parameters δ = 0.009 day−1 (detection rate),
γ = 1/11.9419 day−1 (recovery rate for non detected), π = 1/61.4953 day−1 (death rate for non
detected), η = 35,615.35 individuals/day (recruitment rate) and µ = 2.1745× 10−5 day−1 (natural
mortality rate).

4. Discussion

The importance of mathematical models in understanding and predicting the course
of an epidemic outbreak and in assessing the impacts of public health control measures
has been well documented in the current context of the COVID-19 pandemic [15,35–37].
Whereas phenomenological modeling is limited in the scope of inference, compartmental
modeling faces identifiability issues and is usually computationally intensive [38]. This
study proposes a hybrid modeling framework which combines phenomenological and
mechanistic modeling approaches to assess the dynamics of epidemic outbreaks while
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circumventing some of the limitations of each approach. We illustrate our description of
the different epidemiological aspects that the hybrid modeling framework deals with using
COVID-19 data from West Africa (28 February to 31 August 2020). It is worth noting that
the heterogeneity of the West African region in terms of testing and reporting policies,
especially for the first epidemic wave, is an important limitation for this application. This is
systematically true for any regional assessment of the pandemic [15]. Our analysis aims to
provide an overall view of the dynamics of the pandemic in the West Africa. However, the
analysis of the data from each country may be conducted to obtain finer country-specific
results (for some countries, these may significantly deviate from the overall trend).

The proposed modeling framework uses a combination of the exponential growth
model for the initial dynamics of the epidemic and a generic growth curve [8] to capture the
observed patterns in the number of detected positive individuals. This phenomenological
model is flexible, includes many special cases and thus allows selecting the effective
parsimonious model fitting the observed data based on likelihood ratio tests [27,39] or
information criteria such as the Akaike’s Information Criterion [40]. The effectiveness
of this approach to phenomenological modeling has been demonstrated on COVID-19
data [5]. Our application on COVID-19 data from West Africa nevertheless showed that the
logistic regression of recoveries and deaths in the identified positive individuals against
time can lack fit, as measured by an asymptotic χ2 test on the residual deviance statistic.
Nevertheless, these fits can be improved by adding explanatories (different from time, but
related to available health facilities) in the logistic regression models. The deterministic
SIQR model [22] considered for mechanistic modeling explicitly acknowledges the isolation
of the detected positive individuals. It does not, however, include an exposed (E) state as
in the SEIQR model [41]. The use of the SEIQR model may provide better insights on the
effectiveness of control measures since most of the measures first impact the exposition
of susceptible individuals. In general, the proposed modeling approach can be extended
by considering more complex models such as the SEIQR and the SIDARTHE model [42]
instead of the SIQR model considered herein.

Among interest quantities provided by the hybrid modeling framework, we have
the epidemic latency period to (the time from the appearance of the first infectious case
in the population to the outbreak). For the West African region, the result indicates
that the first imported COVID-19 case(s) in West Africa likely entered the region around
28 January–7 February 2020. To the best of our knowledge, this is the first estimate of this
duration in the region. This epidemic latency period is much lower than the 40 days
estimated for Italy [14]. This is in line with the relatively late arrival of the virus in
the region, compared to the Asian and European continents, and the prevention and
detection measures anticipated by many West African governments [31]. We obtained a
basic reproduction number (CI(Ro) = [2.60, 2.69]) higher than the estimate (CI(Ro) =
[1.84, 1.87]) obtained by [15]. Our estimate is, however, closer to country-specific estimates
obtained for Nigeria (CI(Ro) = [2.37, 2.47]) [43] and Ghana (CI(Ro) = [1.99, 3.37]) [44].

During the early phase of the epidemic after the outbreak in West Africa, the detection
and isolation of a fraction of infected individuals reduced the reproduction number from
Ro to a control reproduction number of R̂0 = 2.52, i.e., about 5.26% decrease. We estimated
the duration of this phase characterized by an exponential growth to be about one month
after the outbreak. This implies that the control measures implemented by West African
governments to limit the transmission of the disease were not effective on average before
April 2020. Indeed, apart from measures taken to limit the importation of new positive
individuals (travel bans), many actions to limit the local propagation of the disease were
first implemented in late March 2020 [31] (e.g., curfew set up on 21 March in Burkina-
Faso, on 23 March in Côte d’Ivoire, Mauritius and Senegal and on 26 March in Mali; city
lockdown on 22 March in Ghana and on 29 March in Nigeria; isolation of the capital from
the rest of the country in Côte d’Ivoire on 25 March 2020; and cordon sanitaire set up to
isolate the south from the rest of the country on 30 March 2020 in Benin). Our results
indicate that these measures started to impact the dynamics of the epidemic from early
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April 2020. However, the measures may have affected the transmission dynamics earlier,
since the measures mainly limited the exposition of susceptible individuals to the disease.

After the exponential growth phase, the sub-exponential growth pattern allowed
the epidemic to peak. The estimated peak time for the detected positive cases was
around 15 July 2020, and close to the observed peak time (24 July 2020). This estimated
date has a delay of about eight days with respect to the estimated peak time of new
infections (CI(tnew) = [126.18, 136.11] days). This estimate is higher than the estimate
(CI(tnew) = [108, 112] days) obtained by [30]. These contrasting results may be related
to the more realistic SIQR model considered in this work as compared to the simpler
SIR model used by Honfo et al. [30] who ignored the quarantine-adjustment of the dis-
ease incidence [22]. On the contrary, the estimated maximum number of new infections
(CI(Ṫmax) = [20,284.04, 24,464.98]) agrees with the estimate (CI(Ṫmax) = [24,239, 26,294]
new infections) obtained by Honfo et al. [30].

Our results show that the time-varying effective reproduction number has decayed
over April–August 2020, reaching 1 on about 15 July 2020 and 0.66 at the end of the consid-
ered period (31 August 2020). Based on the modeled dynamics, the effective reproduction
number likely reached its minimum value 0.61 around 29 September 2020. However, the
reproduction number likely increased again to approachR∞ = 1 in the long run. Overall,
the various measures decided and enforced by different West African governments, against
the first COVID-19 epidemic wave in the region, were able to contain the propagation of
the disease (importation of new cases and local transmission) in five months.

However, the COVID-19 pandemic will remain an important issue for a long time, and
local region’s endemic to the pathogen will likely appear in the long run. This is so because
of the following factors: the re-opening of borders and airports in the region to limit the
related economic feedback [45,46]; the relaxation of measures such as the ban of sport,
political, cultural and religious gatherings [31,47]; and the natural evolution of the SARS-
Cov-2 virus [48–51]. The limited resources and capacity of Sub-Saharan Africa countries
in general [52–54] to immunize their population through vaccination will compound this
threat in the region.

5. Conclusions

There are two common approaches to epidemiological modeling: phenomenological
models and mechanistic models. This study proposes a hybrid framework which combines
the two approaches, starting from fitting curves to observed data (confirmed positive cases,
recoveries and deaths) and then providing an overall view of the epidemic dynamics by
integrating the fitted curves into a compartmental model. The proposed approach allows
estimating the delay between the appearance of the first infectious case in the population
and the outbreak (“epidemic latency period”); the duration of period during which the
epidemic growths exponentially; the basic and control reproduction numbers; and the
peaks (time and size) in positive cases, active cases and new infections. An application to
COVID-19 data from West Africa indicates that the hybrid modeling framework can be
used to match effective control measures dictated by health policies with changes in the
transmission dynamics of the studied disease.
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SIQR Susceptible, Infective, Quarantined, Recovered model
Gen Generic growth model
BR Bertalanffy–Richards growth model
HG Hyper-Gompertz growth model
Gom Gompertz growth model
pdf probability density function
pmf probability mass function
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LRS Likelihood Ratio Statistic
DS Deviance Statistic
AIC Akaike’s Information Criterion
ind. Individuals
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PI Prediction Interval

Appendix A. Generic Growth Curve and Its Limiting Cases

Appendix A.1. Size, Rate and Acceleration

This appendix gives the population size, the growth rate and the growth acceleration
of the generic growth model [8] and its limiting cases (Table A1).

Table A1. Generic growth model [8] and its limiting cases: population size (ϕt), growth rate (ϕ̇t), and
growth acceleration (ϕ̈t).

Model Population Size Growth Rate Growth Acceleration

Gen Ω(1 + ut)
−1/ν Ωωu1+ρ

t (1 + ut)
− ν+1

ν νωuρ
t

(
ν+1

ν
ut

1+ut
− ρ− 1

)
ϕ̇t

BR Ω(1 + e−vt )
−1/ν Ωωe−vt

(
1 + e−vt

)− ν+1
ν νω

(
ν+1

ν
e−vt

1+e−vt − 1
)

ϕ̇t

HG Ω exp
(
−w
− 1

ρ

t

)
Ωω̃w

− 1+ρ
ρ

t exp
(
−w
− 1

ρ

t

)
ω̃w−1

t

(
w
− 1

ρ

t − ρ− 1
)

ϕ̇t

Gom Ω exp
(
−e−xt

)
Ωω̃ exp

(
−xt − e−xt

)
ω̃
(
e−xt − 1

)
ϕ̇t

Table notes: Gen, Generic; BR, Bertalanffy–Richards; HG, Hyper-Gompertz; Gom, Gompertz; ut =

[1 + ωνρ(t− τ)]−1/ρ, vt = νω(t− τ), wt = ω̃ρ(t− τ) and xt = ω̃(t− τ).

The restriction −1 < ρ < ν−1 given in Section 2.1 makes the parameters ν and ρ
dependent. This can be circumvented by introducing a free working shape parameter
ρ0 ∈ (0, 1) such that ρ = (ρ0(ν + 1)/ν)− 1 [5].

Appendix A.2. Peak Time and Size

This appendix gives the peak (time and size) related to the generic growth model [8]
and its limiting cases (Table A2).
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Table A2. Peak time (tp) and size (ϕ̇p = ϕ̇tp ) of the generic growth curve [8] and its limiting cases.

Model Peak Time (tp) Peak Size (ϕ̇p)

Generic τ + 1
νωρ

{[
1−νρ

ν(1+ρ)

]ρ
− 1
}

Ωω
[
ν

1+ρ
1−ρν

]1+ρ(
ν+1

1−ρν

)− ν+1
ν

BR (ρ→ 0) τ − log ν
ων Ωων(1 + ν)−

ν+1
ν

HG (ν→ 0, νω(1+ρ) → ω̃) τ +
(1+ρ)−ρ

ω̃ρ Ωω̃
[
(1 + ρ)e−1]1+ρ

Gompertz (ρ→ 0 in HG) τ Ωω̃e−1

Table notes: BR, Bertalanffy–Richards; HG, Hyper-Gompertz; up = ν(1 + ρ)/(1− ρν), tp is the root of ϕ̈t; the
expressions of ϕ̇t (growth rate) and ϕ̈t (growth acceleration) are given in Table A1.

Appendix B. Dynamics of Detected and Active Cases

Based on the the recovery rate αt and the death rate εt given in (11) and (12), at
the outbreak (t = 0), the recovery rate is α0 = 1/(1 + e−κ0) and the death rate is ε0 =
1/
(
1 + e−λ0

)
. Then, along the epidemic course, κ and λ determine the changes in the

log-odds ratio to have an outcome per unit time. Under constant removal rates assumption
(κ = λ = 0), solving the differential (10), gives the actives cases as (assuming that Cw is
differentiable for 0 < w < t)

Qt =

[
Q0 +

∫ t

0
Ċwe(α0+ε0)wdw

]
e−(α0+ε0)t. (A1)

Taking the expression of Ct in (1) into account yields for κ = λ = 0

Qt =

Q0e−(α0+ε0)t + δI0
ω0+α0+ε0

[
eω0t − e−(α0+ε0)t

]
if 0 < t ≤ te[

Qee(α0+ε0)te +
∫ t

te
ϕ̇re(α0+ε0)rdr

]
e−(α0+ε0)t if t > te

(A2)

where Qe = Qte is the number of active cases at the end of the exponential growth phase.
For the general situation where the rates αt and εt may be time dependent, the number of
active cases is given by (13) in accordance with (A1).

Appendix C. Overall Epidemic Dynamics

Appendix C.1. The SIQR Model

Hethcote et al. [22] showed in the case of a constant transmission rate (βt = β) that
the system can have an endemic equilibrium point. Furthermore, such endemic points may
be either locally asymptotically stable or subject to Hopf bifurcation depending on model
parameters, giving rise to unstable spiral and periodic solutions [22]. In the modeling
framework considered in this work, the long-term dynamics of a target disease is solely
determined by the ultimate epidemic size Ω (detected). Indeed, lim

t→∞
ϕt = Ω so that

lim
t→∞

ϕ̇t = 0 since Ω is finite and, therefore, lim
t→∞

It = 0 by (8). Consequently, the disease

always dies out in the long run and the system tends to the disease-free equilibrium P0. This
happens because the fraction of infectives in the population decreases to very near zero and
the fraction of quarantined (Q) decreases to zero (through recovery and death). Eventually,
over 100 or more years, the recovered people (R) slowly die off and the birth process slowly
increases the susceptibles (S), until everyone is susceptible at the disease-free equilibrium
P0 [55]. Note, however, that the SIQR model described by (16)–(19) together with (8) is meant
for a single epidemic wave, whereas it is possible to have successive epidemic waves or
even overlapping epidemic waves [1] which would be described by a mixture of many
SIQR models.
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From (18), the number Qt of known active cases before the outbreak, is given by

Qt = Qoe−(α0+ε0)(t+to) for − to ≤ t ≤ 0 (A3)

on assuming constant recovery (α0) and death (ε0) rates before the outbreak and on denoting
Qo the number of persistent cases from previous epidemic waves (e.g., Qo = 0 for a new
disease-related epidemic).

Appendix C.2. Susceptibles, Recovered, Total and Lost Cases

In addition to infectives (It) and actives (Qt) already available from the growth curve
Ct, the computation of the population size in (15) requires the expressions of the sizes of
the compartments of susceptibles (St) and immunes (Rt). Inserting Equation (20) into (16)
and replacing in light of (8) İt/It = ω0 for t ≤ 0 and İt/It = C̈t/Ċt for t > 0 yields

Ṡt =

{
η − (γ + π + ω0)I0eω0t − µSt if t ≤ 0

η − δ−1[(γ + δ + π)Ċt + C̈t
]
− µSt if t > 0

. (A4)

Therefore, the number of susceptible individuals is given for −to ≤ t ≤ 0 by

St =
η

µ
+

(
So −

η

µ

)
e−µ(to+t) − ω0 + γ + π

ω0 + µ
I0

(
eω0t − e−(ω0+µ)to−µt

)
(A5)

where So is the number of susceptibles at the beginning of the epidemic, obtained from (15)
with t = −to (Io = 1) as

So = No −Qo − Ro − 1 (A6)

where No is the initial population size (i.e., at t = −to) and Ko is the number of known
immune individuals at the beginning of the target epidemic (recovered from past outbreaks
if any). The number of susceptibles after the outbreak (t > 0) is

St =


η
µ +

(
S0 − η

µ

)
e−µt − ω0+γ+δ+π

ω0+µ I0
(
eω0t − e−µt) if 0 < t ≤ te

η
µ +

(
Se − η

µ

)
eµ(te−t) −

{∫ t
te

[
1 + δ−1(γ + π + zr)

]
ϕ̇reµrdr

}
e−µt if t > te

(A7)

where S0 is the number of susceptibles at the outbreak (t = 0) and is available from (A5),
Se = Ste is the number of susceptibles at the end of the exponential growth phase and
zt = ϕ̈t/ϕ̇t is the ratio of the growth acceleration ϕ̈t to the growth rate ϕ̇t (Table 2).

From the transfer diagram in Figure 1, the total number of individuals who were
infected and then recovered, and are alive can be decomposed as

Rt = Kt + Ut (A8)

where Kt is the number of individuals who were tested positive, were isolated and then
recovered (known) and Ut is the number of individuals who contracted the infection but
were not detected and have recovered (unknown). Equation (19) is then equivalent to
the system

K̇t = αtQt − µKt (A9)

U̇t = γIt − µUt. (A10)

From (A9), the number of known recovered individuals Kt is given for −to ≤ t ≤ 0 by

Kt =

{
[Ko + α0Qo(to + t)]e−µ(to+t) if µ = α0 + ε0

Koe−µ(to+t) + α0Qo
µ−(α0+ε0)

[
e−(α0+ε0)(to+t) − e−µ(to+t)

]
if µ 6= α0 + ε0

. (A11)
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After the outbreak, Kt is given by

Kt =


[
K0 +

∫ t
0 αrQreµrdr

]
e−µt if 0 < t ≤ te[

Keeµte +
∫ t

te
αrQreµrdr

]
e−µt if t > te

(A12)

where K0 (available from (A11)) is the number of known recovered individuals before the
considered outbreak (recovered from past outbreaks if any) and Ke = Kte is the number of
known recovered individuals at the end of the exponential growth phase. From (A10), the
number of unknown recovered individuals is

Ut =


γ

ω0+µ I0

[
eω0t − e−(ω0+µ)to−µt

]
if − to ≤ t ≤ te[

Ueeµte + γδ−1
∫ t

te
ϕ̇reµrdr

]
e−µt if t > te

(A13)

where Ue = Ute is the number of undetected and recovered cases at the end of the expo-
nential growth phase.

The total number of persons infected during an epidemic wave is indicative of the
overall cost of the epidemic in terms of its overall impact on the society (in regard to,
e.g., health, work and communication). The total number of new infections denoted Ṫt is
given by

Ṫt = (γ + δt + π)It + İt. (A14)

The total number of cases is thus given by

Tt =


1 + ω0+γ+π

ω0

(
I0eω0t − 1

)
if − to ≤ t ≤ 0

T0 +
ω0+γ+δ+π

ω0
I0
(
eω0t − 1

)
if 0 < t ≤ te

Te + δ−1[(γ + δ + π)(ϕt − ϕe) + ϕ̇t − ϕ̇e] if t > te

(A15)

where Te = Tte , ϕe = ϕte and ϕ̇e = ϕ̇te . The increase in lost cases is Λ̇t = (γ + π)It per unit
time so that the number of lost cases Λt is given by

Λt =

{
γ+π
ω0

(
I0eω0t − 1

)
if − to ≤ t ≤ te

Λe +
γ+π

δ (ϕt − ϕe) if t > te
. (A16)

with Λe = Λte . In particular, the number of lost cases during the entire epidemic latency
period is Λ0 = (γ + π)(I0 − 1)/ω0.

Appendix C.3. Epidemic Peak

The peak of new infections occurs when T̈t vanishes. We have from (A14)

T̈t = (γ + δt + π) İt + Ït. (A17)

During the exponential growth phase, both İt and Ït are increasing functions of time
so that the peak of new infections occurs after te, i.e., the peak time tnew satisfies tnew > te.
Hence, the peak time is the solution of

(γ + δ + π)ϕ̈t +
...
ϕt = 0 (A18)

which can be solved for t using a numerical root finding routine such as the R [24] function
uniroot or the Matlab [25] function fzero. Afterwards, the peak size Ṫnew (the maximum
number of new infections per unit time) is obtained by inserting tnew in (A14).
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Appendix C.4. Long-Term Epidemic Dynamics

The specification of the growth model in (1) to an epidemic implicitly assumes that
the number of infectives in (8) peaks at time tp and then tends to zero. The decay of
infectives after the peak can happen at various rates, depending on the growth pattern
(determined by contacts between infectives and susceptibles or intermediate hosts), the
response of infected individuals’s organism (natural or induced with medicine or a vaccine)
to the disease (recovery and death process) and the testing efforts (detection followed by
isolation). There are actually two alternative paths from a disease related state (i.e., It > 0)
toward the unique (disease-free) equilibrium P0: transmissions either stop (Rt reaches zero)
or continue for a long time at a rate which cannot sustain an epidemic (0 < Rt ≤ 1). We
discuss these two scenarios in this section. Because the behavior ofRt for t > te depends
on zt = ϕ̈t/ϕ̇t (see (24)), we make use of the minimum of zt (over t > te) and the limit
lim
t→∞

zt given in Table A3 for the general and limiting expressions of zt.

Table A3. Minimum point (tzmin = arg
t>te

min{zt}), minimum value zmin = min
t>te
{zt} and limit zlim =

lim
t→∞

zt of the ratio zt = ϕ̈t/ϕ̇t of the growth acceleration ϕ̈t to the growth rate ϕ̇t of the generic

growth curve (ϕt) [8] and its limiting cases

Model tzmin zmin zlim

Generic τ + 1
νωρ

(
u−ρ

z − 1
)

νωuρ
z

(
ν+1

ν
uz

1+uz
− (1 + ρ)

)
0

BR (ρ→ 0) ∞ −νω −νω

HG (ν→ 0, νω(1+ρ) → ω̃) τ + ω̃−1ρ−(1+ρ) −ω̃ρρ 0

Gompertz (ρ→ 0 in HG) ∞ −ω̃ −ω̃

Table notes: BR, Bertalanffy–Richards; HG, Hyper-Gompertz; ϕt is as defined in (2) and zt is available from
Table A1, uz = (

√
1− ρ0 − 1)/

√
1− ρ0 with ρ0 = ν(ρ + 1)/(ν + 1).

Appendix C.4.1. Straight End of Transmissions

The transmission of a target disease ends when the transmission rate βt and accord-
ingly the number of new infections (Ṫt) drops to zero at a finite time point which is the
solution to the equation

zt + (γ + δ + π) = 0. (A19)

Actually, because the transmission rate per capita per unit time βt(St + Rt)/(Nt −Qt)
is a non-negative quantity, (20) implicitly assumes that İt/It ≥ −(γ + δt + π). This
condition holds for t ≤ te since İt/It = ω0 > 0. For the sub-exponential growth phase
(t > te), the assumption is equivalent to

zt + (γ + δ + π) ≥ 0. (A20)

The importance of the inequality in (A20) becomes more apparent when considering
the reproduction number given in (24): the restriction ensures that Rt ≥ 0. Therefore,
if (A19) has a solution tz ∈ (tnew, ∞), then the transmission of the infection (from the
infectives already present in the population to the susceptibles) ends at t = tz andRt = 0
for t ≥ tz. The existence of a solution tz of (A19) can be checked by comparing the minimum
value zmin of zt (Table A3) to the total rate (γ + δ + π) of removals from It. Indeed, if we
have zmin = −(γ + δ + π), then tz = tmin. Furthermore, if zmin < −(γ + δ + π), there
exists a solution tz ∈ (tnew, tmin) which can be found using a numerical routine. In either of
these two cases, the number of susceptibles afterwards stays at Sz = Stz and the number of
infectives follows an exponential decay as

It = Iz e−(γ+δ+π)(t−tz) for t > tz (A21)
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where Iz = Itz is given by (8). The number of new detected cases is Ċt = δIt as before, but
the number of known active cases becomes

Qt =

[
QzFz + δIz

∫ t

tz
e−(γ+δ+π)(r−t)Frdr

]
F−1

t . (A22)

where Qz = Qtz is given by (13) and Fz = Ftz is given by (14). Whereas the number Kt
of known immunes has the same expression given in (A12) with Qt given by (A22), the
number Ut of unknown immunes becomes

Ut = Uz e−µ(t−tz) − γIz

γ + δ + π − µ

[
e−(γ+δ+π)(t−tz) − e−µ(t−tz)

]
(A23)

where Uz = Utz is given by (A13). From (A21), the number of infectives falls to 1 at time

t f = tz +
log Iz

γ + δ + π
. (A24)

Finally, since the removal rate of infectives is γ + δ + π per unit time, the probability
that the number of infectives drops to zero at a time tend = t f + r with r a non-negative
integer is (γ + δ + π)(1− γ− δ− π)r. Under this scenario, the system (16)–(19) will tend
to the disease free equilibrium P0 at which the size of the population stabilizes at N∗ = η/µ.

Appendix C.4.2. Asymptotic End of Transmissions

When the shape of the curve of infectives has growth parameters such that zt =
ϕ̈t/ϕ̇t > −(γ + δ + π) for t > te, the transmission of the disease does not stop straightly,
but continues at a low rate. Indeed, under this scenario, inserting the limit lim

t→∞
It = 0 in

(24) yields

R∞ = lim
t→∞
Rt =

(
1 +

zlim
γ + δ + π

)
(A25)

where zlim = lim
t→∞

zt ≤ 0 is available in Table A3 (note that zlim = −νω when ρ → 0

and zlim = 0 otherwise). Therefore, R∞ ≤ 1 and the population asymptotically tends
to the disease-free equilibrium P0 [22]. However, if zlim > −(γ + δ + π), then we also
have R∞ > 0. For instance, under the simple logistic growth model (ν = 1, ρ → 0), zt
decreases and tends to −ω as t → ∞ (Table A3) and R∞ = 1− ω/(γ + δ + π) which
satisfies 0 < R∞ < 1 (from ω < γ + δ + π). In general, when ρ 6= 0, the shape of ϕt may
allow zt to properly decrease for t > te and become negative from t > tnew so thatRt < 1.
However, when zt reaches its limit zlim > −(γ + δ + π), it bounces and tends to 0 (Table A3)
so that R∞ = 1.

The limit (A25) shows that, when Rt does not sharply reach zero but ρ → 0, the
asymptotic reproduction number depends on rate parameters (γ, δ and π) that can be
controlled to hasten the disease to die out. In the situation, where ρ 6= 0, R∞ is independent
of model parameters, so that the long run dynamics is less likely to respond to changes in
the rate parameters.

Appendix D. Goodness-of-fit and Model Selection

We define the likelihood `s of the saturated model by replacing Ċt in (26) by the
observed values Yt, αt in (27) by the observed daily recovery probabilities Gt/(Qt−1 + Yt)
and εt in (28) by the observed daily death probabilities Mt/(Qt−1 + Yt). Similarly, we
define the likelihood `n of the null model by replacing each Ċt by the daily mean count
Y = n−1 ∑n

t=1 Yt, each αt by the overall daily recovery probability ᾱ (obtained assuming
κ = 0) and each εt by the overall daily death probability ε̄ (obtained assuming λ = 0). The
residual deviance of the maximum likelihood fit is then given by DEVres = 2

(
`s − `(θ̂)

)
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and the null deviance of the null model fit is given by DEVnull = 2(`s − `n). The quantity
DEVres is a statistic to test the null hypothesis H0: the assumed model is not significantly
different from the unknown model that generated the data. If H0 is true, then the large
sample distribution (i.e., as n→ ∞) of DEVres is the χ2

k distribution with k = n−m degrees
of freedom where m = 12 is the number of individual model parameters in θ [56]. If the
overall goodness of fit test based on DEVres rejects H0, then the corresponding statistics
(residual deviances) can be computed for the three sub-models (i.e., considering the log-
likelihoods in (29)–(32)) to identify the sub-models lacking goodness-of-fit. The percentage
of information explained by the maximum likelihood fit for the cumulative data can be
evaluated using the common adjusted-coefficient of determination

r2
a = 1−

(
1− r2

) n− 1
n−mY

(A26)

where r = cor(Ct, Y.t) is the Pearson’s correlation coefficient between Ct and Y.t = ∑t
j=1Yj,

and mY is the number of individual model parameters in θY. The explanative power of the
overall fit can be assessed via the adjusted-deviance reduction ratio [57]

r2
dev = 1− DEVres

DEVnull

n− 1
n−m

. (A27)

Let H(θ) be the hessian matrix of ` and define the asymptotic covariance matrix
Σ(θ) = −[H(θ)]−1. In a large sample, the covariance matrix of the maximum likelihood
estimate θ̂ is estimated by Σ̂ = Σ

(
θ̂
)

and square roots of the diagonal elements of Σ̂ provide
standard errors for individual parameters in θ. For the selection of the parsimonious model
agreeing with the observed data, the likelihood ratio statistic can be used. To test a
null hypothesis H0 against an alternative H1 with q > 0 restrictions fewer than H0, the
likelihood ratio (LR) statistic is given by [27]

LR = 2
[
`(θ̂(1))− `(θ̂(0))

]
(A28)

where θ̂(0) is the estimate under H0 and θ̂(1) is the estimate under H1. If the null hypothesis
H0 is true, the test statistic LR converges in distribution to the χ2

(q) distribution with q
degrees of freedom as n → ∞ [39]. There are however distinct special cases of model (2)
leading to the same number of parameters (m). For example, we have the Bertalanffy–
Richards (m = 7), hyper-logistic (m = 7) and hyper-Gompertz (m = 7). We also have the
Gompertz (m = 6) and logistic (m = 6). In these situations, q = 0 and the likelihood ratio test
cannot be used. Thereafter, we suggest to consider information criteria such as the Akaike’s
Information Criterion (AIC) (the lower, the better): AIC = −2`(θ̂) + 2m [40].
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