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Simple Summary: A modified SIR model was applied to provide COVID-19 pandemic analysis and
predictions for Gulf Cooperation Council countries, as well as representative countries in Europe and
New York City. We estimated reported, infected, and unreported cases from cumulative reported
cases and simulated data. We also estimated the basic reproduction rates at different phases of
the pandemic. Outputs show that the modified SIR model fits very well with the outcome of the
COVID-19 pandemic for the studied countries and could be generalized to other countries. The
model prediction emphasizes the value of significant interventions in public health in regulating the
epidemic taking into account that a constant fraction of the infected cases remain unreported during
the pandemic. We report and analyze the effectiveness of preventive/intervention measures applied
to the overall community to curb the severity of the pandemic. Our model could be used to support
public health authorities with respect to post-outbreak reopening decisions, highlighting effective
measures that need to be maintained, eased, or implemented to support safe reopening strategies in
the GCC countries.

Abstract: Epidemiological Modeling supports the evaluation of various disease management ac-
tivities. The value of epidemiological models lies in their ability to study various scenarios and to
provide governments with a priori knowledge of the consequence of disease incursions and the
impact of preventive strategies. A prevalent method of modeling the spread of pandemics is to
categorize individuals in the population as belonging to one of several distinct compartments, which
represents their health status with regard to the pandemic. In this work, a modified SIR epidemic
model is proposed and analyzed with respect to the identification of its parameters and initial values
based on stated or recorded case data from public health sources to estimate the unreported cases
and the effectiveness of public health policies such as social distancing in slowing the spread of
the epidemic. The analysis aims to highlight the importance of unreported cases for correcting the
underestimated basic reproduction number. In many epidemic outbreaks, the number of reported
infections is likely much lower than the actual number of infections which can be calculated from
the model’s parameters derived from reported case data. The analysis is applied to the COVID-19
pandemic for several countries in the Gulf region and Europe.

Keywords: coronavirus; COVID-19; reproduction number; transmission rate; reported and unre-
ported cases; interventions; SIR model
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1. Introduction

The first known COVID-19 case was reported by officials in Wuhan City, China, on
31 December 2019. Following that date, the number of confirmed infectious cases was on
the rise. Consequently, on 11 March 2020, the World Health Organization (WHO) declared
the COVID-19 outbreak to be a pandemic [1]. The recorded cases of COVID-19 have
increased exponentially worldwide since then, reaching more than 100 million confirmed
cases in 191 countries and more than two million deaths globally. As of 23 January 2021, the
outbreak has had an effect on 7,119,570 people in the Middle East, and 1,181,199 confirmed
cases have been reported in the Gulf Cooperation Council (GCC) countries according to
the Worldometers website www.worldometers.info/coronavirus/ (accessed on 1 April
2020). A national emergency was declared for the Coronavirus outbreak in Qatar at the
beginning of March 2020 [2], and by 23 January 2021, the number of cases reported in
Qatar had already reached 148,772 cases. Following the announcement of COVID-19 as a
pandemic, most of the Gulf countries scaled up their responses and put in place rigorous
controls [3]; the declaration of a pandemic generally leads to governments spending more
on preventive measures and funding for vaccination programs.

Given the gravity of the situation resulting from the COVID-19 pandemic, a fundamen-
tal and yet critical question remains unanswered: how many people are currently infected
with COVID-19 in the GCC countries and what is the actual value of the basic reproduction
number? During the first few months of the outbreak, only a sub-sample of individuals
with significant symptoms or travel history could be assessed by hospitals and disease
control centers because of the shortage in testing kits; the number of recorded infections
is probably much lower than the actual number of infections, particularly early in the
course of the pandemic [3–6]. These unreported infections can, indeed, remain unnoticed,
since they often have mild or no symptoms, which can be confused with seasonal flu, for
example. If not hospitalized or quarantined, unreported COVID-19 carriers could infect a
large proportion of the population, posing genuine difficulties for contact tracing measures
and the pandemic’s overall containment. Accordingly, in order to determine the efficacy
of preventive measures such as quarantine and social distancing, calculating the number
of unreported infections will serve to notify policymakers about the correct scale of virus
control policies, school closing, mask-wearing, etc., in slowing down the spread of the
epidemic [7,8].

Ideally, a randomized testing experiment would offer an impartial estimation of the
infection fatality rate. However, given the limited availability of test kits and the rising
demand among people with symptoms, randomized testing, especially in the early periods
of the outbreak, may not be feasible. Therefore, it may be of great benefit to estimate and to
be able to measure the fraction of unreported infections with observational data on hand.
Policymakers will be better prepared to enforce the required degree and duration of virus
control policies with this information.

The estimation of results based on model analysis for GCC countries reveals that the
basic reproduction number may be as high as 8.9 (95% CI 1.71–8.98) [9]. Sensitivity analysis
reveals that the strict controls put in place can effectively decrease the basic reproduction
number and the risk of contagiousness, with the impact of travel restrictions on COVID-
19 infection in Qatar being almost equal to raising the baseline value of quarantine by
100 thousand baseline value.

As a result, it is critical at this point to accurately assess the reported and unreported
infected cases, as this is critical in estimating the basic reproduction number correctly. This
would also assist the GCC countries in general, and the Qatari authorities in particular, in
evaluating the economic and societal consequences of implementing resource-intensive
preventive measures such as the closure of borders, critical businesses, and educational
institutions, quarantine, social distancing, the mandatory wearing of protective masks, and
upgrading medical tools and equipment. All the above measures have been proven to be
efficient for the prevention and the control of the COVID-19 infection, but come with a
sizable economic and societal burden, making it essential to continuously evaluate how

www.worldometers.info/coronavirus/
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long these measures should be maintained to lower the infection rate and to prevent the
collapse of the country’s health care system.

2. Materials and Methods

Typically, reported cases represent a subset of the total number of infected cases, as
sometimes only the most severe cases of symptoms are reported. On the basis of Liu et al.
(2020) [6,10], our approach is based on the knowledge of the data of new reported cases
(typically weekly) over the time course of the pandemic.

The model used here is based on the conventional SIR model, which is an Ordinary
Differential Equations (ODE) of the basic SIR model and is a commonly used deterministic
model that describes the movement of people through three mutually exclusive phases: S
(susceptible), I (infected) and R (recovered).

Classical disease modeling actually uses the continuous differential method, as follows:
∂S(t)

∂t = −τS(t)I(t)
∂I(t)

∂t = τS(t)I(t)− νI(t)
∂R(t)

∂t = νI(t)

(1)

where the population sizes of S, I, and R individuals change between the times t and t + dt.
We consider the evolution of the virus over a period of time; t0 ≤ t ≤ t1. In the

early stages of the epidemic, we consider a relatively short period of time. Thus, during
this period, the “recovered” population at the epicenter, which is a small fraction of the
population, is believed to not play a significant role. The parameter τ > 0 corresponds
to the disease transmission rate, and the parameter ν > 0 corresponds to the removal
rate of infected individuals. Typical initial conditions of the model are S(0) = S0> 0 and
I(0) = I0 > 0 [11].

Initially, the WHO estimated the basic reproduction number for COVID-19, gobally,
to be between 1.4 and 2.5. Moreover, several articles aimed to more precisely estimate the
value of R0 for COVID-19; see [12–20] (Table 1).

Table 1. The value of R0 for selected countries.

Countries R0 Reference

Iran 2.30 [12]
South Korea 2.60 [13]

Singapore 1.54 [14]
Japan 2.20 [19]
Israel 1.26 [15]

Algeria 2.55 [16]
USA 4.02 [17]

Brazil 2.81 [18]
China 6.6 [20]

2.1. Parameters of the Model

Our model uses a compartment for unstated or unreported cases, which is very impor-
tant when modeling several pandemics. Recent studies have shown that it is important to
estimate this number. Saxa et al., 2020 [21] showed that only 2.4% of the cases in India were
being reported (i.e., an understatement factor of about 42). Wu et al., 2020 [22] reported that
the actual number of infections was estimated to be 3 to 20 times higher than the confirmed
cases for various states of the United States of America. Lu et al., 2020 [23] showed that
there were drastic cases of underreporting in many countries worldwide.

Therefore, for policymakers to effectively develop strategies for resource distribution,
intervention implementation, and promotion of public awareness, accurate predictions of
the magnitude and the development of an epidemic are needed.
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To develop adequate and valuable modeling, we adapted simple and complementary
SIR differential models, which were originally proposed by Bernoulli [24], and adapted by
Liu et al., 2020 [6,7]. Most pandemics follow a non-Markovian mechanism, which means
that the past states of dynamical systems lead to the current states, which is referred to
as “memory” [25]. However, previous knowledge of the prevalence of an outbreak and
precautions are not always available or disseminated, and thus people prefer to adopt
new approaches to address the disease [26–29]. Here, instead of using continuous time
evolution differential equations, we focused on a time-discrete Markovian process, using
the widely applied assumption that days are a natural unit of measurement [30]. This was
described using a Markov epidemic process, in which the state of individuals at each time
step does not depend on the previous steps. Hence, the model can be described as follows:

∂S(t)
∂t = −τS(t)[I(t) + U(t)]

∂I(t)
∂t = τS(t)[I(t) + U(t)]− νI(t)

∂R(t)
∂t = ν1 I(t)− ηR(t)

∂U(t)
∂t = ν2 I(t)− ηU(t)

Based on the reported cases R, this approach recaptures the number of unreported
cases U that were not accounted for as a result of factors such as their being asymptomatic
or mild cases, unreported contamination, or the mobility of infected individuals (especially
at the beginning of the pandemic outbreak) in the GCC. We complemented this with the
model of Demongeot et al. [31], which accounts for the birth/death rate since the onset
of the pandemic in late winter 2019, and which has continued to surge, with a second
wave hitting northern hemisphere countries in fall 2020/winter 2021. The natural death
rate was parameterized with µ , and the number of births per unit time was parametrized
with Λ. Combining [7] and [31] helped us check whether the number of unreported cases
influenced the severity of the pandemic, and to what extent public health measures such as
quarantine contribute to containing the pandemic. The modified model can be described
as follows: 

∂S(t)
∂t = −τS(t)[I(t) + U(t)]− µS + Λ

∂I(t)
∂t = τS(t)[I(t) + U(t)]− (ν1 + ν2 + µ)I(t)

∂R(t)
∂t = ν1 I(t)− ηR(t)

∂U(t)
∂t = ν2 I(t)− ηU(t)

∂N(t)
∂t = Λ− (1− α)νI − µN

(2)

where N = S + I + R + U [11], with a contact rate of mass action, a constant number of births
Λ per unit time, a proportional natural death rate µ in each class, and a rate of recovery or
disease death ν of infectives recovering with acquired immunity from reinfection with a
fraction α of infectives.

We examine the first four equations in order to determine S, I, R, and U, and then
consider the fifth equation in order to determine N once S and I are known. This is possible
because N is not a parameter in the first four equations.

The quantity denoted as R0 represents the basic reproduction number, also called
the basic reproduction ratio or rate (Figure 1) [32]. It is an epidemiological metric used
to describe the contagiousness or transmissibility of the virus, i.e., the average number
of secondary infections produced by each infected person. It depends on the specific
disease (parameter determination ν) and the rate of contacts, as will be described below,
depending on the population density in the group being studied [33,34]. The model of
illness exhibits a threshold activity: if the basic reproduction number is lower than one,
there will be a decline in the number of cases; if R0 = 1, the disease is endemic; but if the
basic reproduction number is greater than one, the disease will become a pandemic.

Our contribution consists of the development of a modified SIR model that uses
reported case data, both asymptomatic and symptomatic, to model the transmission
dynamics of the COVID-19 pandemic for some GCC countries, as well as for some repre-
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sentative countries in Europe, along with New York City, taking into consideration the rate
of unreported cases and the importance of its estimation in affecting the actual spread of the
virus and the level of measures that have been taken to face it. In this context, we estimated
the basic reproduction rates R0 and Re. The objective of the analysis was to identify the
early phases of epidemics, to predict subsequent phases and the shape of their evolution,
while incorporating unreported cases into the transmission dynamics. Our contribution
also aims to highlight the effectiveness of the implementation of major public policies that
restrict social movement with the aim of achieving a time-dependent exponential decrease
in the number of cases, supporting safe reopening strategies in the GCC countries.
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The observed data consist of the cumulative reported cases at time t, denoted by
C(t), which corresponds to the total number of reported infectious cases up until time t.
We assume that these cumulative cases recorded at time t consist of a constant fraction
over time of the total number of infected cases up to time t in order to handle these data.
Furthermore, we assume that the removal rate ν is the sum of the recovery numbers of the
reported and unreported cases, following the form ν = ν1 + ν2, where ν1 is the removal
rate of reported infected individuals and ν2 is the removal rate of infected individuals due
to all other causes, such as mortality, recovery or other reasons (Figure 2).
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To the best of our knowledge, there have been a limited number of articles published
on the prediction and the calculation of the basic reproduction number R0 in the context
of the COVID-19 pandemic in the Middle East, and particularly in the GCC countries,
especially with the inclusion of the unreported cases parameter in SIR. Rahman et al.
(2020) [35] used a classic SIR model with least-square error, and reported the R0 values
for Kuwait, Bahrain, Qatar, Saudi Arabia, United Arab Emirates (UAE) and Oman to
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be 2.71, 3.39, 4.18, 4.45, 2.75, 2.60, respectively. Al-Shammari et al. (2020) [36] used a
dynamic transmission SEIR model for Kuwait that was informed by two local mechanisms:
a delay period during which suspected COVID-19 individuals are tested, identified, and
hospitalized; and different severities of illness. They calibrated the model with a maximum
likelihood framework and produced an R0 ranging between 1.5 and 3.5.

On the other hand, Al Wahaibi et al. (2020) [37] proposed a probabilistic model for
modeling dynamic Rt in Oman. They fitted a Gamma distribution to the susceptible cases
and used a Poisson likelihood estimation to capture the transmission of the infection.
Their estimated Rt ranged between 0.9 and 4.65, depending on the non-pharmaceutical
intervention period between February and June. Billah et al. (2020) [38] used a meta-
analysis model and estimated the R0 to be 2.87.

Moreover, the GCC population has a combination of unique characteristics when
compared to countries from the northern hemisphere, such as high fertility (birth), a young
population, and the high prevalence of diseases such as diabetes. Advanced numbers
estimation based on model analysis without considering unreported cases for countries in
the Middle East reveals that the basic reproduction number may be as high as 8.9 (95% CI
1.71–8.98) (see [39]).

The first stage of the analysis is to note that Model (2) presents a properly posed
problem. This is a model in dimensionless time t. It this way, ν becomes a dimensionless
parameter. Since I(t) is integrable on [0, ∞), I(∞) = 0.

That is, since ∂S/∂t ≥ 0 if S = 0 and ∂I/∂t ≥ 0 if I = 0, we have S ≥ 0, I ≥ 0, for t ≥ 0.
Thus, the solution always remains in the biologically realistic region S ≥ 0, I ≥ 0. Using
parameters related to baseline calculation such as S0, the number of people susceptible in
the population before the epidemic outbreak, which can be approximated here on the basis
of the total population size, allows us to obtain accurate information about the values I0, τ
and ν, as well as the basic reproductive number of the epidemic R0. We note that these
infected-but-unreported individuals are able to spread the virus to susceptible individuals,
in contrast to the infected-and-reported individuals, who are isolated in quarantine.

Table 2 summarizes the parameters of the SIR model used in this paper. We modeled
the epidemic in several countries in the Gulf region, and added France, Italy and New York
for comparison purposes using data from https://www.worldometers.info/coronavirus/
Worldometers for Covid-19 (accessed on 1 April 2020).

Table 2. Parameters of the model using the added compartment summarizing the reported and
unreported rate.

Symbol Interpretation

t0 Time at which the epidemic started
S0 Number of susceptible at time
I0 Number of asymptomatic infectious at time

U0 Number of unreported symptomatic infectious at time
1/ν Average time during which asymptomatic are asymptomatic

f Fraction of asymptomatic that become reported symptomatic
ν1 = f ν Rate at which asymptomatic become reported symptomatic

µ Natural death rate
Λ Number of births per unit time
α Fraction of infectives recovering with immunity against reinfection

ν2 = ν− ν1 Rate at which asymptomatic become unreported symptomatic
1/η Average time symptomatic infectious have symptoms

2.2. Fitting the Model to the Data

To fit the model, here we use data from cumulative reported cases to determine the
total number of cases S(0)–S∞ over the course of the epidemic, as well as the parameters
τ, ν1, and ν2. The cumulative number of both reported and unreported cases at time
t is C(t) =S0 + I0 − S(t), and the cumulative number of unreported cases at time t is

https://www.worldometers.info/coronavirus/Worldometers
https://www.worldometers.info/coronavirus/Worldometers
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Cu(t) = C(t)− CR(t), where CR(t) is the cumulative number of reported cases. On the
other hand, we assume that C(t) has an exponential behavior C(t) = χ1exp(χ2t) + χ3.

We fix S0, which corresponds to the total population of a given country (for example,
for the state of Qatar, S0 = 2, 881, 053). We assume that the value of S(t) varies insignificantly
during the period considered, and we fix ν, η, f , Λ, α and µ. We estimate the parameters
ν1, ν2, τ and the initial conditions U0 and I0 on the basis of the cumulative reported cases
C(t) (see Appendices A.1 and A.2). Subsequently, we constructed numerical simulations
using Model (2), for comparison with the observed data.

In the following section, we estimate the parameters χ1, χ2, χ3 and t0 using the
cumulative reported symptomatic infectious cases. We carefully chose an interval that fits
well the exponential curve, as seen in Table 3 for the case of Qatar.

Table 3. Cumulative reported case data between the 2nd and 8th of May 2020, reported for Qatar
by Worldometers a.

Cumulative 2nd 3rd 4rd 5th 6th 7th 8th

Reported cases 14,872 15,551 16,191 17,142 17,972 18,020 18,321
Predicted cases 15,138 16,524 17,027 19,658 19,427 19,701 19,890

a Worldometers manually analyzes, validates, and aggregates data from thousands of sources in real time and
provides global COVID-19 live statistics for a wide audience of caring people around the world. Data is also
trusted and used by the UK Government, Johns Hopkins CSSE, The Financial Times, The New York Times,
Business Insider, BBC, and many others.

2.3. Self Starting Function for the Cumulative Function

Applying a log transformation to estimate the three parameters requires a special
treatment for χ3. In other words, we cannot convert our cumulative reported exponential
function to the least-square log transformation, since we have an error χ3 that we need
to estimate. In previous studies, an a priori constant has to be chosen, and not estimated,
for χ3 [10]; then, a fitted least-square log transformation was applied to the cumulative
data. In this paper, we estimate the parameters directly using the self-starting functions
proposed [40]. In practice, we directly fit the nonlinear exponential cumulative function
using basicTrendline with functions Nls and SSexp3P (R-project/basicTrendline). The eval-
uation of χ1, χ2, χ3 (Table 4) using the cumulative reported symptomatic-and-infectious
cases and the direct fit of the exponential curve is summarized in Table 4 and shown in
Figure 3 and Figures S1 and S2, in the Supplementary Information (SI) for Qatar.
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Table 4. Estimation of the parameters χ1, χ2, χ3, t0 and τ for Qatar using the cumulative reported
cases. Λ is per 1000 people.

χ1 χ2 χ3 t0 τ Λ µ

215.08 0.08 145.48 −4.88 7.1 × 10−8 9.40 1.20%

We verified that the data for Qatar, KSA, Kuwait, New York and Italy fit the model (2)
very well on the basis of the results. However, the data for Bahrain, UAE and Oman fit the
model appropriately.

The algorithm for determining the initial conditions S0, I0 and the parameters τ, ν1,
ν2 on the basis of the reported case data is as follows:

Step 1: Since f and ν are fixed, we know that ν1 = f ν and ν2 = (1− f )ν.
Step 2: Knowing χ1, χ2 and χ3, we calculate the starting point of the pandemic

t0 = 1
χ2
(ln(χ3)− ln(χ1)).

Using C(t) = ν1

t∫
0

I(h)dh and I(t) = I0exp(χ2(t− to)), we compute the other parame-

ters using [6–11,35,41]:

I0 =
χ1χ2exp(χ2t0)

f ν
=

χ3χ2

f ν
(3)

τ =
χ2 + ν

S0

η + χ2

ν2 + η + χ2
(4)

U0 =
ν2

η + χ2
I0 =

(1− f )ν
η + χ2

I0 (5)

Step 3:

R0 =
τS0

ν + µ

(
1 +

ν2

η

)
(6)

=
χ2 + ν + µ

ν + µ

η + χ2

(1− f )(ν + µ) + η + χ2

(
1 +

(1− f )(ν + µ)

η

)
(7)

See Appendix A.1 for more details. Please note that there are two unknown parameters,
U0 and υ2, which are deduced from cumulative number of reported cases. Using [42], we
can show that this problem has a solution, as explained in Appendix A.2. Moreover, on
the basis of [43] (Lemma 1) and [44], it is known that this problem has a unique and
non-negative solutions.

3. Results

The parameters τ,η and ν, and the initial conditions S(t0), I(t0), and U(t0), usually
remain unrevealed even for influenza disease outbreaks. Meanwhile, here, we focus on
their assessment on the basis of the reported symptomatic-and-infectious cases.

We assume that 1/ν can be between one day and seven days. This is the average time
during which infected cases are asymptomatic. In addition, we set 1/η as between one
day and seven days, for the average time during which an infected case is symptomatic.
Finally, we identified them, assuming that between 80% and 100% of infectious cases were
reported. Accordingly, the f value was set between 0.8 and 1. Thus, we fixed f, η, ν, α, µ
and Λ. Using Equation (7) for the basic reproduction number, we obtained from the data
an estimation of the basic reproduction number R0 = 2.42 and an average R0 in the GCC,
which was 2.20 ± 0.123.

Since f, η, µ, α and Λ are assumed to be known, we can compute the transmis-
sion rate on the basis of Equation (4), as shown in Table 4. For example, for Qatar
τ = 7.1× 10−8, I0 = 10.1, U0 = 1.3 and R0 = 2.42. The average transmission rate for
GCC was [3.55 ± 3.53]× 10−8.

We also plotted the graphs of t→ C(t) (solid black line), t→ U(t) (blue dotted), and
t→ R(t) (red dotted) for Qatar (Figure 4). The turning point was defined as the time at
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which the red curve reached its maximum value (i.e., the curve of the unaccumulated
recorded infectious cases) of between 1500 and 2000 (as shown in Figure 4) and that the
turning point was day 109, which was 5 July. The turning point for the UAE was day
100, which corresponds to June 1st, since the UAE was the first country in the Middle
East to report a confirmed case of COVID-19 (see Figures S3 and S4 in the Supplementary
Information SI).
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Figure 4. Simulated epidemiological curve without intervention. In this figure, we use f = 0.8,
ν = 1/7, η = 1/7, and S0 = 2.881 × 106. The number of confirmed cumulative cases t→ C(t) (black
solid line) and t→ U(t) is the unreported cases (blue dashed) and (red dashed) of the reported cases
in Qatar. We use χ1 = 215.08, χ2 = 0.08, χ3 = 145.48, t0 = −4.88 and S0 = 2.881 × 106, which give
τ = 7.1 × 10−8, I0 = 10.1, U0 = 1.3 and R0 = 2.42.

Interestingly, although there are different kinetics as per the fitted parameters (Table 5),
the fraction of unreported cases was similar among the examined countries/city. This
assessment supports the notion that transmission rate reduction is more effective than the
disclosure of unreported cases. Subsequently, Figures 5 and 6 show the dynamics of the
pandemic with several interventions. For example, the number of reported cases drops by
103 if we use a 14% intervention (with the transmission rate decreasing from 7.1 to 6.1 at the
10−8 scale) (Figure 5), and that a moderate measure of intervention significantly mitigates
the final scale of the epidemic (Figure 6).

Table 5. Summary table of t0, τ, I0, U0 and R0 for several countries. For example, t0 for Qatar is −5,
which means that the estimated starting day of the pandemic is 5 days earlier than the stated day,
which means that the estimated starting date of the pandemic is the 24 February 2020. The number of
asymptomatic infectious at time t0 is I0 = 10.1, and the number of unreported symptomatic infectious
at time t0 is U0 = 1.3. New York city was used for purposes of comparison, since it was the center of
the American COVID-19 outbreak.

Country t0 τ I0 U0 R0

Qatar −5 7.10 × 10−8 10.1 1.3 2.42
Saudi Arabia −1 0.58 × 10−8 26.4 3.3 2.45

UAE −1 7.60 × 10−8 12.4 1.8 2.19
Bahrain −20 10.4 × 10−8 09.8 1.5 2.19
Kuwait −22 3.74 × 10−8 11.0 1.4 2.37
Oman −7 3.39 × 10−8 14.9 2.2 2.20
France −6 0.38 × 10−8 09.2 0.9 2.84
Italy −7 0.42 × 10−8 17.1 7.3 2.80

New York −4 6.48 × 10−8 03.1 1.0 3.62
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Figure 6. Simulated epidemiological curve without intervention. In this figure, we use f = 0.8, ν = 1/7, η = 1/7, and
S0 = 2.881 × 106. The number of confirmed cumulative cases t→ C(t) (black line) and t→ U(t) the unreported cases (blue
line) and (red line) correspond to the reported cases in Qatar. We use χ1 = 215.08, χ2 = 0.08, χ3 = 145.48, t0 = −4.88 and
S0 = 2.881 × 106. The left side shows the curve without intervention, which gives τ = 7.1 × 10−8. The right side shows the
curve with a moderate intervention, which means τ = 7.1 × 10−8 for t ∈ [0, 150] and τ = 6.1 × 10−8 for t > 150.

R0 represents the average number of people infected by one infectious individual
when there is zero immunity in the population. While we recall the strict isolation steps
imposed for all of Qatar and the GCC countries in March 2020 [45], and we take into
consideration the number of unstated cases, the corrected estimate was between two and
three for Qatar. This assessment is much lower than the reported values. Let us consider
Re as the effective reproduction rate resulting from the inclusion of intervention. It is
crucial to estimate Re regularly to decide whether to ease off or to make the preventive
measures stricter. At the same time, we should account for the acquired immunity within
the population and the level of preventative measures being implemented to accurately
assess Re. Therefore, our proposed approach suggests that the number of unreported cases
would enable a better estimate of the effective reproduction rate (Re) and a good measure
for pandemic control. Thus, we re-evaluated the reproduction numbers while highlighting
the existence of unreported cases.

Figure 7a reports the number of new daily COVID-19 cases reported by Qatar’s
authorities during the pandemic between March and July 2020. It shows our estimates of
the Re for the state of Qatar. The early preventive measures, such as remote working and
schooling, social distancing, and park and beach closure, taken by the state at the beginning



Biology 2021, 10, 463 11 of 16

of the spread of the virus led to an Re of 1.90. This estimate is lower than the reported
R0 at the beginning of the pandemic. Starting from May, subsequent additional measures
were taken by Qatar, such as an obligation to wear a mask, which resulted in an Re of
approximately 1.25. Further reduction of Re may have been achieved by the mandatory
contact-tracing mobile application Ehteraz and limiting the number of passengers per
vehicle, effective as of 4 June 2020. The interventions implemented beginning in May began
to bear fruit, resulting in a peak of infection and an inflection point in early June, when
the number of reported cases began to progressively decline. These measures enabled
Qatar to start the safe reopening of business in July, and a progressive return to activity
throughout the planned phases of reopening while keeping the Re below one. We interpret
that this could be achieved by maintaining a constant the level of intervention through
mask-wearing and restricted access, in addition to imposing the use of the contact tracing
app along with other measures, such massive testing combined with both targeted and
random sampling.
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Figure 7. (a) A graph summarizing the real infection data with our estimated R0 and Re mapped onto phases of in-
tervention measures taken by state of Qatar. (b) Relative effectiveness comparisons. The relative effectiveness varies
as the effectiveness is quantified as (R0 − Re/R0). The early preventive measures (remote working + school closure
+ social distancing + park/beach closure) reduced Re by > 20%. In addition, the additional imposition of nation-wide
mask-wearing reduced it further by > 60%. Furthermore, a >81% reduction was attained with the mandatory introduction
of the GPS-Bluetooth-based contact-tracing application (Ehteraz) for all the residents on their smartphones.

For the Qatari population, when investigating the dynamics of non-pharmaceutical
intervention such as quarantine, social distancing, mask-wearing, and symptom monitoring
(using Ehteraz App, Doha, Qatar), we find that the effectiveness of symptom monitoring, in
addition to mask-wearing and quarantine, in controlling the disease is efficient for reducing
the effective reproduction number by 81%, while social distancing and quarantine alone
reduced the Re by 21%, and mask-wearing with the former intervention accounted for 62%
of the reduction (Figure 7b).

For the post-COVID-19 recovery of economies, we propose investing in additional
longer-term protection, such as the application of smart anti-viral and anti-bacterial coatings
for surfaces that are touched often [46]. This strategy would enable us to provide baseline
protection against viral mutation, seasonal flu, and bacterial infections that would greatly
help in avoiding overloading healthcare systems. This type of longer-term intervention
might play a role in various situations, especially with respect to upcoming major sporting
events that the country plans to host, such as the world cup in 2022.
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4. Conclusions

We applied a modified SIR model with comprehensive consideration of the identifica-
tion of model parameters using reported case data, both asymptomatic and symptomatic,
to model the transmission dynamics of the COVID-19 pandemic for some of the GCC
countries and some representative countries in Europe and New York City, taking into con-
sideration the rate of unreported cases and the importance of its estimation in affecting the
actual spread of the virus and the level of measures taken to face it. Thus, we estimated the
basic reproduction rates R0 and Re. The objective of the analysis was to identify the early
phases of the epidemics, and to predict the next phase and the shape of their evolution,
while incorporating unreported cases into the transmission dynamics. The model also aims
to highlight the effectiveness of the implementation of major public policies restricting
social movement result in a time-dependent exponentially decreasing number of cases to
support a safe reopening strategies in the GCC countries. The model can be generalized
for a wider range of countries.

Our epidemiological model supports the evaluation of COVID-19 management activi-
ties in the early pandemic period, mainly when most of the population is susceptible and
the public understanding of the symptoms is degrading. The value of this epidemiological
model analysis is its ability to view various aspects, providing the impact of unreported
cases. Furthermore, this model illustrates the results of preventive strategies more accu-
rately without a prior knowledge of the consequence of disease incursions. However, there
is a limitation in the analysis when using the data sourced from early in the COVID-19
pandemic. Although this study did not take into account the hosts who were immune to
COVID-19 either through infection or inoculation, the modified SIR model with a varying
number of susceptible hosts at a time can depict the influence in dynamic circumstances.
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right). Figure S3: Simulated reported versus unreported for KSA (top left), Oman (top right), Bahrain
(bottom left) and Kuwait (bottom right). Figure S4: Simulated reported versus unreported for Spain
(top left), France (top right), Italy (bottom left) and New York city (bottom right).
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Appendix A

Appendix A.1

Derivation of U0 and I0:
Using (2) we have ν

U(t) =
1

τS0
(I′(t) + (ν + µ)I(t))− I(t)

https://www.mdpi.com/article/10.3390/biology10060463/s1
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On the other hand, since we assume that C(t) has an exponential behavior
C(t) = χ1 exp (χ2t) + χ3

U(t) = 1
τS0

(I′(t) + (ν + µ)I(t))− I(t)
I(t) = I0 exp(χ2(t− t0))

t0 = 1
χ2
(log(χ3)− log(χ1))

(A1)

We have also {
I′(t) = τ0S0(I(t) + U(t))− (ν + µ)I(t)

U′(t) = ν2 I(t)− ηU(t)
(A2)

Using (A1) we have {
I′(t) = I0χ2 exp(χ2(t− t0))
U′(t) = U0exp(χ2(t− t0))

and
I′(t) = χ2 I0 exp(χ2(t− t0))

U′ (t) = χ2 I0 exp(χ2(t− t0)

Using (2) and (A2), we have{
χ2 I0 = τS0(I0 + U0)− (ν + µ)I0

χ2U0 = ν2 I0 − ηU0
(A3)

Using Liu et al. [6] and [7], χ2 is the dominant eigenvalue of (A2) and (I0, U0) is a
positive eigenvector associated with χ2.

If we divide (A3) by I0 we have:
χ2 = τS0(1 + U0)− (ν + µ)

U0
I0

= ν2
η+χ2

Appendix A.2

Here, we adapt the same procedure derived in the work of Magal and Webb (2017) [42]
to prove that we can find a solution to the unknown τ, υ1 and υ2 under one assumption,

which is
C(tp)

C∞
< 1

2 .
In fact, from the SIR model Equation (2), we have:

S(t) + I(t) + (ν1 + ν2 + µ)
∫ t

0
I(h)dh = S0 + I0

and

S(t) = S0 exp(−τ
∫ t

0
I(h)dh)

Therefore
lim
t→∞

S(t) = S0 > 0 and lim
t→∞

I(t) = I0 = 0

and
S∞ = S0 + I0 +

ν1 + ν2 + µ

τ
log

S∞

S0

C(t) = ν
∫ t

0
I(h)dh =

ν1

τ
log

S0

St
and C∞ = lim

t→∞
C(t) =

ν1

τ
log

S0

S∞
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which implies that:

S0 exp(− τ

υ1
C∞) = S0 + I0 −

ν1 + ν2 + µ

ν1
C∞

Skipping some details and using the paper by Magal and Webb, we can derive the
following three equations:

S0 exp
(
− τ

ν1
C∞

)
= (S0 + I0)−

ν1 + ν2 + µ

ν1
C∞ (A4)

C
(
tp
)
=

ν1

τ
log

τS0

ν1 + ν2 + µ
(A5)

or equivalently
ν1 + ν2 + µ

τ
= S0 exp(− τ

ν1
C
(
tp
)
)

(S0 + I0)− I
(
tp
)
=

ν1 + ν2 + µ

τ
(1− log

ν1 + ν2 + µ

τS0
) (A6)

(A5) implies that

ν1 + ν2 + µ = τS0 exp
(
− τ

ν1
C
(
tp
))

If we substitute that in (A4), we have

S0 exp
(
− τ

ν1
C∞

)
= (S0 + I0)−

(
τS0

ν1
exp(− τ

ν1
C
(
tp
))

C∞

and we have

(S0 + I0) = S0 exp(− τ

ν1
C∞) +

(
τS0

ν1
exp(− τ

ν1
C
(
tp
))

C∞

If we divide the last equation by S0, we have

exp(− τ

ν1
C∞) +

(
τ

ν1
exp(− τ

ν1
C
(
tp
))

C∞ − 1 =
I0

S0

We can write this as a function in the form

g(x) =
I0

S0
= exp(−αx) + αx exp(−αβx)− 1

with

x =
τ

ν1
, α = C∞, β =

C
(
tp
)

C∞

Using proposition (3.1) from the paper by Magal and Webb [42], this function has two
positive solutions, and if one of the solutions x∗ = τ

ν1
, then using (A5) and (A6), we can

calculate τ, ν1 and ν2. More details are given in Ref. [42].
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