Effects of Resistance Training on Oxidative Stress Markers and Muscle Damage in Spinal Cord Injured Rats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Animal Care and Ethics Committee Approval
2.3. Experimental Groups
2.4. Surgical Procedure
2.5. Training Protocol
2.6. Euthanasia and Collection of Biological Material
2.7. Tissue Damage Analysis
2.8. Oxidative Stress (OS) Analysis
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Middleton, J.; Tran, Y.; Craig, A. Relationship between Quality of Life and Self-Efficacy in Persons with Spinal Cord Injuries. Arch. Phys. Med. Rehabil. 2007, 88, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Furlan, J.C.; Noonan, V.; Singh, A.; Fehlings, M.G. Assessment of impairment in patients with acute traumatic spinal cord injury: A systematic review of the literature. J. Neurotrauma 2011, 28, 1445–1477. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wang, H.; Deng, L.; Li, J. Exercise Training Promotes Functional Recovery after Spinal Cord Injury. Neural Plast. 2016, 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Hicks, A.L.; Martin, K.A.; Ditor, D.S.; Latimer, A.E.; Craven, C.; Bugaresti, J.; McCartney, N. Long-term exercise training in persons with spinal cord injury: Effects on strength, arm ergometry performance and psychological well-being. Spinal Cord 2003, 41, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Hicks, A.L.; Ginis, K.A.M.; Pelletier, C.A.; Ditor, D.S.; Foulon, B.; Wolfe, D.L. The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: A systematic review. Spinal Cord 2011, 49, 1103–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ditor, D.S.; Latimer, A.E.; Ginis, K.A.M.; Arbour, K.P.; McCartney, N.; Hicks, A.L. Maintenance of exercise participation in individuals with spinal cord injury: Effects on quality of life, stress and pain. Spinal Cord 2003, 41, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Van Koppenhagen, C.F.; Post, M.; De Groot, S.; Van Leeuwen, C.; Van Asbeck, F.; Stolwijk-Swüste, J.; van der Woude, L.; Lindeman, E. Longitudinal relationship between wheelchair exercise capacity and life satisfaction in patients with spinal cord injury: A cohort study in the Netherlands. J. Spinal Cord Med. 2014, 37, 328–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, D.A.; Hoffman, J.M.; Reyes, M.R. Benefits of an exercise wellness program after spinal cord injury. J. Spinal Cord Med. 2017, 40, 154–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbeau, H. Locomotor training in neurorehabilitation: Emerging rehabilitation concepts. Neurorehabil. Neural Repair. 2003, 17, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Balasubramanian, S.; Murray, M.; Lemay, M.; Houle, J. Role of spared pathways in locomotor recovery after body-weight-supported treadmill training in contused rats. J. Neurotrauma 2011, 28, 2405–2416. [Google Scholar] [CrossRef]
- Kim, C.M.; Eng, J.J.; Whittaker, M.W. Level walking and ambulatory capacity in persons with incomplete spinal cord injury: Relationship with muscle strength. Spinal Cord 2004, 42, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Ginis, K.A.M.; Van Der Scheer, J.W.; Latimer-Cheung, A.E.; Barrow, A.; Bourne, C.; Carruthers, P.; Bernanrdi, M.; Ditor, D.S.; Gaudet, S.; de Groot, S.; et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: An update and a new guideline. Spinal Cord 2018, 56, 308–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, D.Y.; Lee, S.R.; Kim, N.; Ko, K.S.; Rhee, B.D.; Han, J. Humanized animal exercise model for clinical implication. Pflug. Arch. Eur. J. Physiol. 2014, 466, 1673–1687. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.W.; Vivar, C.; Kramer, A.F.; van Praag, H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn. Sci. 2013, 17, 525–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cholewa, J.; Guimarães-Ferreira, L.; da Silva Teixeira, T.; Naimo, M.A.; Zhi, X.; de Sá, R.B.D.P.; Lodetti, A.; Cardozo, M.Q.; Zanchi, N.E. Basic models modeling resistance training: An update for basic scientists interested in study skeletal muscle hypertrophy. J. Cell. Physiol. 2014, 229, 1148–1156. [Google Scholar] [CrossRef]
- Strickland, J.C.; Smith, M.A. Animal models of resistance exercise and their application to neuroscience research. J. Neurosci. Methods 2016, 273, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharif-Alhoseini, M.; Khormali, M.; Rezaei, M.; Safdarian, M.; Hajighadery, A.; Khalatbari, M.M.; Safdarian, M.; Meknatkhah, S.; Rezvan, M.; Chalangari, M.; et al. Animal models of spinal cord injury: A systematic review. Spinal Cord 2017, 55, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Albus, U. Guide for the Care and Use of Laboratory Animals. Lab. Anim. 2012, 46, 267–268. [Google Scholar] [CrossRef]
- Yin, H.; Jiang, T.; Deng, X.; Yu, M.; Xing, H.; Ren, X. A cellular spinal cord scaffold seeded with rat adipose-derived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats. Mol. Med. Rep. 2018, 17, 2998–3004. [Google Scholar] [CrossRef]
- Lapenna, D.; Ciofani, G.; Pierdomenico, S.D.; Giamberardino, M.A.; Cuccurullo, F. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxidesin human plasma. Free Radic. Biol. Med. 2001, 31, 331–335. [Google Scholar] [CrossRef]
- Faure, P.; Lafond, J. Measurement of plasma sulfhydryl and carbonyl. In Analysis of Free radicals in Biological Systems; Birkhäuser: Basel, Switzerland, 1995; pp. 237–248. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, A.; Pinho, R.A.; Ugbolue, U.C.; He, Y.; Meng, Y.; Gu, Y. Effect of running exercise on oxidative stress biomarkers: A systematic review. Front. Physiol. 2020, 11, 1789. [Google Scholar] [CrossRef] [PubMed]
- Bethany, N.; Clifford, T. The Effect of Creatine Supplementation on Markers of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Human Intervention Trials. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 276–291. [Google Scholar] [CrossRef]
- Wattananit, S.; Tornero, D.; Graubardt, N.; Memanishvili, T.; Monni, E.; Tatarishvili, J.; Miskinyte, G.; Ge, R.; Ahlenius, H.; Lindvall, O.; et al. Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J. Neurosci. 2016, 36, 4182–4195. [Google Scholar] [CrossRef]
- Savikj, M.; Kostovski, E.; Lundell, L.S.; Iversen, P.O.; Massart, J.; Widegren, U. Altered oxidative stress and antioxidant defence in skeletal muscle during the first year following spinal cord injury. Physiol. Rep. 2019, 7, e14218. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, H.; Afzalpour, M.E.; Abtahi, S.H. Response of creatine kinase and lactate dehydrogenase enzymes to rest interval between sets and set-repetition configuration during bouts of eccentric exercise. Interv. Med. Appl. Sci. 2018, 10, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, A.W.; Macaluso, F.; Smith, C.; Myburgh, K.H. C-reactive protein is elevated only in high creatine kinase responders to muscle damaging exercise. Front. Physiol. 2019, 10, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Coso, J.; Valero, M.; Salinero, J.J.; Lara, B.; Gallo-Salazar, C.; Areces, F. Optimum polygenic profile to resist exertional rhabdomyolysis during a marathon. PLoS ONE 2017, 12, e0172965. [Google Scholar] [CrossRef]
- Bekkelund, S.I. Leisure physical exercise and creatine kinase activity. The Tromsø study. Scand. J. Med. Sci. Sports 2020, 30, 2437–2444. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, J.L.; Dantas, R.E.A.; Lima, C.A.; de Araújo, S.S.; de Almeida, E.C.V.; Marçal, A.C.; Estevam, C.S. Protective effect of a hydroethanolic extract from Bowdichia virgilioides on muscular damage and oxidative stress caused by strenuous resistance training in rats. J. Int. Soc. Sports Nutr. 2014, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, L.M.V.; Aidar, F.J.; de Matos, D.G.; Marçal, A.C.; de Souza, R.F.; dos Santos, J.L.; Wartha, E.R.S.A.; da Silva, A.N.; Estevam, C.S.; de Araújo, S.S. Analysis of oxidative stress in Wistar rats submitted to high-intensity interval training. Motricidade 2020, 16, 274–281. [Google Scholar] [CrossRef]
- Altinoz, E.; Ozmen, T.; Oner, Z.; Elbe, H.; Erdemli, M.E.; Bag, H.G. Effect of crocin on oxidative stress in recovery from single bout of swimming exercise in rats. Gen. Physiol. Biophys. 2016, 35, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.M.; Moon, J.S.; Yoon, J.S.; Won, K.C.; Lee, H.W. Low alanine aminotransferase levels predict low muscle strength in older patients with diabetes: A nationwide cross-sectional study in Korea. Geriatr. Gerontol. Int. 2020, 20, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Motta, V.F.; Aguila, M.B.; Mandarim-De-Lacerda, C.A. High-intensity interval training (swimming) significantly improves the adverse metabolism and comorbidities in diet-induced obese mice. J. Sports Med. Phys. Fit. 2016, 56, 655–663. [Google Scholar]
- Righi, T.; Carvalho, C.A.D.; Ribeiro, L.M.; Cunha, D.N.Q.D.; Paiva, A.C.S.; Natali, A.J.; Pereira, E.T.; Lima, L.M. Alcohol consumption and the influence of physical exercise on enzyme activity of Wistar rats. Rev. Bras. Med. Esp. 2016, 22, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Owens, D.J.; Twist, C.; Cobley, J.N.; Howatson, G.; Close, G.L. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? Eur. J. Sport Sci. 2018, 19, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Isik, O.; Yildirim, I.; Ersoz, Y.; Koca, H.B.; Dogan, I.; Ulutas, E. Monitoring of pre-competition dehydration-induced skeletal muscle damage and inflammation levels among elite wrestlers. J. Back Musculoskelet. Rehabil. 2018, 31, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Kitaoka, Y.; Kikuchi, D.M.; Takeda, K.; Numata, O.; Takemasa, T. High-intensity interval training-induced metabolic adaptation coupled with an increase in Hif-1α and glycolytic protein expression. J. Appl. Physiol. 2015, 119, 1297–1302. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-induced oxidative stress: Friend or foe? J. Sport Health Sci. 2020, 9, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Radak, Z.; Suzuki, K.; Higuchi, M.; Balogh, L.; Boldogh, I.; Koltai, E. Physical exercise, reactive oxygen species and neuroprotection. Free Radic. Biol. Med. 2016, 98, 187–196. [Google Scholar] [CrossRef] [PubMed]
- So, J.H.; Huang, C.; Ge, M.; Cai, G.; Zhang, L.; Lu, Y.; Mu, Y. Intense exercise promotes adult hippocampal neurogenesis but not spatial discrimination. Front. Cell. Neurosci. 2017, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, D.A.; Rocha-Vieira, E.; De Sousa, R.A.L.; Soares, B.A.; Rocha-Gomes, A.; Garcia, B.C.C.; Casilhas, R.C.; Mendonça, V.A.; Camargos, A.C.R.; De Gregorio, J.A.M.; et al. High-intensity interval training improves cerebellar antioxidant capacity without affecting cognitive functions in rats. Behav. Brain Res. 2019, 376, 112181. [Google Scholar] [CrossRef] [PubMed]
- Freitas, D.A.; Rocha-Vieira, E.; Soares, B.A.; Nonato, L.F.; Fonseca, S.R.; Martins, J.B.; Mendonça, V.A.; Lacerda, A.C.R.; Massensini, A.R.; Poortams, J.R.; et al. High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiol. Behav. 2018, 184, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, C.; Kross, R.D. Antioxidant-induced stress. Int. J. Mol. Sci. 2012, 13, 2091–2109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, S.K.; Talbert, E.E.; Adhihetty, P.J. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J. Physiol. 2011, 589, 2129–2138. [Google Scholar] [CrossRef] [PubMed]
- de Araujo, G.G.; Papoti, M.; dos Reis, I.G.M.; de Mello, M.A.R.; Gobatto, C.A. Short and long term effects of high-intensity interval training on hormones, metabolites, antioxidant system, glycogen concentration, and aerobic performance adaptations in rats. Front. Physiol. 2016, 7, 505. [Google Scholar] [CrossRef] [Green Version]
- McLeay, Y.; Stannard, S.; Houltham, S.; Starck, C. Dietary thiols in exercise: Oxidative stress defence, exercise performance, and adaptation. J. Int. Soc. Sports Nutr. 2017, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, X.; Cueto, R.; Effi, C.; Zhang, Y.; Tan, H.; Quin, X.; Ji, Y.; Yang, X.; Wang, H. Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 2019, 26, 1–16. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Garcia, S.C.; Grotto, D.; Bulcão, R.P.; Moro, A.M.; Roehrs, M.; Valentini, J.; de Freitas, F.A.; Paniz, C.; Bubols, G.B.; Charão, M.F. Evaluation of lipid damage related to pathological and physiological conditions. Drug Chem. Toxicol. 2013, 36, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Parker, L.; Trewin, A.; Levinger, I.; Shaw, C.S.; Stepto, N.K. Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling. J. Sci. Med. Sport 2018, 21, 416–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzid, M.A.; Hammouda, O.; Matran, R.; Robin, S.; Fabre, C. Low intensity aerobic exercise and oxidative stress markers in older adults. J. Aging Phys. Act. 2014, 22, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Vezzoli, A.; Pugliese, L.; Marzorati, M.; Serpiello, F.R.; La Torre, A.; Porcelli, S. Time-course changes of oxidative stress response to high-intensity discontinuous training versus moderate-intensity continuous training in masters runners. PLoS ONE 2014, 9, e87506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruk, J.; Kotarska, K.; Aboul- Enein, B.H. Physical exercise and catecholamines response: Benefits and health risk: Possible mechanisms. Free Radic. Res. 2020, 54, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, Z.X.; Li, Y.J.; He, Z.G.; Chen, Y.L.; Feng, M.H.; Li, S.Y.; Wu, D.Z.; Xiang, H.B. Identification of lncRNA and mRNA expression profiles in rat spinal cords at various time-points following cardiac ischemia/reperfusion. Int. J. Mol. Med. 2019, 43, 2361–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.X.; Li, Y.J.; Wang, Q.; He, Z.G.; Feng, M.H.; Xiang, H.B. Characterization of novel lncRNAs in upper thoracic spinal cords of rats with myocardial ischemia-reperfusion injury. Exp. Ther. Med. 2021, 21, 15. [Google Scholar] [CrossRef]
- Lujan, H.L.; Palani, G.; DiCarlo, S.E. Structural neuroplasticity following T5 spinal cord transection: Increased cardiac sympathetic innervation density and SPN arborization. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2010, 299, 985–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowley, K.C. A new conceptual framework for the integrated neural control of locomotor and sympathetic function: Implications for exercise after spinal cord injury. Appl. Physiol. Nutr. Metab. 2018, 43, 1140–1150. [Google Scholar] [CrossRef]
- Waldron, N.H.; Fudim, M.; Mathew, J.P.; Piccini, J.P. Neuromodulation for the treatment of heart rhythm disorders. JACC Basic Transl. Sci. 2019, 4, 546–562. [Google Scholar] [CrossRef]
- Zhu, C.; Hanna, P.; Rajendran, P.S.; Shivkumar, K. Neuromodulation for ventricular tachycardia and atrial fibrillation: A clinical scenario-based review. JACC Clin. Electrophysiol. 2019, 5, 881–896. [Google Scholar] [CrossRef] [PubMed]
Familiarization | Training | |
---|---|---|
Week 1 1 × 30 min (3 × Week) | Week 2 1 × 30 min (3 × Week) | Week 3 to 6 (3 × Week) 3 × 30 min [Rest between sets: 2 min] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, N.d.A.; Aidar, F.J.; Marçal, A.C.; Santos, J.L.; de Souza, R.F.; Menezes, J.L.; Gomes, M.Z.; de Matos, D.G.; Neves, E.B.; Carneiro, A.L.G.; et al. Effects of Resistance Training on Oxidative Stress Markers and Muscle Damage in Spinal Cord Injured Rats. Biology 2022, 11, 32. https://doi.org/10.3390/biology11010032
Barros NdA, Aidar FJ, Marçal AC, Santos JL, de Souza RF, Menezes JL, Gomes MZ, de Matos DG, Neves EB, Carneiro ALG, et al. Effects of Resistance Training on Oxidative Stress Markers and Muscle Damage in Spinal Cord Injured Rats. Biology. 2022; 11(1):32. https://doi.org/10.3390/biology11010032
Chicago/Turabian StyleBarros, Natalie de Almeida, Felipe J. Aidar, Anderson Carlos Marçal, Jymmys L. Santos, Raphael Fabricio de Souza, Jainara Lima Menezes, Margarete Zanardo Gomes, Dihogo Gama de Matos, Eduardo Borba Neves, André Luiz Gomes Carneiro, and et al. 2022. "Effects of Resistance Training on Oxidative Stress Markers and Muscle Damage in Spinal Cord Injured Rats" Biology 11, no. 1: 32. https://doi.org/10.3390/biology11010032
APA StyleBarros, N. d. A., Aidar, F. J., Marçal, A. C., Santos, J. L., de Souza, R. F., Menezes, J. L., Gomes, M. Z., de Matos, D. G., Neves, E. B., Carneiro, A. L. G., de Almeida-Neto, P. F., de Araújo Tinoco Cabral, B. G., Belo Neto, R. V., Knechtle, B., Clemente, F. M., & Camargo, E. A. (2022). Effects of Resistance Training on Oxidative Stress Markers and Muscle Damage in Spinal Cord Injured Rats. Biology, 11(1), 32. https://doi.org/10.3390/biology11010032