Bacillamide F, Extracted from Marine Bacillus atrophaeus C89, Preliminary Effects on Leukemia Cell Lines
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biosynthesis and Extraction of Bacillamide F
2.2. General Experimental Procedures
2.3. Cell Culture
2.4. MTS Assay
3. Results
3.1. Structural Identification of New Compound
3.2. Plausible Biosynthesis Pathway of Bacillamide F
3.3. Toxicity of Bacillamide F on Leukemia Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arumuggam, N.; Melong, N.; Too, C.K.; Berman, J.N.; Rupasinghe, H.V. Phloridzin docosahexaenoate, a novel flavonoid derivative, suppresses growth and induces apoptosis in T-cell acute lymphoblastic leukemia cells. Am. J. Cancer Res. 2017, 7, 2452–2464. [Google Scholar] [PubMed]
- Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute myeloid leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faderl, S.; Kantarjian, H.M.; Talpaz, M. Chronic myelogenous leukemia: Update on biology and treatment. Oncology 1999, 13, 169–180. [Google Scholar] [PubMed]
- Rose-Inman, H.; Kuehl, D. Acute leukemia. Hematol. Oncol. Clin. N. Am. 2017, 31, 1011–1028. [Google Scholar] [CrossRef]
- Chiorazzi, N.; Rai, K.R.; Ferrarini, M. Chronic lymphocytic leukemia. N. Engl. J. Med. 2005, 352, 804–815. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chen, J.K.C.; et al. The 5th edition of the World Health Organization classification of Haematolymphoid tumours: Myeloid and histiocytic/dendritic neoplasms. Leuk 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Abuelgasim, K.A.; Rehan, H.; Alsubaie, M.; Atwi, N.A.; Balwi, M.A.; Alshieban, S.; Almughairi, A. Coexistence of chronic myeloid leukemia and diffuse large b-cell lymphoma with antecedent chronic lymphocytic leukemia: A case report and review of the literature. J. Med. Case. Rep. 2018, 12, 64. [Google Scholar] [CrossRef] [Green Version]
- Haybar, H.; Shahrabi, S.; Rezaeeyan, H.; Jodat, H.; Saki, N. Strategies to inhibit arsenic trioxide-induced cardiotoxicity in acute promyelocytic leukemia. J. Cell. Physiol. 2019, 234, 14500–14506. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Ishida, K.; Ito, Y.; Okada, S.; Murakami, M. Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium Polykrikoides. Tetrahedron Lett 2003, 44, 8005–8007. [Google Scholar] [CrossRef]
- Socha, A.M.; Long, R.A.; Rowley, D.C. Bacillamides from a hypersaline microbial mat bacterium. J. Nat. Prod. 2007, 70, 1793–1795. [Google Scholar] [CrossRef]
- Ivanova, V.; Kolarova, M.; Aleksieva, K.; Gräfe, U.; Dahse, H.M.; Laatsch, H. Microbiaeratin, a new natural indole alkaloid from a Microbispora aerata strain, isolated from Livingston Island, Antarctica. Prep. Biochem. Biotechnol. 2007, 37, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.L.; Li, Z.Y.; Peng, C.S.; Li, Z.Y.; Guo, Y.W. Neobacillamide A, a novel thiazole-containing alkaloid from the marine bacterium Bacillus vallismortis C89, associated with South China Sea sponge Dysidea avara. Helv. Chim. Acta 2009, 92, 607–612. [Google Scholar] [CrossRef]
- Omura, S.; Suzuki, Y.; Kitao, C.; Takahashi, Y.; Konda, Y. Isolation of a new sulfur-containing basic substance from a Thermo actinomyces species. J. Antibiot. 1975, 28, 609–610. [Google Scholar] [CrossRef] [PubMed]
- Bloudoff, K.; Fage, C.D.; Marahiel, M.A.; Schmeing, T.M. Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis. Proc. Natl. Acad. Sci. USA 2017, 114, 95–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churro, C.; Alverca, E.; Sam-Bento, F.; Paulino, S.; Figueira, V.C.; Bento, A.J.; Prabhakar, S.; Lobo, A.M.; Calado, A.J.; Pereira, P. Effects of bacillamide and newly synthesized derivatives on the growth of cyanobacteria and microalgae cultures. J. Appl. Phycol. 2009, 21, 429–442. [Google Scholar] [CrossRef]
- Kumar, S.; Aggarwal, R.; Kumar, V.; Sadana, R.; Patel, B.; Kaushik, P.; Kaushik, D. Solvent-free synthesis of bacillamide analogues as novel cytotoxic and anti-inflammatory agents. Eur. J. Med. Chem. 2016, 123, 718–726. [Google Scholar] [CrossRef]
- de Santana, T.I.; Barbosa, M.d.O.; Gomes, P.A.T.d.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem. 2018, 144, 874–886. [Google Scholar] [CrossRef]
- Winn, M.; Fyans, J.K.; Zhuo, Y.; Micklefield, J. Recent advances in engineering nonribosomal peptide assembly lines. J. Nat. Prod. Rep. 2016, 33, 317–347. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wang, Y.; Jiang, Q.; Chen, Q.; Karthik, L.; Zhao, Y.-L.; Li, Z. Substrate selection of adenylation domains for nonribosomal peptide synthetase (NRPS) in bacillamide C biosynthesis by marine Bacillus atrophaeus C89. J. Ind. Microbiol. Biotechnol. 2018, 45, 335–344. [Google Scholar] [CrossRef]
- Zhang, F.; Mulati, N.; Wang, Y.; Li, Y.; Gong, S.; Karthik, L.; Sun, W.; Li, Z. Biosynthesis in vitro of bacillamide intermediate-heterocyclic AlaCysthiazole by heterologous expression of nonribosomal peptide synthetase (NRPS). J. Biotechnol. 2019, 292, 5–11. [Google Scholar] [CrossRef]
- Yuwen, L.; Zhang, F.L.; Chen, Q.H.; Lin, S.J.; Zhao, Y.L.; Li, Z.Y. The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by Bacillus atrophaeus C89. Sci. Rep. 2013, 3, 1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.; Ma, W.; Peng, C.; Yin, Y.; Xu, B.; Zhang, F.; Guo, Y.; Li, Z. Bacillamide C production by the optimized cultivation of the Bacillus atrophaeus strain C89 associated with the South China Sea sponge Dysidea avara. Process Biochem. 2011, 46, 1153–1159. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Wei, Z.; Liu, N.; Li, Y.; Li, D.; Jin, Z.; Xu, X. Thiazole amides, a novel class of algaecides against freshwater harmful algae. Sci. Rep. 2018, 8, 8555. [Google Scholar] [CrossRef] [Green Version]
- Vaca, J.; Salazar, F.; Ortiz, A.; Sansinenea, E. Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study. J. Antibiot. 2020, 73, 798–802. [Google Scholar] [CrossRef]
- Zhang, H.; Tomoda, H.; Tabata, N.; Oohori, M.; Shinose, M.; Takahashi, Y.; Omur, S. Isolation and structure of a new antibiotic viridomycin F produced by Streptomyces sp. K96-0188. J. Antibiot. 1999, 52, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, P.; Vekey, K.; Galimberti, M.; Gallo, G.G.; Selva, E.; Zerilli, L.F. Antibiotics A21459 A and B, new inhibitors of bacterial protein synthesis. II. Structure elucidation. J. Antibiot. 1996, 49, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Bohlander, S.K.; Muschinsky, V.; Schrader, K.; Siebert, R.; Schlegelberger, B.; Harder, L.; Schemmel, V.; Fonatsch, C.; Ludwig, W.D.; Hiddemann, W.; et al. Molecular analysis of the CALM/AF10 fusion: Identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients. Leukemia 2000, 14, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Gholap, S.S. Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem. 2016, 110, 13–31. [Google Scholar] [CrossRef]
- Fortinez, C.M.; Bloudoff, K.; Harrigan, C.; Sharon, I.; Strauss, M.; Schmeing, T.M. Structures and function of a tailoring oxidase in complex with a nonribosomal peptide synthetase module. Nat. Commun. 2022, 13, 548. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Croppi, G.; Hu, H.; Li, Y.; Zhu, C.; Wu, F.; Zhang, F.; Li, Z. Bacillamide F, Extracted from Marine Bacillus atrophaeus C89, Preliminary Effects on Leukemia Cell Lines. Biology 2022, 11, 1712. https://doi.org/10.3390/biology11121712
Zhang S, Croppi G, Hu H, Li Y, Zhu C, Wu F, Zhang F, Li Z. Bacillamide F, Extracted from Marine Bacillus atrophaeus C89, Preliminary Effects on Leukemia Cell Lines. Biology. 2022; 11(12):1712. https://doi.org/10.3390/biology11121712
Chicago/Turabian StyleZhang, Shengnan, Giorgia Croppi, Heng Hu, Yingxin Li, Chunmiao Zhu, Fang Wu, Fengli Zhang, and Zhiyong Li. 2022. "Bacillamide F, Extracted from Marine Bacillus atrophaeus C89, Preliminary Effects on Leukemia Cell Lines" Biology 11, no. 12: 1712. https://doi.org/10.3390/biology11121712
APA StyleZhang, S., Croppi, G., Hu, H., Li, Y., Zhu, C., Wu, F., Zhang, F., & Li, Z. (2022). Bacillamide F, Extracted from Marine Bacillus atrophaeus C89, Preliminary Effects on Leukemia Cell Lines. Biology, 11(12), 1712. https://doi.org/10.3390/biology11121712