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Simple Summary: Non-small cell lung cancer (NSCLC) is a serious public health issue due to its
high mortality rate. To improve the survival rate of NSCLC with better treatment, it is imperative to
develop a biomarker-based prediction tool that can accurately identify NSCLC at a very early stage.
Cancer development initiates due to aberrations in gene expression and the regulatory networks;
therefore, these features hold a great potential to diagnose cancer at an early stage compared with the
visible morphological and pathological changes. In this study, we integrated gene expression and
interactome data to identify candidate genes altered in NSCLC compared with normal samples. We
then used a machine learning technique to identify a signature of 17 genes and developed a model
for predicting NSCLC. Interestingly, our model predicted NSCLC across different independent test
datasets with high accuracy. Finally, the model was implemented to create a user-friendly web tool,
NSCLCpred, to predict NSCLC using the expression profile of 17 genes. We expect that our findings
will guide the identification of NSCLC patients and provide more insight into the understanding of
disease development.

Abstract: The lack of precise molecular signatures limits the early diagnosis of non-small cell lung
cancer (NSCLC). The present study used gene expression data and interaction networks to develop a
highly accurate model with the least absolute shrinkage and selection operator (LASSO) for predicting
NSCLC. The differentially expressed genes (DEGs) were identified in NSCLC compared with normal
tissues using TCGA and GTEx data. A biological network was constructed using DEGs, and the top
20 upregulated and 20 downregulated hub genes were identified. These hub genes were used to
identify signature genes with penalized logistic regression using the LASSO to predict NSCLC. Our
model’s development involved the following steps: (i) the dataset was divided into 80% for training
(TR) and 20% for testing (TD1); (ii) a LASSO logistic regression analysis was performed on the TR
with 10-fold cross-validation and identified a combination of 17 genes as NSCLC predictors, which
were used further for development of the LASSO model. The model’s performance was assessed
on the TD1 dataset and achieved an accuracy and an area under the curve of the receiver operating
characteristics (AUC-ROC) of 0.986 and 0.998, respectively. Furthermore, the performance of the
LASSO model was evaluated using three independent NSCLC test datasets (GSE18842, GSE27262,
GSE19804) and achieved high accuracy, with an AUC-ROC of >0.99, >0.99, and 0.95, respectively.
Based on this study, a web application called NSCLCpred was developed to predict NSCLC.
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1. Introduction

Despite all the rapid advancements in the development of anticancer therapy, lung
cancer is still a significant contributor to cancer-associated deaths, with almost 1.8 million
worldwide mortalities recorded in the year 2020 [1]. Non-small cell lung cancer (NSCLC) is
a major contributor to lung cancer cases, making up almost 85% of cases of primary lung
cancer [2]. The high mortality rate associated with NSCLC is because the disease is often
diagnosed late in most patients, resulting in a poor prognosis, even with the availability
of advanced treatment modalities [3]. Furthermore, nearly half of the initially diagnosed
early-stage tumors (Stage I or II) in patients eventually proceed to the late stage, resulting in
metastatic NSCLC. Advanced NSCLC is generally categorized into Stage IIIB or IV tumors,
and its current treatments options include immunotherapy, systemic chemotherapy, and
targeted drug therapy, which often lead to imposing remarkably great adverse impacts
not only on the lives of patients but also at the socio-economic level [4–6], especially the
family and friends providing informal care to the NSCLC patient. The continuous increase
in the economic burden has posed a great financial challenge to society, as the number of
advanced NSCLC cases is increasing. Thus, it appears that the patients and their caregivers
seem to be affected by the due course of stage progression. As a result, it directly influences
the increase in direct and indirect costs as the stages of the disease advance. It has been
shown that the overall economic burden of the management of lung cancer in Europe is
considerably surprising because the direct costs of caring for such NSCLC patients amount
to more than EUR 3 billion annually [7]. As is quite evident from several studies, the clinical
outcome for NSCLC patients is directly dependent on the stage of the tumor when it is
diagnosed [8,9]. So far, screening for NSCLC patients relies on using chest radiographs
or sputum cytologic profile analyses, which remain adequate and have failed to provide
a mortality benefit in many studies of clinical trials [8,9]. Therefore, there is a need to
focus on discovering and validating a set of biomarkers with high sensitivity and specific
discriminatory power that might be utilized in early screening programs along with having
diagnostic and prognostic significance that would allow the accurate detection of such
patients in the early stages of the disease, consequently enabling the clinician to reduce the
mortality rate of NSCLC patients.

However, imaging techniques, including X-ray, CT, MRI, PET scans, and tissue biopsy,
are routine practices in diagnosing lung cancer and are generally used when the cancer
is at an advanced stage [10]. The powerful imaging techniques can detect a tumor only
when its size is at least 7 mm with billions of cells [11]. Unfortunately, only 16% of cases
are detected before the spread of lung cancer to other organs [12]. However, the recent
advancement of high-throughput sequencing technology has improved the understanding
of the underlying pathological changes and identified the genomic and environmental
factors involved in lung cancer [13,14]. The accumulated knowledge is being utilized for
advancing diagnostic accuracy, and a significant improvement has been gained in the
treatment outcomes in several cases. In addition to these technological improvements,
evidence has indicated that utilizing a growing number of molecular-level approaches
could be beneficial for improving the early diagnosis and treatment outcomes of lung cancer.
Hence, there is a great need to adopt advanced molecular techniques for early diagnosis,
better management, and treatment of cancer patients in super-specialized hospitals [15].
In the past few decades, studies have used different approaches to identify the genes
and mutation signatures underpinning lung cancer, leading to new therapeutic targets
for better treatment. A previous study used an integrative systems biology approach
and revealed a driver network that promotes cell proliferation in NSCLC, which could
be a promising therapeutic target [16]. Interestingly, the study found that the driver
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network consisted of 26 upregulated genes associated with spindles, kinetochores, nuclear
division, chromosome segregation, and the cell cycle G2/M transition and their upstream
regulators, FOXM1 and MYBL2 [16]. A recent study used gene expression data from
the TGF-β-induced epithelial–mesenchymal transition in NSCLC cells and identified a
cluster of differentially expressed genes associated with specific metabolic processes such
as glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle [17]. Interestingly, the
same study elucidated the potential links in the regulation of NSCLC’s progression and
found 10 genes as prognostic biomarkers associated with a decrease in the overall survival
of NSCLC patients. The prognostic markers might be helpful for evaluating treatment
outcomes and monitoring and selecting suitable therapeutic strategies in NSCLC [17].
Integrated bioinformatic analysis of differentially expressed genes was successfully used to
identify the potential prognostic gene signatures in other cancers, including esophageal
squamous cell carcinoma and cervical cancer [18,19].

Furthermore, several models have been developed for predicting the risk score for
lung cancer [20–23]. However, these studies mainly focused on utilizing epidemiological
factors, symptoms, and clinical assessments as features, not gene expression features, for
development of the model; therefore, these models have been suggested to have certain
limitations due to their low accuracy. Another study developed a prognostic model for
NSCLC patients using immune-specific transcriptomic and clinicopathological data, and
achieved an area under the curve (AUC) of 0.673 [24]. Failure to diagnose lung cancer at
an early stage, resulting in metastasis to other organs, has posed a significant challenge in
treating cancer thoroughly. Therefore, an early-stage detection method with the highest
possible accuracy is essential for better treatment and prognosis of NSCLC.

The recent advancement and breakthroughs in high-throughput sequencing technol-
ogy have enabled the rapid growth of transcriptomic and other omics data from cancer
samples, thus providing an excellent opportunity to improve deep insights and early di-
agnosis [25,26]. However, identifying the signature genes for early cancer diagnoses and
the interpretation of the underlying mechanisms in high-dimensional and complex data
remains a great challenge [27,28]. Artificial intelligence (AI) and machine learning tech-
niques (MLT) have successfully been used in biomedicine and crop improvement [29–33].
The application of AI and MLT has also shown promising results in cancer diagnosis and
drug discovery, where a predictive model can be built by learning and generalizing from
the training data. The model is applied to new data to make predictions [34–36].

This work combined transcriptome–interactome signatures to develop an efficient
model for predicting NSCLC. Briefly, we used the gene expression profile to identify the
differentially expressed genes (DEGs), followed by finding the hub genes in biological
networks. These hub genes were used to select the signature genes that best discrimi-
nated NSCLC from normal samples by the least absolute shrinkage and selection operator
(LASSO). The highly accurate predictive LASSO model was developed by using selected
features, and then the results were interpreted for a mechanical understanding. In feature
selection, LASSO penalizes the regression variable coefficient and shrinks them to zero.
After that, it selects the variables with non-zero coefficients for constructing the model. The
larger the parameter λ, the greater the number of coefficients that shrink to zero. Therefore,
we have to tune and select the minimum value of the parameter λ to obtain a sufficient
number of coefficients. The present work demonstrated the potential use of this approach
for developing predictive models for the early diagnosis of other cancers.

2. Materials and Methods

The experimental workflow of our study is given in Figure 1A and consisted of two
parts. The first part of the work identified the biologically important genes associated with
NSCLC using DEGs and their interaction network. The next part used the relevant genes,
identified in the first part of the work as input for feature selection and model development
with the LASSO. Finally, the model’s performance was evaluated on independent test
datasets and the 17-gene signature was validated in lung cancer data and literature.
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Figure 1. (A) Workflow of our study. (B) The PCA plot for samples using 2500 genes with the most 
significant variance. Each point represents the gene expression of a sample. Samples with similar 
gene expression profiles are closer in the three-dimensional space. (C) Volcano plot of DEGs in lung 
cancer compared with normal samples. The DEGs with |log2FC| > 2.0 and adj.p.Val < 0.001 are 
shown in red.  

Figure 1. (A) Workflow of our study. (B) The PCA plot for samples using 2500 genes with the most
significant variance. Each point represents the gene expression of a sample. Samples with similar
gene expression profiles are closer in the three-dimensional space. (C) Volcano plot of DEGs in lung
cancer compared with normal samples. The DEGs with |log2FC| > 2.0 and adj.p.val < 0.001 are
shown in red.

2.1. Identification of DEGs

The gene expression data of the NSCLC and normal samples were obtained from
TCGA TARGET GTEx using the UCSC Xena application (https://xena.ucsc.edu/, ac-
cessed on 7 August 2021). The gene expression dataset was in “RSEM norm_count”

https://xena.ucsc.edu/
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format. The NSCLC data consisted of 1013 samples of lung adenocarcinoma and lung
squamous cell carcinoma taken from The Cancer Genome Atlas (TCGA) [37]. The normal
sample included 397 samples of “lung solid tissue—normal” collected from TCGA and
“normal lung tissue” taken from the Genotype-Tissue Expression (GTEx) database [38].
TCGA provides gene expression and other omics data as well as clinical data from pri-
mary cancer and matched normal samples across 33 cancer types. GTEx provides tissue-
specific gene expression and regulation data from nearly 1000 non-diseased individu-
als. The DEGs in lung cancer compared with normal samples were analyzed using the
Xena application adapted from the Appyter RNA-seq analysis pipeline from Ma’ayan
lab (https://github.com/MaayanLab/appyter-catalog, accessed on 7 August 2021). The
RNA-seq data underwent quantile normalization, and the DEGs were identified. A gene
was considered to be upregulated when log2FC > 2 and adj.p.value < 0.001, but deemed to
be downregulated when log2FC < −2 and adj.p.value < 0.001. The volcano plot was made
using the EnhancedVolcano tool in R version 4.1.2 [39].

2.2. Construction of the Interaction Network

The biological interactions data of humans were screened from BioGRID version 4.4.205
(last modified 29 December 2021) [40]. The interaction data were filtered to screen the
interactions of the identified DEGs in lung cancer. The DEGs data were added to the interaction
network, and the sub-network was prepared on the basis of the log2FC value. Cytoscape
version 3.8 was used to visualize the interaction network of biologically important genes [41].

2.3. Identification of Biologically Important Nodes in the Network

The network topology was calculated using Cytoscape’s built-in NetworkAnalyzer
tool. The nodes’ sizes were arranged according to the value of their degree in the original
BioGRID human interaction network. In contrast, the color of the nodes was set as per
their log2FC value in cancer and normal samples in the lung. The interaction network was
further filtered based on the log2FC value in lung samples.

2.4. Training and Testing Dataset

The final dataset consisted of the expression values in the RSEM of 40 genes identified
by analyzing the DEGs and interactomes from 1013 samples of lung cancer and 397 samples
as the control. This dataset was divided into two parts: an 80% training dataset (TR, with
1128 samples) and a 20% test dataset 1 (TD1, with 282 samples). The model was developed
using 10-fold cross-validation (cv) on the TR dataset, and the performance was checked on
TD1 dataset (Table 1). To further validate the accuracy and robustness of the LASSO model,
we used additional validation test dataset 2 (TD2), which contained the gene expression
data of lung cancer obtained from three microarrays: GSE18842 [42], GSE27262 [43], and
GSE19804 [44]. These raw microarray data were normalized using the RMA of the Oligo
package in R. The number of samples of lung cancer and the adjacent non-tumor tissues in
TD2 is provided in Table S1.

Table 1. The number of TCGA and GTEx lung samples used for DEGs analysis and development of
the LASSO logistic regression model.

Sample Type Disease Class Training Dataset
(TR)

Test Dataset 1
(TD1)

Primary tumor
Lung cancer (positive = 1)

802 209

Recurrent tumor 2 0

Normal solid tissue
Normal lung (negative = 0)

91 18

Normal tissue (GTEx) 233 55

Total 1128 282

https://github.com/MaayanLab/appyter-catalog
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2.5. Construction of the LASSO Model

We used the R package glmnet version 4.1-3 to develop a penalized logistic regression
LASSO model on the TR dataset with 10-fold cv. We divided the data randomly into 10 sets;
of these, we used 9 sets for training and the remaining set for testing. First, the penalty
regularization parameter lambda was determined by 10-fold cv with the cv.glmnet module.
Next, the final model was developed by glmnet with a lambda value which maximized the
value of AUC (lambda.min). The expression data of genes with non-zero coefficients were
used to create the final LASSO model.

2.6. Performance of the Models

The performance of the LASSO models was evaluated with the following parameters.

(1) Sensitivity, also called the recall or true positive rate, which indicates the percentage
of correctly predicted cancer samples.

Sensitivity =
TP

TP + FN

(2) Specificity, which indicates the percentage of correctly predicted normal samples.

Speci f icity =
TN

TN + FP

(3) Accuracy is the percentage of correct predictions overall.

Accuracy =
TP + TN

TP + FP + TN + FN

(4) Positive predictive value (PPV), also called the precision.

PPV =
TP

TP + FP

(5) Negative predictive value (NPV)

NPV =
TN

TN + FN
where TP stands for true positive, TN stands for true negative, FP stands for false positive,
FN stands for false negative.

(6) Area Under the Curve (AUC). The performance was tested at various thresholds using
the receiver operating characteristics (ROC) to plot a graph of the true positive rate
(sensitivity on the y-axis) versus the false positive rate (1 – specificity on the x-axis).
The higher the mean AUC-ROC values, the better the model was for distinguishing
between lung cancer and normal samples. In addition, we used precision–recall (PRC),
which is a plot of the precision (positive predictive value on the y-axis) versus the
recall (sensitivity or true positive rate on the x-axis) for all possible thresholds. The
larger the value of AUC-PRC, the better the model’s performance. If the positive
and negative data were imbalanced, the PRC curve was preferred for checking the
model’s performance.

2.7. Functional Enrichment of Key Genes Obtained by the LASSO Model

Lung cancer signature genes identified by the LASSO were used to construct a separate
interaction network of nodes and their first neighbors as per BioGRID. The signature genes
were further analyzed for functional enrichment using Gene Ontology (biological processes)
and for pathway enrichment using KEGG with DAVID version 6.8 [45].
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3. Results
3.1. Identification of DEGs

In order to find the genes associated with lung cancer, we performed a differential
gene expression analysis using the limma-voom tool [46]. The expression profiles of the
2500 genes with the greatest variance were used for PCA analysis. Three principal compo-
nents comprising 40.1% (26.8%, 9.5%, and 3.8%) of the total variance showed that the lung
cancer samples were clustered apart from the normal samples (Figure 1B). Furthermore,
we obtained 2754 DEGs, including 1242 upregulated and 1512 downregulated genes in
lung cancer compared with normal samples with |log2FC| > 2, and adj.p.value < 0.001
(Figure 1C). According to the log2FC values, the top five upregulated genes were CST1,
FAM83A, KRT16, MMP13, and MMP12, whereas the top five downregulated genes were
DEFA1B, SLC6A4, DEFA1, SFTPC, and CA4 (Table S2). The complete list of upregulated
and downregulated genes is provided in Supplementary Tables S3 and S4, respectively.

3.2. Identification of the Relevant Interacting Genes

Human-related biological interaction data were obtained from BioGRID, which con-
tains 40,843 nodes and 977,146 edges. This data in BioGRID also included some interactions
involving species other than humans; therefore, the human-specific interactions were
filtered, and we obtained 33,235 nodes with 909,098 edges. The network parameters, in-
cluding the degree of the nodes, were calculated for this interaction network. The DEGs
data were integrated into this interaction network, and the sub-network was filtered, as
presented in Figure 2. The top 20 nodes according to the degree were further sorted on the
basis of their log2FC value, thus revealing the top 20 upregulated hub genes and the top
20 downregulated hub genes (Table 2).

Table 2. The top 20 upregulated and 20 downregulated hub genes from the DEGs’ interaction network.

Upregulate Genes Downregulated Genes

Log2FC Degree Name Log2FC Degree Name

4.76 698 SOX2 −5.16 279 GPR17
4.33 804 CDC20 −5.06 297 ZBTB16
4.19 1143 ANLN −4.13 278 CMTM5
4.08 1063 KIF20A −3.66 723 ACTC1
3.73 1834 KIF14 −3.55 294 USHBP1
3.51 817 AURKB −2.87 429 TRIM63
3.29 550 MKI67 −2.84 404 ADRB2
3.24 635 CDK1 −2.82 715 LRRK2
3.14 577 RAD51 −2.70 270 NR4A1
3.12 1207 MCM2 −2.70 764 MEOX2
3.10 695 PLK1 −2.69 843 CAV1
2.86 529 CDKN2A −2.59 315 CLEC4D
2.62 1032 KIF23 −2.46 411 CLEC4E
2.58 934 ECT2 −2.43 455 GPR182
2.50 986 PRC1 −2.41 433 SYNE3
2.50 1465 RECQL4 −2.33 342 CRYAB
2.37 553 KRT31 −2.27 294 KANK2
2.35 1354 EGLN3 −2.19 297 ALB
2.31 849 CDH1 −2.09 367 LMO2
2.14 1189 AGR2 −2.07 348 HECW2
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oGRID v 4.4.205. The DEGs’ nodes were filtered from all interactions available in BioGRID. The 
node sizes are arranged as per their degree in the original human interaction network and therefore 
indicate their central involvement in human cellular interactions. The colors of the nodes were de-
termined by their log2FC value, where green to red represents negative to positive log2FC values. 

  

Figure 2. Biological interaction network of DEGs identified in NSCLC samples according to BioGRID
v 4.4.205. The DEGs’ nodes were filtered from all interactions available in BioGRID. The node sizes
are arranged as per their degree in the original human interaction network and therefore indicate
their central involvement in human cellular interactions. The colors of the nodes were determined by
their log2FC value, where green to red represents negative to positive log2FC values.

3.3. Development of the LASSO Model

The gene expression profiles of 40 hub genes in lung cancer and control samples were
used to build a classifier in order to predict lung cancer. First, we fitted the LASSO logistic
regression model and plotted the coefficients at different log lambda values (Figure 3A).
The plot displays the behavior of coefficients at different values of lambda. After that, we
used 10-fold cv to find the best value of lambda that maximized the AUC curve (Figure 3B).
We selected lambda.min (0.0005101641) as the best lambda and identified the 17 important
genes with non-zero coefficients (Figure 3C, Table S5). Furthermore, the gene expression
patterns of these 17 important genes were extracted from the TR dataset, and a heatmap
was plotted, revealing that their expression patterns in lung cancer and the normal sample
were distinct (Figure 3D). The set of 17 genes was further explored to find the gene family
in the Molecular Signatures Database (MsigDB v7.5.1: http://www.gsea-msigdb.org/gsea/

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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msigdb/index.jsp, accessed on 15 June 2022) [47,48]. Based upon the protein homology or
biochemical activity, we found that the dysregulated genes belonged to tumor suppressors,
oncogenes, translocated cancer genes, and transcription factors (Table S6). Finally, the
LASSO model was developed by using the expression profiles of 17 genes in the TR dataset
at lambda.min (0.0005101641) for predicting lung cancer. The lung cancer signature genes
in the LASSO model were present in the order of KIF14, RAD51, CDKN2A, KIF23, RECQL4,
EGLN3, CDH1, ZBTB16, CMTM5, ACTC1, ADRB2, NR4A1, CLEC4D, CLEC4E, SYNE3,
CRYAB, and KANK2. The model was constructed using the expression values of the 17
genes and their coefficients, and the risk score for lung cancer was calculated as follows.

Risk score for NSCLC = −3.207 + (−1.016 * KANK2) + (−0.929 * CLEC4D) + (−0.64 * ADRB2) +

(−0.533 * CRYAB) + (−0.322 * NR4A1) + (−0.297 * CMTM5) + (−0.174 * ZBTB16) +

(−0.12 * ACTC1) + (−0.118 * RAD51) + (−0.117 * KIF23) + (−0.087 * SYNE3) +

(0.136 * CLEC4E) + (0.403 * CDKN2A) + (0.459 * EGLN3) + (0.675 * KIF14) +

(1.372 * RECQL4) + (1.457 * CDH1)

where the gene name indicates its expression value in “RSEM norm_count”. A gene is
associated with a lower risk of lung cancer if its coefficient is less than zero (0). On the
contrary, a gene is associated with a higher risk of lung cancer if its coefficient is greater
than zero (0).

3.4. Performance of the LASSO Model on Independent Datasets

We evaluated the reliability of the LASSO model on the TD1 dataset, and found
that the model achieved an accuracy, specificity, and sensitivity of 0.986, 0.959, and 0.995,
respectively, at the 0.5 threshold (Table 3). The performance of the model showed an
AUC-ROC and AUC-PRC of 0.9988 and 0.999, respectively, on the TD1 dataset (Figure 4A).
Furthermore, we evaluated its performance on the TD2 dataset (GSE18842, GSE27262, and
GSE19804) containing the gene expression patterns of NSCLC. On GSE18842, the LASSO
model achieved an accuracy, specificity, and sensitivity of 1, 1, and 1, respectively, at the
0.5 threshold (Table S7). Furthermore, on the same data, the model showed an AUC-ROC
and AUC-PRC of >0.99 and >0.99, respectively (Figure 4B). However, the performance of
the LASSO model on GSE27262 achieved an accuracy, specificity, and sensitivity of 0.980, 1,
and 0.960, respectively, at the 0.5 threshold (Table S8). Notably, the same model achieved
100% accuracy, specificity, and sensitivity when the threshold value was decreased to 0.4 as
compared with 0.5 in the GSE27262 dataset (Table S8). The model showed an AUC-ROC
and AUC-PRC of >0.99 and >0.99, respectively, on GSE27262 (Figure 4C). However, on the
dataset of GSE19804, the model’s performance was reduced, having an accuracy, AUC-ROC,
and AUC-PRC of 0.725, 0.95, and 0.96, respectively (Figure 4D and Table S9).

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Figure 3. Construction of the risk score model for lung cancer prediction using LASSO logistic re-
gression with 10-fold cv using glmnet. (A) LASSO regression coefficient profiles of 40 genes associ-
ated with lung cancer at different values of log lambda. Each curve indicates a gene and the path of 
its coefficient against the different values of log lambda. (B) This plot displays the AUC value (in 
red) with varying values of log lambda. The vertical dotted line at the left indicates the value of λ 
lambda.min that gives the maximum average AUC. The vertical dotted line at the right shows the 
largest value of λ lambda.1se; the performance is within one standard error of the maximum average 

Figure 3. Construction of the risk score model for lung cancer prediction using LASSO logistic
regression with 10-fold cv using glmnet. (A) LASSO regression coefficient profiles of 40 genes
associated with lung cancer at different values of log lambda. Each curve indicates a gene and the
path of its coefficient against the different values of log lambda. (B) This plot displays the AUC value
(in red) with varying values of log lambda. The vertical dotted line at the left indicates the value of λ
lambda.min that gives the maximum average AUC. The vertical dotted line at the right shows the
largest value of λ lambda.1se; the performance is within one standard error of the maximum average
AUC. The numbers across the top are the nonzero coefficient estimates. (C) Bar graph representing the
regression coefficients for the most relevant genes (17 genes) at lambda.min = 0.0005101641. The blue-
green bar represents positive coefficients; the red bar represents negative coefficients. (D) Heatmap
of the expression patterns of relevant genes (17 genes) from the TR dataset.
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Figure 4. Performance of the LASSO model on the independent test datasets. (A) Performance on the
TD1 dataset that contained 209 cancer and 73 normal samples, with the ROC curve showing an AUC
of 0.9988 and the PRC curve showing an AUC of 0.999. (B) Performance on the GSE18842 dataset
that contained 46 cancer and 45 normal samples, with the ROC curve showing an AUC of >0.99 and
the PRC curve showing an AUC of >0.99. (C) Performance on the GSE27262 dataset that contained
25 cancer and 25 normal samples, with the ROC curve showing an AUC of >0.99 and the PRC curve
showing an AUC of >0.99. (D) Performance on the GSE19804 dataset that contained 60 cancer and
60 normal samples, with the ROC curve showing an AUC of 0.95 and the PRC curve showing an
AUC of 0.96. The ROC graphs plot the true positive rate (sensitivity on the y-axis) versus the false
positive rate (1-specificity on the x-axis) for all possible thresholds. The value of the AUC varies
from 0 to 1. The larger the value of the AUC, the better the model can differentiate between lung
cancer and normal samples. The diagonal dashed line represents an AUC of 0.5, which indicates
random prediction by the model. The PRC plots the precision (positive predictive value on the
y-axis) versus the recall (sensitivity or true positive rate on the x-axis) for all possible thresholds. The
larger the AUC, the better the model’s performance. The ROC and PRC curves were built with the R
package precrec.
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Table 3. Performance of the LASSO model on the test dataset TD1.

Threshold Accuracy Specificity Sensitivity TN TP FN FP NPV PPV

0 0.741 0.000 1.000 0 209 0 73 NA 0.741

0.1 0.982 0.945 0.995 69 208 1 4 0.986 0.981

0.2 0.982 0.945 0.995 69 208 1 4 0.986 0.981

0.3 0.982 0.945 0.995 69 208 1 4 0.986 0.981

0.4 0.982 0.945 0.995 69 208 1 4 0.986 0.981

0.5 0.986 0.959 0.995 70 208 1 3 0.986 0.986

0.6 0.982 0.959 0.990 70 207 2 3 0.972 0.986

0.7 0.986 0.973 0.990 71 207 2 2 0.973 0.990

0.8 0.982 0.973 0.986 71 206 3 2 0.959 0.990

0.9 0.986 1.000 0.981 73 205 4 0 0.948 1.000

1 0.259 1.000 0.000 73 0 209 0 0.259 NA

NA means not available.

3.5. Comparative Analysis of Logistic Regression Models

Furthermore, we also examined the performance of models developed via logistic
regression using glm from the R package. The logistic regression models were developed
on the TR dataset, and their performance was assessed using the test dataset TD1. We
found that the logistic regression model developed from 40 genes identified on the basis
of the log2FC and node degree achieved an AUC-ROC of 0.9828. In comparison, the
performance was slightly reduced (AUC-ROC: 0.9789) when the model was developed
by using the 17-gene signature (Figure S1). On the basis of the ROC curve, we concluded
that the signatures of the 17 genes achieved better performance with the LASSO model
(AUC: 0.9988) compared with logistic regression (AUC: 9789). The LASSO regression
selected the important features by shrinking the coefficient towards zero, which also had
the advantage of avoiding model overfitting, and interpreting the possible roles of the
features in lung cancer.

3.6. Interaction Network and Functional Enrichment Analysis of Genes from the LASSO Model

To understand the biological function of the signature genes, we performed a func-
tional enrichment analysis with the DAVID bioinformatics tool (version 6.8). Figure 5A
represents the interaction network of the nodes and their first neighbors. Functional enrich-
ment analysis of 17 genes revealed that the signature genes were significantly involved in
the cancer pathway and apoptotic process (Figure 5B).

3.7. Validation of the 17-Gene Signature in Lung Cancer Data

We validated our identified 17-gene signature for NSCLC in various experimental
studies using the Expression Atlas (release 38; https://www.ebi.ac.uk/gxa/home, accessed
on 7 August 2022). We took the gene name, selected Homo sapiens as the species, and lung
cancer as the biological condition, and submitted these to the database. Next, the differential
expression data were downloaded with “diseases” as the experimental variables, and were
considered only the data with a comparison between cancer vs. normal with |log2FC| > 2.
The result identified that 14 genes were differentially expressed out of 17 across 32 studies
(Table S10). We found positive LASSO coefficients for the genes CDKN2A, EGLN3, KIF14,
and RECQL4 that were upregulated in cancer compared with normal samples. On the
contrary, negative LASSO coefficients were found for the genes ADRB2, CRYAB, NR4A1,
CMTM5, ZBTB16, SYNE3, and RAD51, which were downregulated in cancer compared
with normal samples. Negative LASSO coefficients were found for the genes KANK2 and
CLEC4D that were downregulated in cancer compared with normal samples, but their

https://www.ebi.ac.uk/gxa/home
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log2FC was between −1 and −2. Thus, the results above support the efficient selection
of genes by the LASSO for predicting NSCLC. However, we also found positive LASSO
coefficients for the genes CLEC4E, and CDH1 that were downregulated, and a negative
LASSO coefficient for the gene KIF23, which was both upregulated and downregulated in
different studies.
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Figure 5. Sub-network of the signature genes and their functional enrichment identified through the
LASSO. (A) Interaction network of genes identified through transcriptome–interactome signatures
and their first neighbors. The genes are represented as red nodes, while their first neighbors are
shown in green. (B) Functional enrichment analysis of 17 targets against the pathway database KEGG
and biological process in the Gene Ontology database.

4. Discussion

Detecting cancer at its early stage is the foremost goal of preventing cancer’s pro-
liferation and metastasis. Therefore, developing highly accurate and reliable molecular
diagnostic tools for cancer, including predictive and prognostic models, is indispensable
for diagnosis at the early stage and finding suitable treatment modalities [49]. Lung can-
cer is a significant reason for cancer-associated fatality [1], which is mainly categorized
into small cell lung cancer (~15% cases) and non-small cell lung cancer (NSCLC, ~85%
cases). The main histological types of NSCLC are adenocarcinoma and squamous cell carci-
noma [50,51]. It has been suggested that early surgical resection of NSCLC can increase
the 5-year survival by up to 70%; unfortunately, almost 75% of cases are detected at the
time of advanced disease (Stages III/IV), making it difficult to manage the disease despite
significant modern advancements in oncology practice [51]. Furthermore, past works have
identified various diagnostic and prognostic signatures in cancers for patient stratification
using gene expression and omics data; however, this approach has failed to capture the
synergistic effects of gene expression [17–19]. Therefore, applying AI and MLT to omics
data could be a promising approach for identifying and developing better prognostic and
diagnostic models in cancers. The uses of AI in lung cancer detection have been a focus of
research and gained significant scientific attention during the recent SARS-CoV-2 pandemic.
The application of AI-based models using chest X-rays, CT scans, and PET scans have been
suggested as important methods for detecting lung cancer [52,53]. Though the approach
of image-based lung cancer detection is important for tackling this challenge, the use of



Biology 2022, 11, 1752 14 of 19

molecular signatures can greatly surpass AI-based detection of the morphological changes,
which become apparent after a long carcinogenic molecular transformation.

A previous study identified 17 candidate genes in lung adenocarcinoma for predicting
survival in non-smoking patients [54]. The study used weighted gene co-expression
network analysis (WGCNA) and LASSO Cox regression to identify the prognostic signature;
however, the model achieved an AUC-ROC of 0.736 on the training dataset [54]. Another
study also used WGCNA and LASSO Cox regression, and identified four genes that
predicted high and low overall survival in lung adenocarcinoma with an AUC-ROC of
0.71 on the training dataset [55]. Most of the previous studies focused on developing
prognostic models for lung cancer; however, it is imperative to develop a model for
predicting lung cancer with the high accuracy required for early detection and better
management of patients. Furthermore, integrating the gene expression and interaction
data has huge potential to identify the crucial genes associated with disease initiation.
Therefore, this study implemented and identified the molecular transcriptome–interactome
signatures for developing a LASSO-based machine learning model for predicting NSCLC.
First, we identified the DEGs in lung cancer compared with normal samples using the
lung-associated TCGA and GTEx data. Next, the human-specific interaction data were
downloaded from BioGRID version 4.4.205, a continuously updated, large biomedical
interaction repository currently holding almost 2.3 million proteins and genetic interactions
from more than 78,000 publications [40]. The human interactions in BioGRID are also
available with relevant literature references and therefore represent high-quality interaction
data. In addition, the Cytoscape tool was used for reconstruction, visualization, and
analysis of the biological network [41]. The important nodes from the DEGs’ interaction
network were constructed on the basis of their degree, reflecting each node’s centrality in
a particular interaction network. Hence, we identified the important nodes on the basis
of their degree [56], indicating the identification of crucial nodes that may be involved in
the proliferation of lung cancer. However, identifying the crucial genes that are relevant to
detecting lung cancer is challenging. Therefore, we used the LASSO for feature selection
and development of a model that identified a combined expression pattern of 17 genes
(KANK2, CLEC4D, ADRB2, CRYAB, NR4A1, CMTM5, ZBTB16, ACTC1, RAD51, KIF23,
SYNE3, CLEC4E, CDKN2A, EGLN3, KIF14, RECQL4, and CDH1) and their associated
coefficients as a robust predictor of NSCLC. The performance of our developed LASSO
model was highly accurate, with an AUC-ROC greater than 0.99 on most of the independent
datasets of NSCLC, indicating that the selected 17-gene signature might be crucial for
developing NSCLC (Figure 4). These genes belong to various categories, including tumor
suppressors, oncogenes, translocated cancer genes, and transcription factors (Table S6).
Furthermore, we validated our 17-gene signature across several studies and found most of
these genes were differentially expressed; thus, our finding is supported by other studies
(Table S10).

Among the 17 signature genes, KANK2, CLEC4D, ADRB2, CRYAB, NR4A1, CMTM5,
ZBTB16, ACTC1, and SYNE3 showed downregulation in NSCLC with negative LASSO
coefficients. Genes with negative coefficients indicate a lower risk of lung cancer if their
expression is upregulated. KANK2 gene encoding protein, also known as SRC interact-
ing protein, is involved in transcription regulation and caspase-independent apoptosis.
It is a tumor suppressor gene, and its downregulation is associated with NSCLC [57].
The mRNA expression level of CLEC4D was reported to be significantly lower in hepa-
tocellular carcinoma [58]. According to GTEx V8 (https://gtexportal.org/, accessed on
15 October 2022), the lung is one of the tissues with high expression of CLEC4D mRNA.
The gene ADRB2 codes for the beta-2-adrenergic receptor, and its downregulation and
polymorphisms are associated with lung cancer [59–61]. The alpha B-crystallin (encoded by
CRYAB) is a molecular chaperon that binds to avert the aggregation of misfolded proteins
and to inhibit apoptosis [62,63]. Studies have shown that the high expression of CRYAB is
associated with tumor development and is a marker of poor prognosis for head and neck
cancer [64], and breast cancer [65]. On the contrary, the role of CRYAB in lung cancer is

https://gtexportal.org/
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controversial and needs more study [66]. CMTM5 acts as a tumor-suppressor gene, and it
is downregulated in several cancers, such as myeloid leukemia, ovarian cancer, prostate
cancer, cervical carcinoma, and pancreatic cancer [67]. ZBTB16 encodes for a zinc finger
TF and is associated with the progression of the cell cycle. ZBTB16 is underexpressed in
multiple cancer types, including lung cancer [68]. Therefore, the selection and inclusion of
downregulated genes with a negative coefficient in our LASSO model justified its high pre-
dictive accuracy, warranting further in vitro experiments to understand the mechanism(s)
of NSCLC development.

The CDKN2A, EGLN3, KIF14, RECQL4, and CDH1 genes showed upregulation in
NSCLC and had positive LASSO coefficients. Genes with positive coefficients increase the
risk of lung cancer if their expression is upregulated. EGLN3 is a member of Caenorhabditis
elegans gene egl-9 (EGLN) family of oxygen- and α-ketoglutarate dependent prolyl hydrox-
ylases. EGLN3 catalyzes the hydroxylation of extracellular signal-regulated kinase 3 (Erk3)
and increased its stability, which is recognized as a strong potent driver of cancers [69].
Thus, our finding has been validated by other studies where the EGLN3 was reported to
be vital for the growth of numerous cancers, including lung cancer [69]. The upregulated
kinesin family member gene KIF14 is a mitotic kinesin and plays an essential role in tumor
development. Similar to lung cancer, overexpression of KIF14 was also reported in several
cancers, and the upregulation of this kinesin family member gene has been associated
with poor prognosis [70]. RECQL4, a helicase known as a molecular motor, is involved
in unwrapping the DNA, an essential event during DNA replication and DNA repair.
Notably, the chromosomal site of the RECQL4 gene is considered as a hot-spot position
for frequent mutation often highly detected in sporadic breast cancers [71]. Furthermore,
Arora et al. demonstrated that the depletion of RECQL4 levels led to weakening of the
DNA duplication rate and increased chemosensitivity in cultured breast cancer cells. Thus,
their study confirmed that RECQL4 upregulation is linked with tumor progression in
breast cancers [71]. Furthermore, another study showed that a high expression of the
BLM gene, a paralog of RECQL4, was associated with poor prognosis in lung cancer [72].
Hence, we anticipate that further study of these genes in a model of a lung cancer cell
line will eventually shed some more light on their involvement in NSCLC’s development
and progression.

These feature genes are involved in several aspects of cancer progression as docu-
mented, and the important role of these targets in NSCLC indicates the importance of
their detection by the LASSO model, which was also evident while performing a func-
tional enrichment analysis of these target genes with DAVID Bioinformatics Resource 6.8.
(Figure 5B) [73]. The functional overrepresentation analysis against the KEGG pathway
database revealed that these targets are associated with cancer pathways. Moreover, analy-
sis against Gene Ontology biological process terms indicated that these targets are involved
in regulation of apoptosis, a crucial pathway dysregulated during cancer development.
The inclusive picture involving the feature genes and their functional overrepresentation
analyses revealed the importance of these factors in developing the MLT-based model.

The LASSO-based model has been used to diagnose other diseases, indicating its
potential for detecting cancers [74,75]. As noted previously, early cancer detection is
key to preventing several cancer-associated complications. In addition, this can also
reduce the significant economic burden on the healthcare system by reducing the chance of
metastasis and mortality. Our study used a systems biology and LASSO-based approach,
and identified the transcriptome–interactome signatures that achieved high accuracy in
predicting NSCLC. Thus, evidence of the high accuracy of our model indicated that the
strategy of integrating transcriptome–interactome signatures has enormous potential to
develop better models for predicting other diseases, including various cancers. In addition
to the late diagnosis, other obstacles preventing the long-term survival of NSCLC patients
include a lack of advanced treatment and an accurate prognosis model due to the disease’s
heterogeneity, as well as differences in cancer care facilities across the world.
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Our study has a few limitations, including the following. Firstly, the publicly available
data are imbalanced and contain many NSCLC cancer samples compared with normal
samples. Therefore, we used the AUC-ROC and AUC-PRC curves to check the performance
of the model developed on imbalanced data at different threshold values. Second, our
model did not include gene mutations, intra-tumoral heterogeneity, and other clinical
features associated with cancer. Third, we identified a 17-gene signature that needs to
be further validated using qRT-PCR in several clinical samples of NSCLC. Finally, tissue
biopsies are needed to quantify the genes’ expression levels, which are invasive, costly, and
time-consuming.

5. Conclusions

In summary, we conducted an integrative approach to identify the transcriptome
and interactome signatures for discriminating NSCLC from normal samples. We then
applied LASSO logistic regression to find a 17-gene signature and developed a model for
predicting NSCLC. The performance of our model showed high accuracy across several
independent datasets of NSCLC. Finally, we developed a web application, NSCLCpred
(https://hifzuransari.shinyapps.io/NSCLCpred/, accessed on 31 October 2022), for de-
tecting NSCLC using the expression profile of 17 genes. Our findings could be helpful
in creating a new strategy for diagnosing NSCLC patients. Furthermore, we expect our
identified gene signature to provide novel insights and therapeutic targets for NSCLC.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biology11121752/s1. Figure S1: Performance of logistic regression
models on the test dataset 1 (TD1). Table S1: The number of samples in the test dataset 2 (TD2) used
to assess the performance of the LASSO model. Table S2: List of the top 20 DEGs based on log2FC
values. Table S3: Upregulation of genes in lung cancer compared with normal samples. A gene was
considered to be upregulated at log2FC > 2 and adj.p.value < 0.001. Table S4: Downregulation of
genes in lung cancer compared with normal samples. A gene was considered to be downregulated
at log2FC < −2 and adj.p.value < 0.001. Table S5: Genes with non-zero coefficients selected by
using LASSO. Table S6: The 17-gene signature of the LASSO model is associated with different gene
families according to the Molecular Signature Database (MSigDB). Table S7: Performance of the
LASSO model on the independent TD2 dataset GSE18842. Table S8: Performance of the LASSO
model on the independent TD2 dataset GSE27262. Table S9: Performance of the LASSO model on
the independent TD2 dataset GSE19804. Table S10: Expression patterns of the 17-gene signature
across various studies on lung cancer. The data were extracted from Expression Atlas release 38
(https://www.ebi.ac.uk/gxa/home, accessed on 7 August 2022).
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